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punt em sento agräıt cap a tots ells, aix́ı com l’impacte positiu que han causat en

tots els àmbits de la meva vida. Espero que ningú s’ofengui si no troba el seu nom
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Chapter 1

Introduction

Fluid Mechanics is a key area of interest in Science, covering a wide spectrum

of important problems, from blood flow through our veins up to ocean currents

and hurricane predictions. The same discipline studies how butterflies fly and

how convective patterns of plasma self-organize in the sun inner structure. The

methods of fluid mechanics have even been applied to model the motion of galaxies

[Binney and Tremaine (2008); Lou (2005)], social behaviors in crowds [Narain et al.

(2009)], traffic jams [Lighthill and Whitham (1955); Richards (1956)], or evolution

of financial markets [Voit (2005)].

From a technological point of view, any significant improvement has a huge

impact on society. Everyday, thousands of scientists around the globe work to

design better refrigeration systems, combustion propellers or to improve the aero-

dynamics of high speed vehicles, like planes or cars in F1 races, for example, where

they get notorious advances. Overpopulated cities survive thanks to their complex

water supply network, many times fed by reservoirs which are regulated by huge

dams that are architectural wonders. Even most power plants take advantage of

boiling water and the injection of its resulting vapor through large scale turbines

in order to convert heat energy into electricity.

The main issue in this area of knowledge is that the governing equations for the

motion of fluids, despite they were first introduced in 1822 by Claude Louis Navier

and almost two centuries have passed since then, still remain essentially unsolved,

a situation that does not seem very likely to change in a near future. This is

the reason why, in order to deepen our knowledge of the physics of fluids, and

to gain insight into the fundamental mechanisms underlying the large variety of

phenomena that they cover, it is useful to learn from the study of particular cases

or simple model systems. This is true in particular for the study of turbulence,

one of the most difficult problems in fluid mechanics, widely recognized among

the few outstanding and most challenging problems in fundamental physics.
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2 Chapter 1. Introduction

1.1 Two-phase flows

From the large spectrum of topics covered by fluid mechanics, two-phase flows

constitute a particularly complex area, very common in nature and in technological

applications. Some examples can be found on issues like oxygenation of the upper

layers of the ocean [Biesheuvel and Wijngaarden (1984)], clouds [Pruppacher et al.

(1998)], foams created at the breaking of waves [Peltzer and Griffin (1988)] and

even the proper generation and evolution of waves [Kinsman (2012)].

Its study is relevant for understanding drag forces on ships [Carrica et al.

(1998)], heat transfer [Ishii and Hibiki (2011); Webb (1994)] and mass transport

processes [Sun et al. (2005)], as well as for the construction and development

of new and improved engines [Hays and Elliott (1974)], environmental control

systems (such as air conditioners), chemical reactors, propulsion systems, and an

endless list of other applications. When we apply deodorant spray or shaving

foam, or when we eat some deserts of fine cuisine, we benefit from of two-phase

flows research funded by beauty and food companies.

One may distinguish two main classes of problems in multiphase flows: free-

surface flows, where one has to explicitly solve for the dynamics of a deformable

interface, and disperse multiphase flows, characterized by a dispersed phase that

is distributed within a carrier phase in the form of particles, droplets, or bubbles,

where the evolution of the interface shape is of secondary importance. In part of

this thesis we will study an example of the first, in the context of crystal growth,

but most of it will be devoted to the study of bubbles dispersed in a liquid phase,

all of them in microgravity conditions. The main difficulty in all cases will come

from the complexity of the liquid flow, rather than the dynamics of the interfaces.

Dispersed multiphase flows are common in many engineering and environmen-

tal applications, and they are often turbulent. If turbulence and multiphase flows

are, separately, two of the most challenging topics in fluid mechanics, when com-

bined they pose a formidable challenge [Balachandar and Eaton (2010)]. The in-

herent fluctuations of the turbulent carrier are further complicated by the random

distribution of the dispersed phase, and the existence of break-up and coalescence

phenomena. This is why in this work we will put a particular effort in designing

experimental conditions to achieve the simplest possible bubble dispersions, aim-

ing at uniform sizes of bubbles and dilute homogeneous distributions, two aspects

that find particular difficulties in microgravity.
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1.2 Bubbles in Microgravity

Experimentation in microgravity usually entails a substantial increase of technical

complexity compared to the corresponding studies on-ground, in addition to the

much higher costs. However, the increasing technological demand on the area

for space exploration is fostering microgravity research in a continuously growing

community. This is particularly true for the study of two-phase flows, widely

recognized by all space agencies as a strategic area of research for applications

in space technology, being critical in many aspects of life support systems and

environmental control for life in space [Hurlbert et al. (2010)], power generation

and propulsion [Meyer et al. (2010)], or thermal management with gas-liquid heat

exchangers [Hill et al. (2010)]. Many of such situations involve generic problems

in phase mixture/separation, two-phase fluid management and control, wetting

and contact line dynamics, phase change, or heat and mass transfer. While these

processes are encountered in many engineering fields already in terrestrial condi-

tions, the study in non-terrestrial gravity conditions poses additional challenges

from the point of view of fundamental physics, in particular because of the limited

access to microgravity platforms and the corresponding lack of high quality data.

All the previously cited examples, and others like bioreactors (which require

a homogeneous oxygenation of the cell-growth media) or chemical reactors (need-

ing to maximize the contact area between phases), are sensitive to the shape and

dimensions of the interface between gas and liquid. They usually benefit from

maximizing the ratio of contact-area between phases versus volume of gas, which

can usually be achieved by the injection of large amounts of bubbles of small and

controlled size. This can be easily accomplished in normal gravity conditions,

where buoyancy forces detach bubbles on their own by simply injecting gas into

a quiescent cavity, but it is an impotent challenge when buoyancy forces are ab-

sent. Then, other mechanisms and physical principles must be exploited to detach

bubbles in a controlled manner [Carrera et al. (2006)].

Although two-phase flows research has been continuously expanding in the last

decades [McQuillen et al. (1998); Ohta et al. (2002)], that kind of precise bubble

control has not been achieved until very recently [Carrera et al. (2008)]. The

method first introduced by Carrera et al. consists in the generation of bubbles

in a T-Junction of capillary tubes of the order of 1 mm, obtaining a very regular

train of bubbles of prescribed size. A more detailed description of the procedure

will be reviewed later in Chapter 3, and the same bubble generation system will

also be the basis of the experiment detailed in Chapter 4. The practical value of

this bubble injection procedure for both fundamental and applied studies has also

been exploited in the recent contributions of Suñol (2011) and Arias (2011).

Finally, it is worth remarking that, in addition to the technological motivation
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of the study of bubbles in microgravity and its implication for space exploration,

there is also a remarkable scientific interest from the point of view of fundamental

physics, in the context of turbulent two-phase dispersions mentioned above. In

the case of bubbles, the physics of such dispersions is dramatically different from

its counterpart with normal gravity, and many subtle effects and interactions that

are usually masked by strong buoyancy forces may now emerge. We hope that

aiming at the experimental acquisition of relatively high quality microgravity data

in sufficiently simplified and controlled conditions, we will gain new insights on

fundamental aspects of fluid mechanics, which may eventually turn to be relevant

for applications in space technology.

1.3 Reduced gravity facilities

Experimentation in microgravity is currently conducted in a few platforms, which

differ largely in the duration and the quality of the reduced gravity, and in the

actual cost. In a crescent order of the microgravity duration we have: drop towers,

parabolic flights, sounding rockets, orbiting spacecrafts (like space shuttles) and

permanent orbital platforms (such as the International Space Station). All of these

systems provide a reduced gravity environment by exploiting Einstein’s equiva-

lence principle, which states that ”The outcome of any local non-gravitational

experiment in a freely falling laboratory is independent of the velocity of the lab-

oratory and its location in spacetime” [Haugan and Lammerzahl (2001)]. That

means that if we have our experiment confined in a small volume (compared to

the scale of variation of the gravity field), following a free fall trajectory (without

any external force acting upon it, in addition to gravity), then the observer inside

the volume will not be able to distinguish whether he is in free fall or away from

any gravitational field.

Drop towers are based on the release of a capsule (with a running experiment)

from the top of a tower, and let it have a free fall in the range of 2 to 5 seconds,

depending on the facility. One of the main technological issues to overcome is the

air frictional force acting upon the falling capsule, which increases over time with

the velocity of the object. This introduces an external force that prevents the

object from freely falling, consequently modifying the acceleration environment

and the effective gravity level. This problem is solved in different ways depending

on the facilities. At the ZARM (“Center of Applied Space Technology and Mi-

crogravity”) drop Tower in Bremen, for example, where all the experiments in the

present thesis have been conducted, a complex system of vacuum pumps reduces

the pressure inside the whole tower down to 20 Pa prior to the drop, in order to

reduce the frictional effects to a negligible point. Thanks to that procedure, a high
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quality microgravity is obtained, of the order of 10−6g0 (being g0 = 9.8m/s2 the

gravitational acceleration at Earth’s surface) during a 4.7 s interval. The ZARM

facilities have recently incorporated a catapult system which allows to double that

time by throwing the capsule upwards from the bottom of the tower and let it fall

again.

The drop tower at INTA (“National Institute of Aerospace Technology”) in

Madrid, uses a double capsule system for its 2 s free fall, in which frictional

effects act upon an external container while the free falling laboratory is inside

this external shell, moving relative to it but with reduced friction.

If the experiments require longer times of microgravity, then parabolic flights

are the “cheapest” way to increase the reduced gravity time, but at expenses of

its quality. These systems are based on planes that describe parabolas of around

20-30 seconds of free fall, during which the engines and the aerodynamics of the

plane are used to correct for the residual forces from the friction with the air.

The quality of the microgravity is very variable but it rarely achieves values below

10−2g0. In addition, the accelerometric signal is subject to strong high-frequency
noise (known as g-jitter) due to turbulences affecting the plane. For systems

weakly sensitive to the residual gravity this is a good option, because in addition

to the duration, many parabolas can be repeated in a single flight. But in the

case of bubbles it is a delicate issue that depends on the processes and magnitudes

that are going to be studied.

The third class of microgravity platforms in Earth-based facilities is that of

Sounding Rockets (or ballistic rockets). In this case, rockets are sent on a sub-

orbital flight between 50 km and 1500 km above the surface of the Earth. This

trajectory provides 5 to 20 minutes of reduced gravity experimentation far beyond

the atmosphere (over 100km from the surface of the planet), thus minimizing

frictional effects and other kind of interactions of the capsule with the atmosphere,

achieving values of effective gravity of 10−5g0 for these long periods of several

minutes [NASA (2005)].

Finally, the last possible platform for microgravity research is the use of an

orbiting platform such as the ISS, for which the microgravity time is virtually

unlimited, although the cost is much greater. It is worth remarking that the

quality of the microgravity at the ISS is also subject to some degree of g-jitter,

which may depend on the position of the experiment in the structure and on the

level of mechanical activity in the station, resulting in a microgravity environment

that may be poorer than that in the ZARM Drop Tower.

The issue of the g-jitter, which is generically present in any microgravity plat-

form, is precisely the focus of interest in the chapter of this thesis devoted to sim-

ulations of crystal growth, where we study the correlation between the stochastic
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variation of the effective acceleration environment, as measured in real micrograv-

ity platforms, and the final quality of crystals grown under those conditions.

1.4 Structure of the Book

After the introductory chapter, in chapter 2 we introduce and discuss the main

numerical methods used in our research work. On the one hand, the finite-volume

methods that are used both for an effective model of turbulence and for the study

of semiconductor crystal growth. On the other hand, we discuss extensively the

Lattice-Boltzmann method and its use for the study of turbulence.

Chapter 3 is devoted to the study of turbulent bubble jets, carefully processing

data from experiments performed by [Carrera et al. (2008)] with particle tracking

techniques, and obtaining the jet structure, and the statistics of bubble velocities

and their fluctuations. We compare the obtained data with an effective model of

turbulent dispersion that we introduce and solve numerically.

In chapter 4 we explain the motivation and the design of a series of experi-

ments conducted at the ZARM drop tower, and the data processing to obtain the

statistics of bubble velocities and their fluctuations. Results are compared with

Lattice-Boltzmann simulation of the same conditions of the experiment in the

absence of bubbles. We also study the distribution of time separation of bubbles

and compare with the predictions of the simulation.

Finally, chapter 5 is focused on the impact of g-jitter in the degree of dopant

segregation in semiconductor crystal growth in microgravity conditions. We solve

the complete problem numerically, and develop an effective model that captures

the basic physical mechanisms and may be used as a predictive tool for real sys-

tems.

We conclude with a summary of results and perspectives and an appendix with

the summary of the thesis in catalan.



Chapter 2

Numerical methods

In the last decades, Computational Fluid Dynamics (CFD) has become a funda-

mental pillar of study for physics of fluids. Theoretical scientists are continuously

searching for better ways to exploit the crescent power of computation provided

by new technologies. As time goes by, more physical phenomena are being nu-

merically reproduced, and the improvements in simulation models also increase

the accuracy of results. This brings us an extremely valuable tool to complement

the experimental approach and to help gaining theoretical insights that cannot be

accessed by means of direct analysis of Navier-Stokes equations.

There exist many highly effective models of CFD, each one of them with its

own strengths and weaknesses, like Finite Differences, Finite Volumes, Spectral

Methods, Large Eddy Simulations, and Lattice-Boltzmann Models, within others.

In our focus of study here we face the combination two ingredients that consti-

tute particular challenges from a numerical point of view: two-phase flows and

turbulence. In our problems it will be justified to treat the interfaces as non-

deformable, so the most demanding aspect of the computation will be to address

the simulation of turbulence. In this chapter we will briefly review the numerical

methods used in this thesis for problems involving turbulent flows. This will be

done at different levels of description, combining both finite-volume integration of

effective models of turbulence, described in section 2.1, and first-principle solution

of the equations of motion by means of Lattice-Boltzmann methods, described in

section 2.2.

7



8 Chapter 2. Numerical methods

2.1 The finite volume method for the k-ε model

2.1.1 Basics of the method

The finite volume method is a widely used technique to solve numerically partial

differential equations, and in particular the Navier-Stokes equations in CFD. It

is based on the discretization of space into a grid of small volumes, at each of

which we assume a homogeneous value of all hydrodynamic magnitudes. Then,

as we will see, one obtains the evolution of the flow properties by balancing the

incoming/outgoing flux through each side of every particular elementary volume.

Here we will not review the details of how this is done in practice, because this

is quite standard. In particular, for the numerical computations of turbulent

flows conducted with this method we have used the commercial software package

FLUENT. For a deeper discussion of the approach, in particular in the context of

the effective models of turbulence that we will use here, readers should refer for

example to [Versteeg and Malalasekera (1995)].

To introduce the basic insight of the finite-volume method, let us consider the

transport equation of a certain scalar magnitude φ in a compressible Newtonian

fluid, defined by the expression:

∂(ρφ)

∂t
+∇ · (ρφu) = ∇ · (Γφ∇φ) + Sφ , (2.1)

where ρ is the density of the fluid, u the velocity of the flow, Γφ the diffusion

coefficient of φ, and Sφ a source term of generation of φ.

In order to study the evolution of the flow at each elementary volume V , we

integrate Equation (2.1) in the form:∫
V

∂(ρφ)

∂t
dV +

∫
V

∇ · (ρφu) dV =

∫
V

∇ · (Γφ∇φ) dV +

∫
V

Sφ dV . (2.2)

Now we can simplify the resulting equation by means of Gauss’s divergence

theorem: ∫
V

(∇ · a) dV =

∮
A

(n̂ · a) dA . (2.3)

Here, the integral is over the whole closed surface A which encloses the volume V ,

and n̂ is the unity vector with direction perpendicular to the surface element dA.

Applying this equivalence to equation (2.2), and integrating over one time step δt
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of the simulation, we reach the expression:

∫
δt

∂

∂t

⎛⎝∫
V

(ρφ) dV

⎞⎠ dt+

∫
δt

∮
A

n̂ · (ρφu) dAdt =

=

∫
δt

∮
A

n̂ · (Γφ∇φ) dAdt+

∫∫
δt V

Sφ dV dt .

(2.4)

This equation, is the commonly used by most CFD codes using finite volumes.

By properly adjusting the diffusion coefficient Γφ and the source term Sφ, one can

take φ as each of the velocity components (ux, uy, uz), the temperature T or any

other scalar variable ϕ.

The first term at left-hand side of equation (2.4) describes the variation of the

concentration of φ in the volume during one time step. The second term stands

for the net flow of the scalar advected through the closed surface A. The first

term at the right-hand side, corresponds to the net flux of φ diffused through the

surface. Finally, last term is the amount of φ that has been generated inside the

volume.

The numerical approach of the problem of crystal growth addressed in chapter

5, which involves both (non-turbulent) fluid flow and thermo-solutal transport, will

be based on finite-volume methods and the details will be discussed specifically

in that chapter. In this chapter we are concerned with the specific difficulties

that arise when dealing with turbulent flows, present in any CFD strategy, due

to the inherent dynamic instability of the flow and its complex multiple-scale

spatio-temporal structure. In the context of finite-volume methods, it becomes

impossible to specify a grid of elementary volumes fine enough to fully describe

all the scales of turbulence, because of the prohibitive computer time required to

numerically solve it. In order to overcome this problem, different approximation

strategies have been proposed to coarse-grain the flow at small scales while keeping

the effective dynamics at larger scales as correct as possible. The rationale of the

approach is to define some type of averaging that reduces the problem to a mean

flow that looks as laminar, plus a small perturbation that contains the fluctuations,

i.e. we write

u = U+ u′ = (Ux + u′x, Uy + u′y, Uz + u′z) , (2.5)

where we define the velocity of the flow u as the sum of the mean velocity U

of the volume during one time step, and the fluctuating part u′ with zero mean,
that describes the fast fluctuations in this volume. We can split any other scalar

variable ϕ in the same way:

ϕ = Φ+ ϕ′ . (2.6)
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The idea is then to find the effective equations for the mean flow after proper

averaging over the fast fluctuating components. This yields a set of effective

transport equations for a compressible newtonian fluid of the form:

∂ρ

∂t
+∇ · (ρU) = 0 (2.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(ρUx)
∂t +∇·(ρUxU) = ∇·(μ∇Ux)−

[
∂(ρu′2

x )
∂x +

∂(ρu′
xu

′
y)

∂y +
∂(ρu′

xu
′
z)

∂z

]
− ∂P

∂x + Sx .

∂(ρUy)
∂t +∇·(ρUyU) = ∇·(μ∇Uy)−

[
∂(ρu′

xu
′
y)

∂x +
∂(ρu′2

y )
∂y +

∂(ρu′
yu

′
z)

∂z

]
− ∂P

∂y + Sy .

∂(ρUz)
∂t +∇·(ρUzU) = ∇·(μ∇Uz)−

[
∂(ρu′

xu
′
z)

∂x +
∂(ρu′

yu
′
z)

∂y +
∂(ρu′2

z )
∂z

]
− ∂P

∂z + Sz .

(2.8)

∂(ρΦ)
∂t +∇·(ρΦU) = ∇·(ΓΦ∇Φ)−

[
∂(ρu′

xϕ
′)

∂x +
∂(ρu′

yϕ
′)

∂y +
∂(ρu′

zϕ
′)

∂z

]
+ SΦ . (2.9)

where μ stands for the dynamic viscosity of the flow and P is the pressure.

The equations are not yet closed until we specify an explicit form for the

averages of the fluctuating terms u′iu
′
j. This cannot be performed exactly, and

different choices for those terms define different approximations, that may be

more or less accurate depending on the type of flows and geometries under study.

In the literature one can find many different models of turbulence based on this

scheme, with a variable complexity and computational cost that range from very

simple assumptions up to the inclusion of six new partial differential equations

(for the so-called Reynolds stress equations). In the next section, we will focus on

the so-called k− ε models, specifically on the so-called realizable k− ε [Shih et al.

(1995)].

2.1.2 Realizable k − ε model

The so-called k − ε models are based on the description of the fluctuating part

of the flow in terms of two fields, the local turbulent kinetic energy k of the

fluctuating part, and its dissipation rate ε. This introduces two new transport

equations coupled to the system of equations (2.7), (2.8) and (2.9), as we will see

later.
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The kinetic energy of turbulence per unit mass is defined by the expression:

k =
1

2

(
u′2x + u′2y + u′2z

)
. (2.10)

We relate this magnitude to equations (2.8) and (2.9) by means of an extended

Boussinesq relationship of the form:

−ρu′iu′j = μt

(
∂Ui

∂xj

+
∂Uj

∂xi

)
− 2

3
ρkδij = 2μtEij − 2

3
ρkδij . (2.11)

where we have used the definition of the rate-of-strain tensor Eij ,

Eij =
1

2

(
∂Ui

∂xj

+
∂Uj

∂xi

)
. (2.12)

Finally, μt stands for the so-called eddy viscosity, defined by:

μt = ρCμ
k2

ε
, (2.13)

where Cμ is a constant to be fitted to optimize the results, which in the most

standard case is usually taken as Cμ = 0.09.

One of the shortcomings of the method is that it uses assumptions of isotropic

turbulence. As we can see at equation (2.11), we impose one third of the total

kinetic energy of the turbulence at each direction.

In the case of interest here for the application of this approach, namely the

study of turbulent jets, the standard k − ε model predicts opening angles of jets

slightly excessive (a point that is of crucial importance for our study). This is the

reason why we use an improved version, the so-called realizable k− ε model [Shih

et al. (1995)]. This introduces the transport equations:

∂(ρk)

∂t
+∇ · (ρkU) = ∇ ·

[(
μ+

μt

σk

)
∇k

]
+ 2μtEij · Eij − ρε , (2.14)

∂(ρε)

∂t
+∇ · (ρεU) = ∇ ·

[(
μ+

μt

σε

)
∇ε

]
− ρC2

ε2

k +
√
νε

, (2.15)

which are slightly different from those of the standard model, and in addition take

Cμ, defined in equation (2.13), as a flow depending function (instead of a constant

parameter), with the form:

Cμ =
1

A0 + As
kU(∗)

ε

, (2.16)
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where

U (∗) =
√
EijEij + ΩijΩij , (2.17)

Ωij =
1

2

(
∂Ui

∂xj

− ∂Uj

∂xi

)
. (2.18)

The other constants, i.e.

A0 = 4.04, As =
√
6cosφ , (2.19)

φ =
1

3
cos−1

(√
6
EijEjkEki

(
√

EijEij)3

)
, (2.20)

C2 = 1.9, σk = 1.0, σε = 1.2 , (2.21)

have been fitted to values that offer an overall optimal performance of the model.

In chapter 3 we will carry out the numerical integration of this model by means

of the package FLUENT as a reference calculation to understand the behavior of

bubbles within a jet, in particular to work out to what extent their interaction

with the carrying jet may be considered as that of a passive tracer.

2.2 Lattice-Boltzmann simulations

When facing Navier-Stokes equations, we have to deal with a set of coupled non-

linear differential equations. In most CFD models, this brings up the issue that

evolution of each fluid element typically depends on the whole system, which

prevents to take full advantage of parallel computing. The Lattice-Boltzmann

approach, however, presents a way of numerically solving the Navier-Stokes equa-

tions in a completely local manner, well amenable to massive parallelization. As

we will see in next sections, this means that for a small time step, each fluid ele-

ment is only affected by its nearest neighbors, allowing to split the computational

effort of any simulation within any number of CPUs, thus reducing in that way the

computer time of calculation virtually by the same factor. The Lattice-Boltzmann

approach has become more and more competitive in recent years with respect to

more traditional methods, due to its versatility and its adaptation to massively

parallel computing in modern supercomputers with hundreds or even thousands

of CPU units, and is currently appreciated by the CFD community as one of the

most powerful methods, in particular in the study of complex fluids and complex

flows (such as for turbulence).

The Lattice Boltzmann Model was born from the idea of addressing compu-

tational fluid dynamics from a microscopic point of view, using the concepts of

kinetic theory but without trying to describe the flow by tracking actual particles
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at molecular level. Solving the exact microscopic dynamics is obviously out of

the question, because of the huge computational effort to obtain lots of useless

information (even assuming that we know the initial condition of all particles, it

would take longer than the age of the universe to simulate a few seconds of our

experiment). On the basis that microscopic details are not relevant to a hydrody-

namic description, we can make use of statistical mechanics. More specifically, the

method is inspired in kinetic theory by assuming time-dependent one-particle dis-

tribution functions of the microscopic observables at each spatial cell, and defining

the evolution of those distributions in accordance with the appropriate collision

terms that govern the transport of conserved quantities.

In the following sections we present the basic principles as well as the simple

but useful tools necessary to build a Lattice-Boltzmann simulation scheme. We

do not pretend to provide here a complete an exhaustive description of the model.

For more information we recommend [Succi (2001)], [Chen and Doolen (1998)],

[Aidun and Clausen (2010)] and [Nourgaliev et al. (2003)], amongst many others.

2.2.1 Boltzmann Equation

Given an ensemble of particles, we can specify their probability distribution func-

tion as f(r, e, t). This construction stands for the distribution of single particles

at position r with velocity e at instant t. By integrating f over all velocities, we

obtain the density of particles ρ at each point r:

N = ρ(r, t)d3r = d3r

∫ ex=+∞

ex=−∞

∫ ey=+∞

ey=−∞

∫ ez=+∞

ez=−∞
f(r, e, t)d3e , (2.22)

where N is the number of particles contained in a differential element of fluid d3r

placed on r at time t.

Evolution of f with time can be expressed when realizing that changes in

the flow of that distribution (expressed by means of the material derivative) can

only be caused by particle interactions. Then we obtain (as seen, for example, in

[Huang (1963)]):

(∂t + e · ∇r + a · ∇e) f(r, e, t) = Ωcoll . (2.23)

In this expression, a stands for an external force that is being applied upon a

volume element. At the right-hand side of the equation, Ωcoll represents the effect

of the collision between particles, which was expressed by Boltzmann (1872) as

Ωcoll =

∫
dφ

∫
d3e(0)σ(φ)|e− e(0)|(f ′f ′(0) − ff (0)) , (2.24)

where f ′ denote the distribution function after the collision, φ is the scattering
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angle and σ, the differential cross-section of the collision. Here, some assumptions

have been made. In the first place, it only takes into account particle interactions

in pairs, which is a rule that only fits for very dilute gases. It also assumes that

velocity is statistically uncorrelated with position, which stands for the hypothesis

of molecular chaos or Boltzmann’s stosszahlansatz [Nourgaliev et al. (2003)].

The link of kinetic theory to thermodynamics, stems from from Boltzmann’s

H-theorem, which states that for solutions of the Boltzmann equation, the function

H(t) defined by:

H =

∫
−f ln fde , (2.25)

for a closed system, is always a monotonically non-increasing function of time,

i.e.:
dH

dt
≥ 0 , (2.26)

which connects the statistics of collisions to entropy and the second law of ther-

modynamics.

2.2.2 BGK-Model

In practice, equation (2.24) provides a collision term too complicated to be in-

troduced in a simulation method. This is why we can find in literature several

methods of Lattice-Boltzmann simulation, which differ in the approach they use

for the collision term. In recent years, equation (2.24) has been widely studied

and modeled. The most popular approach is the Bhatnagar-Gross-Krook (BGK)

approximation. This model arises from an assumption of having, for each ele-

ment of fluid, a local near-equilibrium distribution. Then, with a sufficiently large

ensemble of particles (to be statistically relevant), collisions should relax to the

distribution of local equilibrium (as H(t) shows us in (2.26)). We can express

this local equilibrium distribution with the Maxwellian configuration [He and Luo

(1997)]:

f eq =
ρ

(2πRT )D0/2
exp

[
−(e− u)2

2RT

]
, (2.27)

being R the gas constant and D0 the space dimension. This expression depends

on hydrodynamic magnitudes such as temperature T , density ρ and flow velocity

u, which are measured for a uniform element of fluid, and at the same time it de-

pends on the single-particle velocity e for which we are calculating the distribution

function.

Once we have established f eq, we express the local relaxation term Ωcoll of the

distribution function as stated by BGK collision operator (introduced by Bhatna-
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gar et al. (1954)):

Ωcoll = −f − f eq

τ �
, (2.28)

being τ � a relaxation time.

The major strength of this model is the accuracy of results that is capable to

reproduce in spite of its enormous simplicity. However, as pointed out by Succi

(2001), having only one relaxation time implies that mass, momentum and heat

transfer all take place at the same rate, and this is only appropriate for ideal

gases. We can find several studies in the literature that perform much elaborated

Lattice-Boltzmann simulations with multiple relaxation times in order to avoid

this simplification [d’Humieres et al. (2002); Premnath et al. (2009)]. They also

exploit the fact that when having multiple relaxation times, it is possible to tune

them in order to increase the stability of the model. Those improvements are

mandatory for some specific configurations, but it seems that they are not strictly

necessary for the present studies, and for that reason they will not be described

here. Instead, we will restrict our discussions to LBGK (Lattice BGK) model

with a single relaxation time, which has proven to be a really efficient and simple

model. Also, we will consider an isothermal system, but any reader interested can

find an application of LBGK model with heat transfer in [Chew et al. (2006)].

Incorporating the collision term from equation (2.28) into expression (2.23)

and rearranging, we obtain:

(∂t + e · ∇r) f = −f − f eq

τ �
− a · ∇ef . (2.29)

In order to solve the last term in the right-hand side of the previous equation,

we can make a call to the hypothesis of near equilibrium distribution, assuming

that

∇ef ≈ ∇ef
eq , (2.30)

which, deriving equation (2.27), brings us to

∇ef ≈ ∇ef
eq = −(e− u)

RT
f eq . (2.31)

Finally, by introducing this approximation into equation (2.29) we obtain that

(∂t + e · ∇r) f = −f − f eq

τ �
+

a · (e− u)

RT
f eq . (2.32)

In the left-hand side of the equation, we have the streaming operator, which

stands for the propagation of the distribution function. In the right-hand side,

we find a first term that takes into account the statistical effect of the collisions
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between particles, which causes the relaxation of the distribution function to the

local equilibrium. The last term in the right-hand side is the force term on the

fluid element. As we will see in section 2.2.6, about Boundary Conditions, there

are different ways of reproduce a constant flow in a simulation, but the one that

we are going to implement requires to specify a force at each fluid element, to

account for the overall pressure drop between the ends of the system that drives

the constant flow.

2.2.3 Discretizing the model

In order to find the numerical evolution in time of equation (2.32), we must dis-

cretize all the arguments of the distribution function, that is, position (r), particle

velocity (e) and time (t).

Discretizing space

For space discretization, we create a lattice of equispaced points with a separation

between first neighbors of δx (Figure 2.1). Each node of the grid represents

an element of fluid sufficiently small to have all the hydrodynamic magnitudes

constant in the corresponding volume (Figure 2.2). Typically, the criteria to set

how fine the grid must be depends on the length scale of the smallest phenomenon

that one wants to be able to reproduce, since anything occurring at smaller scales

of the grid will not be reproduced but at the same time may cause numerical

instabilities if not properly filtered out (as we will see later, in section 2.2.8). We

also need to keep in mind that sometimes larger scale effects emerge from smaller

ones, and for that reason we need to make sure that our mesh is fine enough to

reproduce all the significant scales.

It is also imperative to create the space discretization fine enough to prevent

big changes between neighbor nodes of any magnitude. All spatial changes (as

well as the temporal ones) should be sufficiently smooth, otherwise instabilities

would arise.

Often when designing the lattice size, we feel constrained by computational

limitations and we cannot choose the size of the grid that we would like to. Maybe

we need a much thiner and precise lattice for some critical areas of the simulation

(like near the walls, for example), while we could use a coarser grid for the rest

of the experiment. The answer to this problem can be found on some elaborate

ways of using compost grids with different lattice sizes, which serve to refine the

grid only in the parts where it is needed, saving a lot of computational time [Lin

and Lai (2000)].
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Figure 2.1: Space discretization

δx

δy

Figure 2.2: Two dimensional space lat-
tice

Discretizing velocity and time

When choosing the discretized particle velocities ek, we demand that for each

time step δt, all particles must reach simultaneously one neighbor node. It is

not possible for any particle to be placed elsewhere between nodes, they must

all collide at the same point. In that way, our model becomes much simpler and

computationally more efficient.

As a matter of simplification, we define fk as the distribution function with

velocity ek, i.e.:

fk(r, t) ≡ f(r, ek, t) . (2.33)

Figure 2.3 shows an example of streaming the distribution functions in a two-

dimensional space. In that example, each particle can take one of the 9 possible

velocities, each one of them taking the particles to another of the 8 surrounding

nodes in one exact δt, or remaining at the same initial node.

Once we have limited in this way the range of possible particle velocities, those

also restrain our time discretization. The key point is that if we have a really thin

space grid with a large time step, particles will not be fast enough to transmit

the information of the real macroscopic changes in the flow, and this will break

down our system due to instabilities. For instance, it is not possible to correctly

simulate a system in which some hydrodynamic effects are moving faster than our

fastest lattice particle velocity. This behavior draws a line for the largest time

step possible, which is the time needed for the information to travel one δx in

our space grid. That speed at which the information travels through our lattice is

what we know as lattice sound velocity cs. As we can find in [He and Luo (1997)],
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f1

f8

f2f3

f5

f6
f7

f4

f0

(a) Before streming (t = t0). All functions
belong to the central yellow node.

f1

f2f3
f4

f5

f6
f7 f8

f0

(b) After streaming (t = t0 + δt). Each
function belong to a different node

Figure 2.3: Streaming of the distribution functions from the central yellow node in a
D2Q9 configuration after one simple time step δt

this pseudo-sound speed of a 3D lattice is defined by:

cs ≡
√
RT , (2.34)

cs =
c√
3
. (2.35)

c =
δx

δt
. (2.36)

If we want to work with incompressible liquids, it is clear from a theoretical

point of view that most of the effects should be instantaneous (corresponding to

δt ≈ 0 or cs ≈ ∞). In order to reach a fair degree of incompressibility, we need

all fluid velocities to be much smaller than the lattice sound velocity. That is

achieved by decreasing the time step, but this implies increasing the computation

time, which is usually an important limiting factor. Simulations may easily take

hundreds or thousands of hours on nowadays computers, so it is often not possible

to take the time step as small as we would desire on physical principles. In

our experience, it is usually enough to take cs around 10 times bigger than the

maximum flow velocity (umax) of the experiment. This can be expressed in terms

of the Mach number of the lattice (Ma):

Ma =
umax

cs
< 0.1 . (2.37)

Equation (2.37), in conjunction with the definitions of cs and c that we find
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respectively in equations (2.35) and (2.36), leads us to an expression for the max-

imum time step of the form

δt <
0.1√
3
δx ≈ 0.06δx . (2.38)

In these conditions, executing highly turbulent simulations, we get a maximum

degree of compressibility smaller than 0.3%. This is an acceptable error range,

taking into account all the approximations that have been used.

DdQq models

As already stated, we impose that for any time step, all particles reach a node, so

we never have any particle in an intermediate point, and that they only travel to

their nearest neighbors. That kind of configurations are typically called DdQq in

which ”d” stands for the number of dimensions of our space, and ”q” is the number

of particle velocities allowed in the model (for example, D2Q9 is a model of nine

possible particle velocities in a two-dimensional space). What we need to take into

account is that not all velocity discretizations can be used to reproduce realistic

physical phenomena. For example, in a 2D configuration, if we use a D2Q5 model

(corresponding to Figure 2.3 without the 4 diagonal velocities), we will not have

a complete ensemble of possible particle velocities. This produces that it is not

possible to describe properly all macroscopic behaviors, regardless of how thin we

would build our space lattice, and how small we would make our time step. In

fact, this model leads to some kind of artificial non-realistic eddies of square shape

(as discussed by Succi (2001)).

The key point is to choose a set of velocities with enough symmetry and ro-

tational invariance to be able to recover the Navier-Stokes equations in the ap-

propriate limit. This has been thoroughly studied by many authors [Qian et al.

(1992); Succi (2001); Nourgaliev et al. (2003)], and in a 3D space, there are only

3 universally used models: D3Q15, D3Q19 and D3Q27.

As one increases the number of possible particle velocities, one is also increasing

the number of neighbors associated to each lattice node. Theoretically, this better

interconnection should improve the stability of the model, but it also increases

the complexity and computational load of simulations. In Figures 2.4 and 2.5, we

can see the schematics of configurations D3Q15 and D3Q19, respectively. Particle

velocities for both cases are written in detail in Table 2.1.

Once one has discretized the system, one needs to express the equilibrium

distribution function in terms of the new lattice particle velocities. In order to do

that, we use the Chapman-Enskog expansion (as discussed in Qian et al. (1992)),
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Figure 2.4: D3Q15 model
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Figure 2.5: D3Q19 model

leading to:

f eq
k = ρwk

(
1− u

2c2s
+

ek · u
c2s

+
(ek · u)2
2c4s

)
, (2.39)

which works only for small Mach numbers.

Discretized BGK-model

Now we are in the conditions to express equation (2.32) in terms of the discretized

variables that we will use in a simulation. In the first place, we can express it in

terms of ek as

(∂t + ek · ∇r) fk = −fk − f eq
k

τ �
+

a · (ek − u)

c2s
f eq
k . (2.40)

Terms on left-hand side of this equation can be discretized by means of Taylor

expansions:

∂tfk(r, t) =
fk(r, t+ δt)− fk(r, t)

δt
, (2.41)

ek · ∇rfk(r, t+ δt) =
fk(r+ ekδt, t+ δt)− fk(r, t+ δt)

δt
, (2.42)

and by assuming that

ek · ∇rfk(r, t) ≈ ek · ∇rfk(r, t+ δt) , (2.43)

combining equations (2.41) and (2.42) we finally obtain

∂tfk(r, t) + ek · ∇rfk(r, t) =
fk(r+ ekδt, t+ δt)− fk(r, t)

δt
, (2.44)
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k ek wk

0 (0, 0, 0) 2/9
1 (+1, 0, 0)c 1/9
2 (0,+1, 0)c 1/9
3 (−1, 0, 0)c 1/9
4 (0,−1, 0)c 1/9
5 (0, 0,+1)c 1/9
6 (0, 0,−1)c 1/9
7 (+1,+1,+1)c 1/72
8 (−1,+1,+1)c 1/72
9 (−1,−1,+1)c 1/72
10 (+1,−1,+1)c 1/72
11 (+1,+1,−1)c 1/72
12 (−1,+1,−1)c 1/72
13 (−1,−1,−1)c 1/72
14 (+1,−1,−1)c 1/72

(a) D3Q15

k ek wk

0 (0, 0, 0) 1/3
1 (+1, 0, 0)c 1/18
2 (0,+1, 0)c 1/18
3 (−1, 0, 0)c 1/18
4 (0,−1, 0)c 1/18
5 (0, 0,+1)c 1/18
6 (0, 0,−1)c 1/18
7 (+1, 0,+1)c 1/36
8 (0,+1,+1)c 1/36
9 (−1, 0,+1)c 1/36
10 (0,−1,+1)c 1/36
11 (+1,+1, 0)c 1/36
12 (−1,+1, 0)c 1/36
13 (−1,−1, 0)c 1/36
14 (+1,−1, 0)c 1/36
15 (+1, 0,−1)c 1/36
16 (0,+1,−1)c 1/36
17 (−1, 0,−1)c 1/36
18 (0,−1,−1)c 1/36

(b) D3Q19

Table 2.1: Particle Velocities ek and weights wk of D3Q15 and D3Q19 configurations

which is called the Taylor expansion of the finite streaming operator. Introducing

equation (2.44) into (2.40) and rearranging we get

fk(r+ ekδt, t+ δt) =

(
1− 1

τ

)
fk(r, t) +

[
1

τ
+ a · (ek − u)

c2s
δt

]
f eq
k (r, t) , (2.45)

where τ = τ�

δt
is the nondimensionalized version (in units of δt) of the relaxation

time. Note that all hydrodynamic variables (i.e., u and a) are also calculated

at the node at position r at time t. With regard to the force term a, there are

many other suitable ways of implementing it, as the one explained by Du and Shi

(2006).

As seen by Alexander et al. (1993), Sterling and Chen (1996) and Nourgaliev

et al. (2003), from Equation 2.45 one finds that the kinetic viscosity ν of the fluid

in the simulation is determined by

ν =

(
τ − 1

2

)
δtc

2
s . (2.46)
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2.2.4 Hydrodynamic magnitudes

The ultimate goal of the Lattice-Boltzmann method, like in any other CFD

method, is to obtain the time evolution of the macroscopic properties of the sys-

tem. Those magnitudes arise from the calculation of the moments of order 0 and

1 of the distribution function:

ρ(r, t) =

∫
[f(r, e, t)]de =

∫
[f eq(r, e, t)]de . (2.47)

ρ(r, t)u(r, t) =

∫
[e f(r, e, t)]de =

∫
[e f eq(r, e, t)]de . (2.48)

Accordingly, we are claiming that the moments calculated using f eq yield the

same result than using the actual distribution function. This property is satisfied

by construction.

Once that we have discretized the particle velocities ek, equations (2.47) and

(2.48) become, respectively, for a given node at a given time t:

ρ =
∑
k

fk =
∑
k

f eq
k . (2.49)

ρu =
∑
k

fkek =
∑
k

f eq
k ek . (2.50)

2.2.5 Nondimensionalization of the model

In any kind of CFD method it is customary to work with nondimensional variables,

both for simplicity of the theoretical analysis and for practical advantages from the

computational point of view. In order to nondimensionalize all variables, we will

take as characteristic magnitudes the basic properties of the lattice: the distance

between nodes in the grid δx and the period of a simulation time step δt. From

those, it arises that a characteristic velocity scale of the system is c = δx/δt, as

discussed above. Finally, the characteristic density will be defined by the mean

density of the media ρ0. Using those characteristic quantities, we express the new

nondimensional variables (marked with hats) as follows:

δ̂x = δ̂t = ĉ = ρ̂0 = 1 (2.51)

r̂ =
r

δx
(2.52)

t̂ =
t

δt
(2.53)
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ρ̂ =
ρ

ρ0
(2.54)

f̂k =
fk
ρ0

(2.55)

û = u
δt

δx
=

u

c
(2.56)

ĉs =
cs
c
=

1√
3

(2.57)

â = a
δt2

δx
= a

δt

c
(2.58)

ν̂ = ν
δt

δx2
=

ν

c δx
. (2.59)

Accordingly, equations (2.45) and (2.46) turn respectively into

f̂k(r+ ekδt, t+ δt) =

(
1− 1

τ

)
f̂k(r, t) +

[
1

τ
+ 3â · (êk − û)

]
f̂ eq
k (r, t) , (2.60)

ν̂ =
2τ − 1

6
. (2.61)

2.2.6 Boundary Conditions

A good specification of boundary conditions is a key point in any kind of numeri-

cal simulation model. The entire evolution of the system depends on the ability of

those specified conditions to efficiently reproduce the circumstances in which the

experiment takes place. There is a variety of different physical boundary condi-

tions, and different ways to implement them in the simulations, according to the

needs of each particular case. Here we will only address some of the most common

and fundamental ones, which are also those required in our simulations. We can

split the discussion in two main parts, referring respectively to wall conditions

(and its boundary-layer effects), and inlet/oulet conditions (to drive a given flow).

No-slip wall conditions

The no-slip boundary condition that arises from the boundary-layer theory, tells

us that the velocity of the fluid microlayer in contact with a solid wall has zero

velocity relative to the wall. For us, this means that we could impose the velocity

of the fluid on the lattice nodes adjacent to the walls, by simply reversing the

direction of all the distribution functions at those nodes (what it is called the

”on-wall bouncing back method”), as seen in Figure 2.6. However, for numerical
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(a) Before bounce-back
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f8

(b) After bounce-back

Figure 2.6: On-wall boundary conditions for no-slip walls

reasons, this method only provides first order accuracy in the results. Alterna-

tively, we can get second order accuracy by simply displacing the bouncing back

line half node ( δx
2
) away from the physical wall [Succi (2001)].

This solution is the so called no-slip boundary conditions for mid-way walls

(Figure 2.7). With this method we are designing our grid in a way that walls

are always located at the exact middle distance between 2 nodes. This implies

that one node is at the liquid part of the simulation (the one we want to study),

while the other represents a virtual node at the solid part. Then we implement

the bouncing back method in the solid nodes as follows:

f ∗−k(r− ekδt, t) = fk(r, t), (2.62)

e−k ≡ −ek, (2.63)

where r is the position of each wall node, subscript k stands for any distribution

that has been streamed into the solid wall node, and superscript ∗ refers to the
value of f after the bouncing back.

This method gives very good agreement between the position where we placed

the walls in our design and the effective position resulting from the numerical

computations. For further improvements in the wall boundary conditions, the

reader can refer, for instance, to [Verschaeve (2009)].

By adding all the changes in the distribution functions that the wall nodes

have introduced into the flow, we could be able to calculate the frictional effect of

the walls and the total force Fw exerted by the walls into the fluid. For each fk



2.2. Lattice-Boltzmann simulations 25

f1

f8

f2

(a) Before bounce-back

f1

f8

f2

(b) After bounce-back

Figure 2.7: Mid-way wall boundary conditions for no-slip walls

that has been streamed to a wall node, the collision has changed the distribution

as:

fkek → fke−k = −fkek
which implies that the impulse dI caused by every piece of wall reads

dI = (fafter − fbefore) = −2fk. (2.64)

Extending this analysis to all wall nodes and adding their contributions, we ob-

tain an expression for the constant force Fw needed to cause this total momentum

transfer to the flow in the period of one time step δt of the form

Fw = − 1

δt

∑
walls

(2fkek). (2.65)

Inlet/Outlet conditions

There are mainly two simple ways of implementing a constant flow in a Lattice-

Boltzmann simulation of a channel: imposing an inlet velocity or using periodic

conditions. The first one is the method of the constant velocity inlet [Zou and He

(1997); Hecht and Harting (2008); Latt et al. (2008)]. It consists of setting a layer

where we impose the constant flow entering inside our lattice. We enforce the

velocity of the fluid at that layer, by specifying the probability distribution func-

tion at each of those nodes, at each time step. The main problem of this method,

when dealing with turbulent flows, is that any velocity distribution imposed on
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Figure 2.8: Periodic conditions. Colored nodes represent virtual nodes: in blue, solid
nodes; in red and green, periodic conditions.

the inlet will be highly unstable. This is because one deals with a layer with many

fixed parameters, while the flow tends to be highly mutable. Strong turbulence

propagates its effects closer and closer to the inlet, and this process enhances the

differences between neighboring nodes, which ultimately causes the simulation to

diverge. Furthermore, even if we could avoid this instability, it would take the

flow a long distance to evolve from the constant, laminar inlet, up to the fully tur-

bulent flow. That requires very large lattices in order to find the correct steady

turbulence sufficiently far from the inlet.

The second method is the one that we will explain in detail in this section. This

is even simpler to implement and avoids the major problems of the inlet velocity.

It consists of using periodic conditions, such that the flow (and its associated

distribution functions) that exits the end of the channel is exactly the same that

is being fed from the opposite side (Figure 2.8). This avoids the generation of

discontinuities at the edges and also minimizes the longitudinal finite size effects,

resembling more the case of an infinite system. As long as correlations in the

longitudinal direction of the channel die out in a scale that is sufficiently smaller

than the channel length, periodic boundary conditions will accurately reproduce

the conditions of a steady infinite flow. The drawback is that one cannot specify

the incoming flow with full freedom, in particular in order to study the transient

evolution of specific initial conditions.

An important point must still be addressed to keep a stationary flow. If we

just implement the periodic boundary conditions by matching the fields in the two
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extrema of the channel, viscous dissipation will progressively eliminate the flow.

Clearly, in order to sustain a constant flow one must apply an external force that

counterbalances the friction force from the lateral walls. The solution is as easy as

imposing a force term at each fluid element, as explicitly written in the rightmost

term of equation (2.45). That force term represents the overall pressure gradient

imposed on the system by fixing the total pressure drop between the ends of the

channel.

To elucidate the value of the force term required for a certain flow, we have

used two methods that have been proven appropriate. The use of one or the

other depends on the precise specification of the quantities that are imposed to

be constant by construction, and those that may fluctuate around an average

value. It is worth remarking that, due to the inherent instability and variability

of the turbulent flow, the total friction force from the walls in real experiments

is likely to fluctuate in time. Then, one option aims at achieving a constant flux

by imposing a fluctuating external force. That means that, in this case, the force

term a applied to the lattice sites will change at every time step. In this case we

should exactly supply the loss of momentum of the fluid due to the friction with

the walls Fw, as seen in Equation (2.65). The idea would be to distribute the

force that opposes friction (−Fw) among all nodes in the lattice Nnodes as

a =
−Fw

ρ0Nnodes

ı̂ , (2.66)

where ı̂ is the unitary vector in the direction of the flow, and Fw stands for the

component of Fw in the same direction.

The alternative strategy is to admit a total flux that is not strictly constant

but fluctuates around a fixed mean value, while the total external force remains

strictly constant. The two conditions (constant flux or constant force) correspond

to similar physical conditions, and are equivalent for sufficiently long channels.

The way to implement the case of constant force involves imposing a certain

frictional Reynolds number Re∗

Re∗ =
u∗L
ν

, (2.67)

where L is a characteristic size of the flow (like the channel width) and u∗ is the
mean shear velocity, which is related to the mean wall stress τw as

u∗ =
√

τw
ρ

. (2.68)
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The expression for the external driving force reads

F = ρa = −dP

dx
ı̂ , (2.69)

and, as explained by Pattison et al. (2009), we can relate the mean shear velocity

to the pressure gradient by means of the force balance

ρu2
∗ = −

L

4

dP

dx
. (2.70)

Therefore, from Equations (2.69) and (2.70), we obtain

a =
4u2
∗

L
ı̂ =

4Re2∗ν
2

L3
ı̂ . (2.71)

Finally, we can express this result in its nondimensionalized form by using

Equation (2.61). We also use the correspondence L = Nyδy, where Ny stands for

the number of lattice nodes along the length L,

â =
Re2∗(2τ − 1)2

9N3
y

ı̂ . (2.72)

2.2.7 Initial Conditions

When choosing the initial conditions, it is convenient to take them as close as

possible to the stationary state, to minimize the computation time for the re-

laxation of the initial transient. The simplest case is to impose a constant, ho-

mogeneous velocity, corresponding to the mean velocity of the final flow. This

possibility avoids already the need to accelerate/decelerate the flow, which would

introduce (unphysical) transients of the algorithm. A simple improvement is to

impose the inhomogeneous mean profile for the corresponding geometry, which is

usually known to a good approximation. Since smooth profiles may be (nearly)

metastable, it is convenient to introduce random, symmetry breaking perturba-

tions to speed up the growth of the instabilities leading to turbulence. However,

one must be very cautious to introduce physically consistent random fluctuations,

that is, such that they satisfy the boundary conditions and in particular that

preserve the incompressibility condition.

2.2.8 Sub-Grid Scale (SGS) filtering.

The main computational difficulty of highly turbulent flows is the need to account

simultaneously for a broad range of scales, from eddies of the system size, to the
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small ones fixed by the scale of viscous dissipation. Solving such flows in three-

dimensional systems is in the limit of the current supercomputing power. As an

illustrative example, let us consider the experiment that we will study in this thesis

using Lattice-Boltzmann methods, a square-section channel of 10 cm wide and 80

cm long, where we have a flow with a Reynolds number of around Re = 10000.

The Kolmogorov scale λk is the magnitude that specifies the size of the smallest

scale of turbulence, and is given by

λk = LRe−3/4 . (2.73)

In our case study we have λk = 0.1 mm. That means that, in principle, in order

to fully resolve spatially all details of this turbulent flow, we should have a grid

of at least 1000x1000x8000 nodes, that is, 8× 109 nodes, a number that is clearly

out of question. In fact, with the speed of the computers that we have used, that

would require 220 years of calculation, or equivalently, 1000 computers calculating

non-stop for 82 days, in order to simulate only one second of the experiment.

One must obviously devise alternative strategies to circumvent this problem.

An important point is to realize that the dissipation only occurs at the smallest

scales, while the energy is transferred from larger to smaller scales without signif-

icant dissipation. This implies that the effect of the smallest scales is mainly to

dissipate the kinetic energy injected at larger scales, but they do not have a signif-

icant impact on the dynamics at those larger scales. Exploiting this observation,

what one can do is to add some kind of function that roughly dissipates the energy

of all the scales smaller than the lattice size in the simulation. In this way we

prevent the emergence of instabilities produced by the unresolved fluctuations of

the flow at those smaller scales. That is what we know as sub-grid scale filtering.

Smagorinsky Coefficient

The most common method of SGS filtering is the so-called Smagorinsky Coeffi-

cient, that was presented by Smagorinsky (1963) and implemented in the LBGK

model by Hou et al. (1994). This method is based on the calculation of the local

effective viscosity that would dissipate the sub-grid effects generated at each local

point. This means that we have a different effective viscosity at each node of

the lattice, and at each time step, corresponding to the sum of the real physical

viscosity ν0 of the fluid plus the so-called eddy viscosity νt

νt = CsΔ
2S̄ , (2.74)

ν total = ν0 + νt = ν0 + CsΔ
2S̄ , (2.75)
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where Cs = 0.0144 [Pattison et al. (2009)] is the Smagorinsky constant, which

must be adjusted empirically, Δ is the scale of the minimum effects that we are

able to numerically reproduce (Δ = δx) and Sa,b is the large scale strain tensor of

the incompressible fluid, defined by

Sa,b =
1

2

(
∂ua

∂xb

+
∂ub

∂xa

)
(2.76)

S̄ =

√√√√(∑
a,b

2Sa,bSa,b

)
. (2.77)

We can calculate this tensor from the non-equilibrium part of the distribution

functions fneq
i = (fi − f eq

i ) by means of the expression

Sa,b =
∑
i

(fneq
i )(eiaeib − c2sδa,b) , (2.78)

where δa,b is the Kroeneker delta. For a further improved version of the model,

applied to the Generalized Lattice Boltzmann model with multiple relaxation

times, readers can address to [Jafari and Rahnama (2011)].

An important issue is that the anisotropic turbulence near the walls tends

to decrease its effective scales as we get closer to the them [van Driest (1956)].

Therefore, taking a constant value for Δ when calculating the eddy viscosity may

produce an excessive damping of the flow in that critical area of the boundary

conditions [Premnath et al. (2009)]. The most popular way of solving this is

by using the Van Driest damping function, which converts Δ in a function that

decreases at the proximities of the walls [Pattison et al. (2009)].

Although we have dissipated the turbulent kinetic energy of the sub-grid scales

by means of the Smagorinsky coefficient method, there are still additional numer-

ical instabilities that originate in numerical noise which may introduce different

artifacts of the simulation and eventually become very destructive. The method

proposed in order to eliminate those instabilities consists of filtering the small

numeric discrepancies between first neighbor nodes. This smoothing procedure

must we done with care in order to preserve mass and momentum conservation.

We propose a smoothing of the form

f
∗(0)
k = f

(0)
k + δ

(
f
(1)
k + f

(2)
k + f

(3)
k + ...+ f

(n)
k − nf

(0)
k

)
, (2.79)

where superscript (0) refers to a central node, and the other superscripts (1) to (n),

correspond to its first neighbor nodes. For a node in the bulk in a 3D space n = 6,

while for a node in contact with a wall, n = 5. The subscript k indicates that
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(a) Adequate solution (δ = 10−4)

(b) Excess of filtering (δ = 10−3)

Figure 2.9: Effect of the filtering on the central slice of a 3D simulation of a channel
with Re = 10000. Lines correspond to the fluctuating component of the velocity



32 Chapter 2. Numerical methods

(a) Numerical instabilities in absence of filtering (δ = 0)

(b) Adequate solution (δ = 10−4)

(c) Excess of filtering (δ = 10−3)

Figure 2.10: Effect of the filtering on the central slice of a 3D simulation of a channel
with Re = 10000. Lines correspond to the fluctuating component of the velocity



2.2. Lattice-Boltzmann simulations 33

Cxyz

C111C011

C001

C000 C100

C101

C010 C110

X

Z
Y

Figure 2.11: Configuration of eight nodes where a certain magnitude C is known. The
yellow node stands for the point where we want to know the value of Cxyz. The three
dimensions have been normalized.

this expression should be applied to all the distribution functions (corresponding

to each of the possible velocities) at the present node. Lastly, δ << 1 is a small

free parameter which controls the degree of filtering that we are applying. If we

take it too small, noise instabilities will set in, as in the case shown in Figure

2.10a. On the other hand, taking δ too big, eliminates the small scale structures,

suppressing the level of turbulence (Figure 2.9b) even to point of producing a

laminar flow. The adequate value of this filtering parameter must be explored for

each particular situation and in general it will depend on the time step, as well as

on the node spacing.

2.2.9 Passive Tracers

For the analysis of the experiments in the following section it will be useful to

characterize the turbulence with introducing passive tracers, point-like particles

that do not affect the flow and follow their streamlines. It is important to notice

that the position of these tracers must not be restricted to the discretization of

the lattice. The position of a tracer rp will be determined by the expression

rp(t+ δt) = rp(t) + uf (rp, t)δt . (2.80)

Here, uf stands for the velocity of the flow at the position of the tracer at time

t, which must be interpolated from the discrete values in the grid, in order to get

a description in continuous space. We will use the trilinear interpolation scheme

between eight points, which are the nearest eight nodes surrounding the tracer.

In Figure 2.11 we plot the eight lattice nodes that define the interpolation for
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a tridimensional configuration. Assuming that we know the value of a certain

magnitude C at those points and we want to infer the value Cxyz of C at a certain

point (x, y, z) between them, we must first interpolate in each dimension⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C00z = (1− z)C000 + (z)C001

C10z = (1− z)C100 + (z)C101

C01z = (1− z)C010 + (z)C011

C11z = (1− z)C110 + (z)C111

(2.81)

{
C0yz = (1− y)C00z + (y)C01z

C1yz = (1− y)C10z + (y)C11z

(2.82)

Cxyz = (1− x)C0yz + (x)C1yz (2.83)

where the three coordinates have been normalized by lattice spacing δx, as seen

in the figure. Then it follows that

Cxyz = (1− x)(1− y)(1− z)C000 + (1− x)(1− y)zC001 +

+ (1− x)y(1− z)C010 + (1− x)yzC011 +

+ x(1− y)(1− z)C100 + x(1− y)zC101 +

+ xy(1− z)C110 + xyzC111 .

(2.84)

In our case, C will correspond to each of the three components of the velocity

(ux,uy and uz).

2.2.10 Further remarks

About D3Q19 and D3Q27

Despite the claims of some authors [d’Humieres et al. (2002)] argue that the D3Q19

and D3Q27 schemes are often more stable than the one used in our simulations

(D3Q15), our experience contradict this claims for our case. For some reason that

is not fully understood, the two other schemes introduce some resonant instabil-

ities in our simulations, which end up with divergent behavior. On the contrary,

our experience is that the D3Q15 is most stable and suitable for our problem.
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Turbulent bubble jets

3.1 Introduction

Efficient control of bubble formation and management in microgravity environ-

ments is an important aspect for multiple applications in space technology. From

a fundamental point of view, the statistical physics of bubbly turbulent flows in

microgravity is also largely unknown, due precisely to the difficulty to achieve

good experimental control of the experimental conditions for bubbles. One of the

limiting experimental factors is the control of bubble sizes. This is important both

for applications, to control the total gas-liquid contact area, and for fundamental

characterization and understanding of the interaction of bubbles and turbulence.

Recently a gravity insensitive method has been proposed by Carrera et al.

(2008) to generate a train of equally distant bubbles (slug flow) of uniform bubble

size. This regime is achieved by means of a capillary T-junction, where constant

flows of water and air are respectively injected from the transversal capillary tubes.

In this way, bubbles are detached by means of capillary and drag forces, obtaining

a bubble generation method insensitive to gravity. The size of the resulting bub-

bles is roughly the diameter of the capillary tubes (i.e. typically around 1.5mm)

although it can be slightly modified. A theory for bubble formation in this setup

was already discussed in detail by Carrera et al. (2008) and the experimental

characterization of the bubble formation method has been completed in normal

gravity by Arias et al. (2009).

Injecting this controlled slug-flow into a quiescent cavity, Carrera et al. (2008)

obtained a nearly monodisperse dispersion of bubble suspensions. This high degree

of monodispersivity of the bubbles is also well understood within the theoretical

framework of their work, stating that when bubbles are injected into the quies-

cent cavity, the monodispersivity will be maintained to the extent that bubble

coalescence is avoided.

35
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Our aim here is to discuss and model the behavior of such bubble jets in

microgravity. Carrera et al. (2008) also found that the mean flow associated to

such turbulent jets is essentially unaffected by the presence of bubbles, except

by a renormalization of the total momentum injected. Therefore, regarding the

mean flow, bubbles could be considered as passive tracers of the flow. It was also

pointed out, however, that bubbles may in general affect the degree of turbulence,

that is the fluctuating component of the velocity, since they cannot be considered

as point-like and sufficiently dilute throughout the whole jet, in particular near

the inlet of the cavity.

In the present chapter1 we will study the spatial dispersion and the velocity

fluctuations of bubbles within a turbulent jet. Since dispersion depends on the

fluctuating components of the turbulent flow, a basic question will be to what

extent the picture of bubbles as passive tracers, well established for the mean flow,

could also be useful for the characterization of the fluctuating components. As we

will show, some statistical aspects of the dispersion process, mainly the resulting

spatial distribution of bubble concentration, can be accounted for to a large extent

by using a model of passive bubbles. To this aim we will construct a model for

bubble dynamics in which the instantaneous bubble velocity is calculated as the

addition of the local mean flow plus a stochastic term depending on the local

degree of turbulence. For this picture the use of effective turbulence models such

as the k-εmodel (seen on chapter 2.1.2), which yields an approximate closure of the

averaged turbulence, appears as specially suitable. The treatment of the spreading

of a passive scalar within a k-εmodel has been studied in detail in the literature. In

the present case the k-ε model will provide both the mean flow and local quantities

representing the small scale diffusivity associated to the turbulence. Our results

show that integration of the model, both for individual trajectories and for the

concentration field of bubbles, compares well with experiments.

The understanding of the physics of the bubble jets created by this method is a

first step towards the aim of producing controlled spatially uniform, monodisperse

bubble suspensions in turbulent pipe flows, in microgravity. These will be created

and studied experimentally by combination of four of such injectors with externally

imposed flows in chapter 4. The capability of preparation of such suspensions

opens the door to a large variety of possibilities of interest for practical application

but also for a deeper understanding of the two-way interaction between bubbles

and turbulence in the absence of buoyancy.

1Part of this work was published on the International Journal of Transport Phenomena
[Bitlloch et al. (2011)].
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3.2 General remarks on turbulence

3.2.1 Turbulence characterization

In order to describe the degree of turbulence in a given flow, one must take into

account the Reynolds number (Re) which is a non-dimensional number that estab-

lishes the ratio between inertial and viscous forces in the fluid. For a flow with a

characteristic velocity Uc, size Lc and kinematic viscosity ν, it is usually expressed

in the form:

Re =
LcUc

ν
(3.1)

Large Reynolds numbers implies a higher predominance of the inertial forces

over the viscous effects, which translates into a much more unstable and complex

structure of the flow. This is due to the appearance of turbulence, which can be

pictured as the superposition of eddies and velocity fluctuations with characteristic

length and time scales comprising broad ranges, of several orders of magnitude

apart in the case of fully developed turbulence for large values of Re. On the other

hand, for small Re, viscous dissipation dominates and stabilizes the dynamics,

typically producing laminar flow.

In order to study the relevant magnitudes governing turbulence as well as the

properties of its constitutive eddies of various sizes, we introduce the Reynolds

number Reλ for turbulent eddies

Reλ ∼ λ vλ
ν

, (3.2)

with λ being the size of the correspondent eddy, and vλ its characteristic velocity

(accounted as the order of magnitude of the relative velocities between fluid ele-

ments in the eddy, not its absolute velocities). In this frame, largest eddies create

the fundamental scale of turbulence (i.e. its main structure) and are determined

by the shape and dimensions of the receptacle in which the flow is streaming

in. Smaller eddies, on the other hand, contain a much smaller amount of kinetic

energy and only produce a fine detailed pattern superposed on the fundamental

structure created by the larger ones.

Gore and Crowe (1989) found that the size λMax of the most energetic eddies

in the case of a pipe flow is 0.1 times the diameter of the tube dpipe, i.e.

λMax, pipe � 0.1 dpipe , (3.3)

while in the case of a circular jet (as the ones studied in the present chapter) its
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size is 0.039 times the distance to the injection point x, i.e.

λMax, jet � 0.039 x (3.4)

These large scales with λ ∼ Lc are known as the energy range, because they

are the ones containing the major proportion of energy of the turbulence. Also, at

those scales we have that Reλ � 1, therefore the inertial forces are predominant

over the viscous effects. Hence, viscosity has a negligible effect into the fluid at

this scale and there is no energy dissipation. Richardson (1922) observed that the

kinetic energy of the large eddies passes to the smaller ones practically without any

dissipation, creating a continuous energy flux from the big to the small scales, until

the turbulent kinetic energy is dissipated into heat at the smallest eddies. That

dissipation happens when the viscous effects gain significance in relation to the

inertial terms, namely when Reλ ∼ 1 and thus λkvk ∼ ν. These are known as the

Kolmogorov scales of length (λk) and velocity (vk), which determine the minimum

scale of turbulence (where its energy is dissipated). With its corresponding time

scale τk = λk/vk, the Kolmogorov scales are defined [Brennen (2005)] as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λk =

(
ν3

ε

)1/4

τk =

√
ν

ε

vk = (εν)1/4

(3.5)

These expressions arise from simple dimensional analysis, by knowing that the

only magnitudes affecting the smallest eddies are the rate of energy dissipation

(ε), the dynamic (μ) or kinematic (ν) viscosity (which control the dissipation),

and the fluid density (ρl), so its scale should only depend on these parameters.

Equations in (3.5) are then the only dimensionally correct combination of ε and

ν, and they describe the order of magnitude of the smallest scale of turbulence2.

Strong viscous effects at this scale makes the fluid flow to be essentially laminar

although still time-dependent, being the smallest eddies actually found at a scale

10-20 times larger than the Kolmogorov length [Jiménez (1997)], i.e.

λmin ∼ 10λk (3.6)

2Note that despite the equations in (3.5) only describe the order of magnitude of the minimum
scale of turbulence, they are written as an equality. That only means that these expressions
are defined exactly as the Kolmogorov scales, not that they were exactly the parameters of the
smallest eddies.
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At even smaller scales (i.e., λ < λk) we reach the viscous range, in which the

flow is fully laminar and all the fluctuations are damped.

Even though the energy is dissipated due to the viscosity at the smallest scales,

we can determine the mean dissipation rate ε of the turbulent kinetic energy by

means of the quantities which characterize the large eddies, because it is in that

scale that the energy is transferred into the turbulence from the mean flow [Landau

and Lifshitz (1987); Brennen (2005)]. With simple dimensional analysis, knowing

that the energy ε which generates the largest eddies should only depend on the

characteristic scales of the mean flow (i.e. Uc, Lc and ρl) and that the viscosity

does not have any impact at this scale, we reach the expression

ε ∼ U3
c

Lc

. (3.7)

In view of that relation we can rewrite the equations in (3.5) in a more man-

ageable form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λk ∼ Lc Re
−3/4

τk ∼ Lc

Uc

Re
−1/2

= TcRe
−1/2

vk ∼ Uc Re
−1/4

(3.8)

One last dimensional analysis that results very handful is to find the charac-

teristic velocity associated to any scale of turbulence. This follows from the work

of Kolmogorov (1941) and Obukhov (1941) on the scaling laws for local turbu-

lence. To make this analysis possible we must focus on the inertial range (i.e.

λ � λk), in order to be able to neglect the viscosity effects, restricted to scales

smaller than the mean flow properties (i.e. Lc � λ � λk). In this range and

far away from boundary layers of our system, we find ourselves in the frame of

fully developed turbulence, in which the structure of turbulence and its velocity

fluctuations (relative to the elements of fluid in the same scale) exhibit an homo-

geneous and isotropic behavior. In this conditions, the characteristic velocity vλ
of a given scale of turbulence of size λ, should only depend on the size λ itself,

the energy rate ε transferred between scales, and the density of the fluid ρl. The

only combination possible of these parameters that is dimensionally correct is:

vλ ∝ (ελ)1/3 . (3.9)

Equation (3.9) is the Kolmogorov and Obukhov law, which states that the
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velocity variation over a small distance is proportional to the cube root of the

distance [Landau and Lifshitz (1987)]. Knowing that the variation of the mean

velocity of a flow over a small distance is small compared to its velocity fluctu-

ations, the first one can be neglected and so vλ can also be seen as the typical

velocity of the eddies of size λ. Taking advantage of equation (3.7), we can turn

expression (3.9) into

vλ ∝ Uc

(
λ

Lc

)1/3

, (3.10)

which is often known as the self-similarity relation for fully developed turbulence.

3.2.2 Interaction of bubbles with turbulence

The description of free-slip boundary conditions3 for fluid spheres in an environ-

ment free from surface-active contaminants, was introduced for the first time by

Hadamard (1911) and Rybczynski (1911). From their work it arises that the ter-

minal rising velocity Wf of a fluid sphere of diameter dB in a slowly moving fluid

follows the expression [R.Clift et al. (1978)]:

Wf =
d2B g (ρf − ρg)

6μf

(
μf + μg

2μf + 3μg

)
. (3.11)

In the case of a bubble [Mazzitelli et al. (2003); Brennen (2005)], where ρf � ρg
and μf � μg, this reduces to

WB = 2gτB =
d2B g

12νf
, (3.12)

τB =
d2B
24νf

, (3.13)

where WB and τB are respectively the terminal rising velocity in still fluid and

the bubble relaxation time. This response time indicates how fast is the bubble

adapting to the fluctuations of the flow. In the absence of gravity, if τB > τλ
it indicates that the bubble cannot follow all the fluctuations on the scale λ.

This may lead to an increase of dissipation, tending to attenuate turbulence,

but in some case it can have the opposite effect through the formation of wakes

[Balachandar and Eaton (2010)]. On the opposite scenario, if τB � τk, the bubble

3Imposing zero normal velocity and zero shear stress on the bubble interface so that the fluid
can slip on it
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respond quickly to any perturbation on turbulence and has a lesser impact upon

it.

As found by R.Clift et al. (1978) and many other authors, special precautions

must be taken in order to prevent the accumulation of surfactants in distilled

water. Impurities rapidly settle on the interface of small bubbles, producing an

effectively rigid particle response. Thus the No-Slip boundary description of a

spherical particle (or bubble) should be applied instead. This solution comes from

the work of Stokes (1851), and determines the terminal velocity Wp of a particle

of mass mp in the form:

Wp =
d2P g

18νf

(
1− mp

mf

)
, (3.14)

where mf is the mass of fluid displaced by the particle volume. The corresponding

response time τp takes the form [Maxey et al. (1996); Brennen (2005)]:

τp =
mc

3πμ dp
, (3.15)

where mc is the effective mass of the particle, corresponding to mc = mp for the

case of a heavy particle and mc =
mf

2
(i.e., half the mass of the displaced fluid)

for the case of a bubble. From that, one directly obtains, for the case of a bubble,

τB =
d2B
36νf

, (3.16)

which is 1.5 times smaller than the response time for the case of a free-slip interface

in equation (3.13). This is because of the increase on the drag force acting on a

bubble under no-slip conditions, due to the different interface interactions.

3.3 Experimental description

In order to generate bubbles in microgravity conditions, we use a capillary T-

junction, formed by capillary tubes of 1.5 mm diameter. By simultaneously in-

jecting constant flows of water and air through the transversally connected inlets

of the T-junction, we generate an air-water slug flow of prescribed bubble size

and uniform separation between bubbles (Fig. 3.1). In these conditions, buoyancy

forces are negligible in front of the strong capillary and drag forces, being these

last the responsible for the detachment of bubbles. Consistently, the T-junction

system is insensitive to gravity, producing the same outcome both in microgravity

and in normal gravity conditions. The size of the bubbles generated with this pro-

cedure is similar to the diameter of the capillary tubes, although it can be slightly

tuned. Altogether with the bubble formation frequency and the distance between
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Figure 3.1: Typical slug-flow injected
into the experimental cell, with a capil-
lary diameter dT = 1.5 mm. (Above):
In normal gravity conditions; (Below): In
microgravity.

Figure 3.2: Behaviour of a T-junction of
capillary diameter dT = 1 mm for differ-
ent injection parameters. Picture cour-
tesy of Arias (2011)

them, their size can also be modified by adjusting the liquid and gas flows injected

into the T-junction, as can be seen in Fig.3.2. Nevertheless it is worth remarking

that this T-junction arrangement only produces a clean and well-behaved slug-

flow (as it is needed for our studies) for a relatively reduced range of parameters,

preventing large modifications in the outgoing bubble size or frequency. A full

description of all the flow regimes generated in a T-junction of 1 mm diameter

has been exhaustively studied by Arias (2011).

A series of microgravity experiments were conducted a few years ago by Carrera

et al. (2008) in the drop tower of ZARM in Bremen, in which this bubble generator

was used for the first time for microgravity purposes. They created and injected a

uniform slug flow into a quiescent cubic cavity of 100x100x100 mm3, as sketched

in Fig. 3.3. In this figure we also show the structure of the mean velocity field

obtained from a numerical CFD calculation in the case of a single-phase flow of

Re = 690 (defined for the injector), by using a realizable k-ε model in the frame

of a finite volumes method as described in chapter 2.1.

In absence of buoyancy effects, the injection of the slug flow results in the

formation of a turbulent jet which crosses the cavity, and in which bubbles are

dispersed in a roughly conical shape (Fig. 3.4). In their paper, Carrera et al.

(2008) showed how the experimental mean velocity of bubbles (calculated at dif-

ferent points along the axis and at the boundaries of the cone) fits the analytical

solution of a turbulent liquid jet without any dispersed phase. This results imply

that the presence of bubbles in the flow does not affect the mean liquid flow, but

only the time-dependent fluctuations of the velocity caused by turbulence. The

aforementioned analytical solution used for the axial (Ujet) and radial (Vjet) com-

ponents of the mean velocity is the one described by Schlichting (1979) for the
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1.0 2.4 5.5 13 31 72

Inlet tube Exit tube

Stagnation disk

91mm 10
0m

m

(dT = 1.5mm) (dE = 4mm)

Figure 3.3: Experimental cell schemat-
ics with contours of constant velocity
(cm/s), as obtained by CFD calculation,
for a liquid jet with Re = 690.

Figure 3.4: Snapshot of a typical ex-
periment of slug bubble injection after 2
seconds of microgravity.

mean stationary flow of a turbulent jet in an infinite cavity:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ujet =
3

8πc

√
J

ρl

(
1(

1 + 1
4
η2
)2

)(
1

x

)
,

Vjet =
1

4

√
3J

πρl

(
η − 1

4
η3(

1 + 1
4
η2
)2

)(
1

x

)
,

η =
1

4c

√
3

π

( r
x

)
,

(3.17)

where c is an empirical constant adjusted experimentally as c � 0.0161, x and r

correspond respectively to the axial and radial distances from the injection point

in cylindrical coordinates, ρl is the density of the fluid and J is the injected

momentum rate.

As shown by Carrera et al. (2008), some considerations must be taken into

account prior to compare the analytical solution to the experimental results. The

first one is that equation (3.17) has been deduced for the case of an injector of

nearly zero size (i.e. dT → 0). This is usually corrected by simply adding a small

spatial displacement x0 to the injection point on the analytical solution. This

correction in the axial direction stands for the initial opening of the jet until it

reaches the small, but finite, size dT of our real injector.
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The second consideration is that the effective injected momentum rate J must

be modified. Although bubbles are passive in relation to the mean flow of the

jet, the situation is very different at the injector, where the volume fraction of gas

is much higher. The presence of bubbles in the injector increases the velocity of

the liquid slugs between them, producing a larger effective injected momentum.

Specifically, the mean velocity of the liquid in the capillary tube of section AT can

be expressed in a good approximation4 as

〈UT 〉 = (Ql +Qg)

AT

, (3.18)

being respectively Ql and Qg the volumetric flow rates of liquid and gas injected

into the T-junction. Assuming that the momentum transmitted into the cavity

by the gas flow will be negligible due to its small density, the amount of mass

injected per unit time will only be determined by the liquid flow (i.e., ρlQl).

This considerations lead us directly to the expression of the effective injected

momentum:

J = ρlQl 〈UT 〉 = Ql(Ql +Qg)
ρl
AT

(3.19)

It is worth remarking that the effective Reynolds number, defined by the local

diameter of the jet, remains constant all along it. This can be easily shown by

observing that the opening angle of a turbulent jet remains constant with the

distance [Schlichting (1979)], which implies that its width is directly proportional

to the distance from the injection point (i.e., Lc ∝ x), while on the other hand,

the flow velocity scale, as seen in equation (3.17), is inversely proportional to the

distance (i.e., Uc ∝ 1
x
). This causes that the degree of turbulence is maintained

through the jet, producing that, while the characteristic eddy velocity is being

reduced downstream, its size increases instead5. The flow thus is statistically

equivalent at different positions downstream, under the appropriate rescaling of

time and length. Since the bubble size is essentially unchanged, this implies that

the degree of interaction between bubbles and flow will change along the jet. Far

downstream, the bubbles must eventually become passive tracers because, beyond

a certain distance from the injector, the smallest eddies will become much bigger

than bubbles, implying that the latter will be point-like to all effects. On the

contrary, the situation is very different at the regions close to the jet inlet, where

bubbles are comparable to the jet diameter and to the scale of velocity gradients.

In those regions, bubbles will necessarily be active in relation to the liquid flow

field.

4We neglect the small variations of gas volume produced by small changes of pressure that
occurs at the entrance of the T-Junction

5Because, just as Re remains constant, the Reynolds number associated to eddies Reλ as
defined in equation (3.2) should remain constant as well
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The appropriate definition of Reynolds number in order to properly describe

the degree of turbulence inside the jet is defined by the characteristic velocity of

the momentum injected Uc =
√
J/(ρlAjet), which leads us to:

Re =
Ljet

ν

√
J

ρlAjet

=
2

ν

√
J

ρlπ
=

4
√
Ql(Ql +Qg)

πνdT
, (3.20)

with dT the diameter of the T-junction capillary tubes. This will be the definition

of Reynolds number used over the present chapter.

For a further insight into the mean flow structure of a turbulent jet, from

equation (3.17) we immediately find that:

Vjet

Ujet

= 2c

√
π

3

(
η − 1

4
η3
)

=
1

2

( r
x

)(
1− 1

4
η2
)

, (3.21)

Uaxis =
3νRe

16c
√
π

(
1

x

)
. (3.22)

Using the typical parameters of jets studied in the present chapter, we find:⎧⎪⎪⎨⎪⎪⎩
U

(Re=690)
axis =

(
45.3 cm2

s

)
1
x

U
(Re=1170)
axis =

(
76.9 cm2

s

)
1
x

(3.23)

Reichardt (1942) measured that for a turbulent jet, the radial distance r1/2

(defined as the distance where U1/2 ≡ U(r1/2) =
1
2
Uaxis) follows the relation

r1/2 = 0.0848 x , (3.24)

which was already used in the determination of the empirical constant c on equa-

tion (3.17). Using this relation in equation (3.17) we find that η1/2 � 1.286, from

which we have that, for any turbulent jet, at a given distance x from the injector:

V1/2 � 1

40
U1/2 =

1

80
Uaxis , ∀x . (3.25)

Analogously, at a distance r1/4



46 Chapter 3. Turbulent bubble jets

Figure 3.5: Streamlines of the mean flow in the experimental cell, obtained from a
simulation with axial symmetry.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U1/4 ≡ 1

4
Uaxis

V1/4 = 0

η1/4 = 2

r1/4 = 0.1318x

(3.26)

which stands for the angle where the radial velocity V drops to zero. For higher

radial distances (r > r1/4) the velocity V becomes negative, corresponding to the

flow elements that are joining to the jet from far away. In Fig.3.5 we show the

streamlines of the mean flow in our experimental cell, where it can be observed the

reincorporation of the flow elements into the jet boundaries due to recirculation

in the finite cavity.

The angle of a turbulent jet is not defined unambiguously, due to the fluctu-

ations of the boundary between the turbulent inner flow and the laminar outer

flow. Nevertheless, for the scaling arguments held in the next section, we will

treat the angle described in equation (3.26) as an effective width of the jet.
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3.4 Scaling Arguments

From equation (3.26) we find that the jet size6 increases as Lc � 2y1/4 � 0.2636x,

which applied to the Kolmogorov scales in equation (3.8) for the case with Re =

690 (being that a typical degree of turbulence in our experiments), brings us

directly to the relation

λk ∼ Lc Re
−3/4 � 0.26 xRe

−3/4 � 1.9 · 10−3x , (3.27)

and from equation (3.6) it follows that the size of the smallest eddies is

λmin ∼ 10λk ∼ 1.9 · 10−2x . (3.28)

On the other hand, as seen in equation (3.4), the most energetic eddies in a

turbulent jet have the size

λMax � 3.9 · 10−2 x , (3.29)

which show roughly one order of magnitude of separation between the size of the

largest eddies and that of the smallest scales of turbulence, and no more than a

factor 2 between the largest and the smallest eddies. This narrow range of scales is

due to the small values of Re used in our experiments, caused by the low injection

parameters necessary for a proper and controlled generation of bubbles.

As has been commented earlier, equations (3.28) and (3.29) show a direct

dependence on the size of the eddies to the distance x from the injection point.

From these expressions we can deduce the point at which the eddies will reach the

size of the bubbles

⎧⎪⎪⎨⎪⎪⎩
λMax(x = 4 cm) ∼ dB ≈ 1.5 mm

λmin(x = 8 cm) ∼ dB ≈ 1.5 mm

λk (x = 80 cm) ∼ dB ≈ 1.5 mm

(3.30)

Analogously, as seen in section 3.2.2, it is also interesting to compare the

characteristic times of turbulence with the response time of bubbles in order to

better understand their kind of interaction. Downstream the flow, the velocity of

eddies slows down while its size keeps increasing, thus its characteristic time must

6Note that we neglect the initial opening of the jet for simplicity of the scaling arguments,
but close to the injector the actual size of the jet should read Lc � dT + 0.2636x. That is
equivalent to introduce the change of variables for the following expressions of x′ � x+ 0.7cm
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increase as well. From equation (3.8) we find

TRe=690
c =

Lc

Uc

�
(
1.01 · 10−2 s

cm2

)
x2 , (3.31)

τRe=690
k ∼ Tc√

Re
∼

(
3.83 · 10−4 s

cm2

)
x2 , (3.32)

Knowing that the bubble response time τB, as seen in equation (3.16), is constant

through the whole jet

τB =
d2B
36νl

� 6.25 · 10−2 s , (3.33)

we can calculate the distance x at which the time scales of the flow (Tc) and of

Kolmogorov (τk) increase up to the value of the bubble response time.{
Tc(x = 2.5cm) � τB ≈ 6.25 · 10−2 s
τk (x = 13cm) ∼ τB ≈ 6.25 · 10−2 s (3.34)

Finally, the last relevant parameter in order to analyze possible interaction be-

tween the two phases, is the cross-sectional void fraction ϑ, defined as the fraction

of the mean area occupied by gas Ag in a cross-section of the bubble jet AB.J.

ϑ =
Ag

AB.J.

(3.35)

Due to the constant flow of gas injected into the experimental cell, we have

Qg = AgUjet = constant (3.36)

Knowing that the gas flux has to remain constant through any section of the jet

(i.e., Qg =constant) and that, as seen in equation (3.17), Ujet ∝ 1
x
, it arises that

Ag ∝ x, from what it follows:

ϑ =
Ag

AB.J.

∝ x

x2
=
1

x
(3.37)

In particular, assuming that the mean velocity is roughly constant at each cross-

section of the jet (Uc = νRe/Lc), for our parameter of injection of a bubble jet of

Re = 690 we find

ϑ =
Ag

AB.J.

∼ Qg

Uc AB.J.

� (0.146 cm)
1

x
, (3.38)

for which we have used the angle for the bubble jet r
B.J.
� 0.15x, measured from
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the same experiment. It arises from expression (3.38) that the void fraction of the

jet in our experimental cell is in the the range between 2% - 9% of gas, depending

on the distance to the injection point.

The results on equations (3.30), (3.34) and (3.38) roughly divide the jet into

3 zones, in relation to the kind of influence exerted by bubbles to the flow:

• Active range: close to the injector, where φB � λMax and τB � Tc. Here,

the bubble size comprises large velocity gradients of the flow, and bubbles

present a relative motion in relation to the highest scales of turbulence (due

to the large relaxation time of bubbles). All that should result on bubbles

having a strong impact on turbulence in all ranges, damping some of the

smaller velocity fluctuations at the same time that they create wakes be-

hind their movement. In our case of study, this would occur for the first 5

centimeters of jet.

• Small interaction range: at a medium distance, where λMax � 2φB � λk

and Tc � 2τB � τk. Bubbles are able to follow the main structure of the

turbulence (produced by the largest scales) which contain the majority of

the turbulent energy. Since that energy goes from large scales to smaller

ones, the effect of bubbles in this range should not have a major impact into

the flow. Bubbles eliminate and generate eddies of their own size or smaller,

so they do not interact with the larger scale turbulence, thus only modifying

the detailed pattern of the smaller scales. In our case, this behavior occurs

approximately in the range 8 cm < x < 20 cm.

• Passive range: far from the injector, where λk � φB and τk � τB. Bubbles

follow all the turbulence fluctuations and produce a negligible effect at any

scale, acting like passive tracers of the flow. Approximately for x > 80 cm.

Note that our experimental cell has only a length of 10cm, but we have analyzed

the three possible ranges of interaction of bubbles in a theoretical frame for much

longer jets. Also, from all this previous analysis we should conclude that bubbles

should be in principle active and generate some appreciable back reaction to the

flow for the majority of our jet length. This effect should appear to be even bigger

considering that we can only measure velocities on bubbles, since we do not have

any other tracer on the flow. However, it is important to take into account that

the overall effect of the presence of bubbles on the statistics of turbulence will

depend also on the void fraction. For the typically small values of void fraction,

the effect may be quantitatively small. In fact, the results of Carrera et al. (2008)

showed that the mean flow does not show a significant influence from the presence

of bubbles and, as we will see later at the end of this chapter, the statistical
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uncertainty of our measurements does not allow us to detect significant deviations

from the numerical results of a liquid jet without bubbles. We attribute this, in

first place, to the small void fraction, which drops below the 10% on gas after the

first centimeter of jet (once we take into account the initial opening of the jet due

to the injector size), and also for the small effect of wakes created behind bubbles

at our small Reynolds numbers.

3.5 Stochastic Model

It is customary to decompose the total velocity field of a turbulent flow in two

parts, a mean flow component and a fluctuating part. Regarding the first com-

ponent, it is well known that the spatial structure of the mean flow velocity field

of a turbulent single-fluid jet is independent of Re [Schlichting (1979)]. Since the

experimental results of Carrera et al. (2008) indicated that the local averaged ve-

locities of bubbles coincide to a good extent to that mean flow, the spreading of

the spatial distribution of bubbles must be directly related to the fluctuating part

of the flow. In figure 3.5 we can appreciate how the streamlines of the flow that

are actually being injected into the cell only suffer a slight opening (of no more

than twice its initial separation dT ) after the full length of the jet. It is easy to

see how the larger width of the jet is determined by its external layers, that incor-

porate streamlines from the recirculating flow. In addition, turbulence provides

a mechanism that mixes all those layers of mean flow, allowing the dispersion of

bubbles through them. Hence, we need to make use of the local characteristics

of turbulence in order to properly describe the dispersion of bubbles through the

transversal layers of the flow and, at the same time, to confine them inside the

boundaries of the jet, preventing them from freely disperse through the whole

experimental cell, which would be unrealistic.

To describe both the mean flow and its velocity fluctuations we make use of

a finite-volume scheme with a realizable k-ε model of turbulence, as described in

chapter 2.1. Within this scheme, we will associate a local diffusivity to bubbles

that is inherited from the diffusivity of the kinetic energy of the turbulent com-

ponent of the flow in the absence of bubbles. The main assumption is thus that

bubbles are also passive with respect to the fluctuating component of the flow.

As seen earlier, this assumption is correct in principle sufficiently far downstream,

where the bubble suspension becomes more and more dilute and the bubble size

becomes negligible compared to the scales of the flow, but it may be questionable

close to the inlet.

Since bubbles are not point-like and the number of them is relatively small,

the aim of the model is to formulate an equation for the probability distribution
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of finding a bubble at a certain location. The model does not intend to be a good

description of the individual trajectories of bubbles, which are far from diffusive

at small scales of the flow due to strong spatial and temporal correlations of the

carrying flow. This implies, for instance, that the model will be inappropriate to

describe properties related to the geometry of the bubble trajectories themselves

or the correlations between them, such as the probability of bubble encounters and

consequently of possible coalescence. Despite this shortcoming of the model, the

assumption of a local diffusivity of the probability of finding bubbles may be rea-

sonably justified to describe the spatial distribution of an ensemble of realizations,

provided that coalescence events are rare.

To formulate the model we assume the dynamics of bubbles to be that of a

biased random walk. We write explicitly the instantaneous velocity of a bubble

uB as a stochastic differential equation (Langevin equation) of the form:

uB(t) = U(s(t)) + u′(t), (3.39)

where U(s(t)) is the local mean fluid velocity at the position s(t) of the bubble

and u′(t) is a fluctuating term of zero mean. This fluctuating term is responsible

for the diffusivity of bubbles, therefore it should depend on the local properties

of the turbulent flow. As mentioned above, we relate this diffusivity to that of

the kinetic energy of the turbulent component of the flow without bubbles. Then,

both terms of this decomposition (mean and fluctuating velocities) can be obtained

from the integration of a k-ε model. In particular, writing the fluctuating term as

a Gaussian zero-mean white noise with correlation:

〈u′(t1)u′(t2)〉 = 2Dpδ(t1 − t2) . (3.40)

The noise intensity Dp is taken as proportional to the diffusivity of the turbulent

kinetic energy k2/ε in the context of the k-ε model:

Dp =
μt

ρlσp

=
Cμ

σp

k2

ε
, (3.41)

where Cμ = 0.09 according to the standard model, and σp is in principle a fitting

parameter that connects the diffusivity of P to the eddy viscosity μt. The predic-

tion of this model regarding the spatial structure of the bubble jet does not seem

very sensitive to the parameter σp, so we take σp = 1 as in the transport equation

of k (i.e., σk = 1), considering that both diffusivities must be similar, being both

equally originated by the eddy mixing [Versteeg and Malalasekera (1995)].

The Langevin equation (3.39) can be numerically integrated by standard meth-

ods, with the result of individual trajectories of single independent bubbles. Ex-
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Figure 3.6: Collapse of many curves of U · (x + x0) for a jet with Re = 690. Dashed
lines show the simulation results at various transversal sections of the jet. Solid line
corresponds to Schlichting’s analytical solution presented on equation (3.17)

amples of such integration are shown in the next section. Within this scheme

one may easily determine the probability density P (s, t) of finding a bubble in a

certain position at any instant of time. This distribution coincides with the con-

centration of an ensemble of independent bubbles, and is given by the so-called

Fokker-Planck equation associated to the stochastic differential equation (3.39).

This equation has the form:

∂P (s, t)

∂t
+∇ · (UP ) = ∇ · [Dp∇P ] . (3.42)

In this framework, the concentration of bubbles, proportional to the probability

distribution P , diffuses as a passive scalar advected with the mean flow veloc-

ity U(s, t), but with a diffusion coefficient Dp(s, t) which depends on the local

properties of the turbulence through the field k2/ε.

3.6 Spatial structure of bubble jets

Our numerical computations have been carried out with the help of the commercial

software FLUENT. In Fig. 3.3 and 3.5 we show the structure of the mean velocity

field for the turbulent jet as computed within the k-ε model. In these figures it is

easy to see how the finite size characteristics of the experimental cell seems to play
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Figure 3.7: Contours of constant k2/ε
(10−1 cm2/s), as obtained by CFD calcu-
lations.

Figure 3.8: Contours of constant bubble
concentration in an arbitrary scale, cor-
responding to a local diffusivity propor-
tional to k2/ε, as obtained by integration
of the Fokker Planck equation by using
the CFD results.

an important role in the flow, specially in the areas with strong recirculation and

near the stagnation disk, where the Schlichting solution presented in equation

(3.17) might not portray a suitable description. In Fig. 3.6 we compare the

results obtained from the numerical integration of the model with those provided

by the Schlichting solution. We can observe how the numerical solution of the

jet presents a sharper opening angle than the case of the analytical solution for

an infinite system, which produces in the first one a higher central velocity for

the same injected momentum. Despite this discrepancy in the opening angle, the

jet maintains its velocity decay proportional to 1
x
, as well as its dependence with

the ratio r
x
, which is maintained for the internal layers of the jet up to r

x
� 0.10.

Outside this boundaries, the recirculation due to the finite size conditions become

more significant and, accordingly, its corresponding lines split in the figure.

To visualize the degree of inhomogeneity in our model regarding the diffusivity

of bubbles, we plot in Fig. 3.7 the quantity k2/ε, which is in principle proportional

to the effective local diffusion coefficient of bubbles. The local diffusivity is re-

markably homogeneous in a certain central area and abruptly drops on the sides,

defining relatively clear-cut jet boundaries. This drop in diffusivity is larger than

one order of magnitude in a relatively narrow layer. Therefore it explains the

small sensitivity of the results to small changes in σp on the determination of the
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diffusion coefficient DP , since bubbles disperse through the whole central region,

delimited by this narrow boundary layer. For larger variations of σp (of around

one order of magnitude) we reach the extreme behaviors possible for any scalar

transport equation. In the case with σp � 10 the advection term predominates

over diffusion, producing a negligible dispersion of P over the various layers of the

jet, hence it remains following the central streamlines of the mean flow, predict-

ing a very underestimate opening angle of the bubble jet. On the contrary, for

σp � 0.1, diffusion predominates over advection, resulting in an overestimation of

the opening angle and unrealistic results near the injector, product of an extreme

diffusivity.

In Fig. 3.8 we show the resulting bubble concentration contours, obtained from

the numerical integration of equation (3.42). As indicated earlier, bubble spread-

ing is limited by the jet boundaries, and the resulting spatial distributions are

similar to those of experiments. Remarkably, this is not the case if a homoge-

neous diffusivity is used (instead of one locally depending on k2/ε). The use of a

single value of diffusivity for the whole system results in a distribution of bubbles

that either opens a very small angle (consistent with a scalar transport dominated

by advection), or spreads out of the limits of the jet following an unrealistic be-

havior (corresponding to a transport dominated by diffusion), depending on the

value taken for the diffusivity. An example of bubble distribution P in the case

of constant diffusivity is shown in Fig. 3.9. We therefore conclude that, within

the k-ε model, an inhomogeneous diffusivity is essential to capture the qualitative

shape of the spatial distribution of bubbles.

In order to be able to compare the 2D, projected snapshots of the experiment

with the cylindrically symmetric simulations, we have to integrate the numerical

results over the projected dimension, transversally to the plane of the pictures.

Doing that for different slices of the cell, we obtain a series of profiles that repre-

sent the concentration of bubbles at various distances from the injection point. A

direct comparison with a snapshot of the experiment such as that in Fig. 3.4 is

not adequate since the number of bubbles is relatively small while the prediction

involves an ensemble average of realizations. A simple way to visually compare

the prediction with the data is to superpose a series of successive snapshots of

an experiment, to delimit the region that is eventually visited by bubbles. This

is shown in Fig. 3.11. We have also drawn the 2D-projected concentration pro-

files given by the numerical integration of the model in four different sections of

the experiment. This qualitative comparison shows a good agreement with the

experiment as far as the dependence of the jet width is concerned. The actual

density profiles cannot be directly compared with a gray scale of the bubble su-

perposition because this is the result of a single experiment and because the high

degree of screening of bubbles along the visual line. The regions with a significant
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Figure 3.9: Contours of constant bub-
ble concentration in an arbitrary scale,
corresponding to a homogeneous bubble
diffusivity, as obtained by integration of
the Fokker Planck equation. Unrealistic
degree of diffusion is present close to the
injector.

Figure 3.10: Simulation of the
Langevin dynamics coupled to the k-ε
model of turbulence, of bubbles injected
periodically at the inlet. The snapshot is
statistically similar to that of Fig. 3.4

density predicted by the theory are coincident with the limits of the bubble jet

observed, except in the last profile, which is close to the stagnation disk and has

an enhanced bubble dispersion. Note also that the experimental jet is slightly

deformed, deviating upwards in the figure. This is a spurious effect due to the

preparation of the experiment which is done in normal gravity with a pre-jet of

bubbles breaking the cylindrical symmetry in the initial condition of the carrying

flow. The bubbles injected in normal gravity prior to the drop release can be seen

in the upper part of the picture.

As a final qualitative test of the physical picture, we have reconstructed a

bubble jet from trajectories consistent with our probabilistic model. That is,

we have evolved an ensemble of bubbles injected periodically at the inlet and

undergoing a biased random walk given by the Langevin equation (3.39). Then

the local mean velocity is obtained from the stationary mean flow field solution

given by FLUENT within the k-ε model, and the fluctuating term is calculated as

a white noise as described by equations (3.40) and (3.41), with the local diffusion

coefficient given by the same model. We use a simple Euler scheme to solve the

Langevin equation for each bubble, and the computation of the stochastic term

at each step follows a standard algorithm to ensure that the ensemble average

will coincide with that predicted by the corresponding Fokker-Planck equation
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Figure 3.11: Superposition of a series of experimental snapshots, compared to the 2D-
projected concentration profiles. The values of concentration are plotted in an arbitrary
scale along the x-axis, with the zero of each profile at the position of the corresponding
section of the flow. See the discussion in the text.

[Gardiner (2009)]. The method is just a means to generate individual realizations

of the system including the trajectories of all individual bubbles, consistently with

the assumption that bubbles are not interacting with each other and do not affect

the carrying flow. Although the real trajectories within a turbulent flow at the

scale of our experiment cannot be considered as given by such a simple diffusion

process, in particular at small scales and short times, the model can nevertheless

yield an accurate approximation to the statistics of bubble positions at a given

time. As an illustration of the behavior predicted by our model, in Fig. 3.10 we

plot a representative example of such a simulation showing reasonable qualitative

agreement with a snapshot of a typical bubble jet as that shown in Fig. 3.4.

3.7 Experimental results on the jet structure

In order to measure the position and velocity of each bubble during the experi-

ments, we processed all the images taken by the high speed video camera, so that

an automatic particle tracking software was able to identify the paths described
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Figure 3.12: Tracking of the bubbles in the jet. (Left): Original snapshot taken by
the video camera. (Center): Image processed. (Right): Automatic identification of the
bubbles, being each colored circle a different track recognized by the software.

by all the bubbles. To this aim, first it has been necessary to homogenize the

background of all the frames by subtracting, to each of them, a picture taken by

the same camera in the absence of bubbles. After the background correction, we

have used a standard filter to highlight the interphase of each bubble. Finally, it

has been possible to identify the trajectories of all the bubbles by tracking the

white area strongly highlighted in their central part, which is surrounded and

separated from the rest of bubbles by a clear interphase. This is exemplified in

Figure 3.12.

We have analyzed the position and instantaneous velocity of all bubbles for

the most characteristic and well behaved experiments, corresponding to the cases

with Re = 690 (with parameters of injection Ql=41 ml/min, and Qg=16 ml/min)

and Re = 1170 (with Ql=74 ml/min, and Qg=18 ml/min). More details on the

experimental setup can be found in [Carrera et al. (2008)]

Since the experimental data is taken from 2D snapshots where our real 3D
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configuration has been projected, some of the information is lost in the process.

In the first place, the component of the velocity of bubbles in the direction z,

perpendicular to the plane of the snapshot, cannot be measured. This is not a

major issue since the main component of the velocity is ux, in the axial direction

x. In addition to this, the properties of the flow in the directions y and z should be

statistically equivalent. The actual problem is that we cannot identify the depth z

at which any bubble is placed, therefore when we conduct a statistical analysis of

bubble velocities, we are inevitably mixing velocities that were in fact at different

layers of the jet.

In order to compare the mean superficial density of bubbles ρb from the exper-

imental snapshots with that from the numerical results, we integrate the proba-

bility density of bubbles P over the visual dimension z in the form

ρb(x, y) = Cb

∫ ∞

−∞
P (x, y, z) dz , (3.43)

as we have done before for the numerical profiles in Fig. 3.11. Since P has been

calculated in an arbitrary scale (we have not fixed the frequency of injection of

bubbles), we introduce Cb as a constant to fix the density scale in the simulations

in order to fit the experimental results. In Fig. 3.13 we compare the experimental

results with the numerical predictions of ρb for different sections of the jet. The

experimental values have been obtained by measuring the mean number of bubbles

on small areas of the snapshots, averaged over the whole duration of the micro-

gravity conditions. The constant Cb in equation (3.43) has been fixed by imposing

the same mean number of bubbles on the section at x = 3 for both numerical and

experimental results. This number of bubbles is obtained by calculating the area

below the curves in Fig. 3.13 at that distance.

As we have commented earlier, the protocol to generate a uniform slug flow

requires to start injecting bubbles some time prior to the microgravity conditions.

This is done in order to avoid the large transients produced until a homogeneous

generation of bubbles is achieved, which would cause a further reduction of our

already small experimental time in microgravity conditions. The downside of this

procedure is that the gas injected during normal gravity conditions is accelerated

due to buoyancy forces and drags some of the liquid on its trajectory, producing

a residual liquid flow. Although buoyancy forces disappear immediately at the

start of the microgravity conditions, a transient of this residual flow remains that

breaks the cylindrical symmetry of the jet, giving it a slight inclination upwards.

This can be observed in the small lateral shift of the experimental measures in

Fig. 3.13. Also the opening angle of the bubble jet seems to be slightly smaller

in the simulations, as it can be observed in the figure at high distances from the

injection point (i.e., x = 5cm and x = 7cm), arguably produced by the real effect
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Figure 3.13: Superficial density of bubbles at various sections of a jet (x = 1cm, 3cm,
5cm and 7cm) for the cases of jets with Re = 690 and Re = 1170. Solid lines correspond
to simulations and crosses to experimental results
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Figure 3.14: Superficial density of bubbles ρb (cm
−2) obtained from a simulation with

Re = 690, for all points on the projected xy plane
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Figure 3.15: Superficial density of bubbles ρb (cm−2) obtained experimentally in the
case of Re = 690, for all points on the projected xy plane
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of the finite size conditions of our experimental cell. Within the above disclaimers

and taking into account that the statistics of the data is necessarily limited because

of the restricted access to the microgravity conditions, the experimental data fit

reasonably well with the numerical prediction of our model, in particular in the

intermediate range of distance to the inlet, when the prediction of the model is

most accurate. At the end of the jet, the cumulative effect of the symmetry-

breaking spurious flow associated to the normal-gravity preparation of the initial

condition is most pronounced.

In Figs.3.14 and 3.15 we show a 3D representation of the superficial density of

bubbles ρb, but in this case for any point of the projected xy plane, corresponding

to all the points where the data can be measured from the experimental snapshots.

The next step is to study the statistics of velocities and velocity fluctuations of

bubbles in the jet. As before, since we cannot know the z coordinate of the bubbles

position, we need to integrate the numerical predictions over that dimension.

In this case, one must take into account that not all planes at different depths

have the same effect on the statistics, since layers where we have more bubbles

will present a more significant impact on the statistics. Accordingly, in order

to compare the experimental velocity profiles 〈uexp
x 〉 with the numerical results

obtained by CFD calculations
〈
usim
x

〉
, it is necessary to introduce this projection

effect into the simulation outcome. The way of achieving this is by integrating

the velocity of the flow ux(x, y, z) over the visual dimension z with the help of a

weight factor P �(x, y, z) which stands for the proportion of bubbles at each point.

P � corresponds to the probability density of bubbles P (x, y, z) normalized over

the visual dimension z in the form:

P �(x, y, z) ≡ P (x, y, z)∫ ∞

−∞
P (x, y, z) dz

, (3.44)

∫ ∞

−∞
P �(x, y, z) dz = 1 . (3.45)

Then, the projected mean velocities of the flow, given by the simulations are

〈
usim
x

〉
=

〈∫ ∞

−∞
dz P �(x, y, z) ux(x, y, z, t)

〉
, (3.46)

which, under permutation of the order of the dimensional integration and the

statistical mean “〈 〉”, yields
〈
usim
x

〉
=

∫ ∞

−∞
dz P �(x, y, z) 〈 ux(x, y, z, t) 〉 (3.47)
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Similarly to the analysis in equation (2.5) in chapter 2.1.1, velocity ux can be

expressed as the sum of a mean velocity Ux plus a fluctuating part u
′
x with zero

mean that describe the degree of fluctuations over time.

ux(x, y, z, t) = Ux(x, y, z) + u′x(x, y, z, t) (3.48)

〈 ux(x, y, z, t) 〉 = Ux(x, y, z) + 〈 u′x(x, y, z, t) 〉 = Ux(x, y, z) (3.49)

Applied to equation (3.47) we finally obtain:

〈
usim
x

〉
=

∫ ∞

−∞
dz P �(x, y, z) Ux(x, y, z) (3.50)

Due to the inherent uncertainty on the actual Reynolds number injected in the

experiments, which may slightly fluctuate and deviate from the nominal value in

a rather uncontrolled way, we have left an overall factor on the velocity scale of

the simulations as an adjustable parameter. Since the structure of the jet should

be equivalent for small injection variations, we scaled the velocity results of the

simulations so that the maximum velocity
〈
usim
x

〉
in the section x = 3cm coincide

with the measured experiments, i.e.,〈
usim
x (x = 3cm)

〉
Max

= 〈uexp
x (x = 3cm)〉Max . (3.51)

For the case with Re = 690 the simulated velocities have been scaled by a factor

0.69, and the ones of the case with Re = 1170 by a factor 0.79. The same factor has

been applied to all measured observables corresponding to the same experiment.

In Fig. 3.16 we compare the numerical results with the experimental data from

our measurements.

For the study of the magnitude of the velocity fluctuations σsim we will have to

follow a similar procedure, but we have no free parameter left for the fitting. This

time, for a matter of simplicity of notation, we will not show the dependencies of

each variable. In the study of the velocity fluctuations in our projected images,

it is important to distinguish between the intrinsic fluctuations due to turbulence

with respect to the local mean flow, from the apparent velocity variations along

the visual direction already contained in the mean flow, which will already give

a finite contribution even if the flow is laminar. Starting from the definition of

variance (
σsim
x

)2 ≡ 〈 (
usim
x

)2 〉− 〈
usim
x

〉2
, (3.52)

and using the relations previously seen in equations (3.46) and (3.47), we imme-
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Figure 3.16: Mean axial velocity at various sections of a jet (x = 1cm, 3cm, 5cm
and 7cm) for the cases of jets of Re = 690 and Re = 1170. Solid lines correspond to
simulations

〈
usimx

〉
and crosses to experimental results 〈uexpx 〉
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diately find

(
σsim
x

)2
=

〈∫ ∞

−∞
dz P � u2

x

〉
−

〈∫ ∞

−∞
dz P � ux

〉2

=

∫ ∞

−∞
dz P �

〈
U2
x + 2Uxu

′
x + u′2x

〉− (∫ ∞

−∞
dz P � 〈Ux + u′x〉

)2

=

∫ ∞

−∞
dz P �

(
U2
x +

〈
u′2x

〉)− (∫ ∞

−∞
dz P � Ux

)2

.

(3.53)

As seen in section 2.1.2, we define the kinetic energy of turbulence k on equa-

tion (2.10) as

k =
1

2

( 〈
u′2x

〉
+

〈
u′2y

〉
+

〈
u′2z

〉 )
. (3.54)

Using an assumption of isotropic turbulence, we obtain:〈
u′2x

〉
=

〈
u′2y

〉
=

〈
u′2z

〉
, (3.55)

k =
3

2

〈
u′2x

〉
, (3.56)

which, when introduced into equation (3.53) and after rearranging, allow us to

express the magnitude of the velocity fluctuations of bubbles σsim
x as:

(
σsim
x

)2
=

∫ ∞

−∞
dz P � U2

x −
(∫ ∞

−∞
dz P � Ux

)2

+
2

3

∫ ∞

−∞
dz P � k . (3.57)

This equation can actually be expressed as:(
σsim
x

)2
= σ2

0 + σ2
k , (3.58)

σ2
0 =

(∫ ∞

−∞
dy P � U2

x

)
−

(∫ ∞

−∞
dy P � Ux

)2

, (3.59)

σ2
k =

2

3

∫ ∞

−∞
dz P � k . (3.60)

In these expressions, σ0 stands for the magnitude of the apparent fluctuations due

to the 3D structure of the jet, already present for the a mean flow and which arise

from the comparison of mean velocities at layers of different depth along the visual

line. On the other hand, σk stands for the projection of the intrinsic fluctuations

of the velocity at the different layers of the jet, those due to turbulence.

In Fig. 3.17 we compare the velocity fluctuations of the experimental data

with the numerical predictions calculated with equation (3.57), with no additional

fitting parameter, since the velocity scale has already been fitted using the velocity
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Figure 3.17: Velocity fluctuations at various sections of a jet (x=1cm, 3cm, 5cm and
7cm) for Re = 690 and Re = 1170. Solid lines correspond to simulations σsim

x and crosses
to experimental results σexp

x . Dashed red lines correspond to σk, defined on Eq. (3.60)
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measurements. Dashed lines show the value of σk as defined in equation (3.60),

to illustrate the magnitude of the intrinsic velocity fluctuations due to turbulence

in relation to the apparent ones. As for the measurements on the bubble spatial

dispersion, for both the measurements of mean values and dispersion of bubbles

velocities, the prediction of the k-ε model is also reasonably accurate, within the

inherent uncertainties of the experimental data.

3.8 Discussion and conclusions

We have presented a stochastic model that captures the essential statistics of

bubble spatial dispersion in turbulent bubble jets formed by injection of capillary

slug flows. The model is based on a simplified description of the turbulent flow

within the realizable k-ε scheme. Even with the simplifications of the model, the

treatment of bubbles as passive tracers with a local diffusivity associated to the

k-ε model seems to capture reasonably well the ensemble dynamics of the bubbles.

Numerical results obtained with our model compare well with experiments. On the

other hand, we show that the simpler alternative of using a homogeneous bubble

diffusivity would give results whose qualitative features would differ dramatically

from experiments.

Simple scaling analysis comparing the bubble size and the scales of turbulence

in this system indicate that the interaction between bubbles and its effect upon the

carrying flow cannot be neglected in the regions relatively close to the inlet. How-

ever, our analysis shows that, even though potentially important, to the degree

of approximation that is consistent with the inherent uncertainty of the experi-

ments, such interactions can be statistically neglected in the cases of the overall

spatial distribution of bubbles, their mean velocity and the root-mean-square of

their velocity fluctuations.

Simulations seem to predict slightly smaller opening angles of the bubble jet at

large distances from the injection point. It is not clear if this could be attributed

to an extra overspreading of bubbles due to the stagnation disk or some other

spurious effect of the injection of bubbles in the stage prior to microgravity. In any

case, one should take into account that the boundary of the turbulent jet cannot

be well described within the frame of a k-ε model, because the latter implies a

smooth variation of the properties k and ε, while in reality the transition is an

abrupt change from turbulent (k > 0) to laminar (k = 0) that fluctuates over

time. The average effect on the bubble dispersion and velocity statistics displayed

by bubbles near the jet boundary is likely to be missed by this simple model. A

detailed simulation of the evolution of the fine structure of turbulence would be
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necessary in order to improve the description and be able to draw the eddies that

give shape to the boundary of the turbulent jet.

In fact, when looking at the diffusion coefficient k2/ε in Fig. 3.7 we find a fast

decay of this magnitude in a narrow distance, but this is still a smooth spatial

variation and, even more important, constant in time. It is not surprising to find

deviations from the prediction of the model in the experimental observation made

on the margins of the jet.

One way of interpreting the position of the boundaries of the jet is by consid-

ering that all the turbulence properties become negligible after they decay past

to a certain threshold value. In Fig. 3.18 we show the relative fluctuations of the

flow for three simulations with different degrees of turbulence. If we argue that

the flow becomes laminar when the relative fluctuations of the flow (k/U2) drop

below a certain value, then we can see on the figure a tendency to increase the

radial distance of the boundary layer (i.e., the angle of the turbulent jet) when

decreasing the Reynolds number. We find the same tendency if we define the

boundary of the bubble jet at some intrinsic property of the curve, for instance

its inflexion point. In fact, in this case we also find that the relative fluctuations

of the velocity at this position (which describes the margin of the jet) increases

with the Reynolds number.

However, Carrera et al. (2008) measured the opposite result, finding that the

bubble jet (measured really close to the injector) increases with Re until it satu-

rates to a fixed value for Re ≈ 700. In Fig. 3.19 we show the relative fluctuations

of the bubble velocities measured experimentally on the bubbles at the margins of

the bubble jet. The bubbles taken in order to find these statistics have been care-

fully selected one by one, in an effort to minimize the effect of averaging bubbles

at different depths on the visual direction z. The figure show a weak decreasing



68 Chapter 3. Turbulent bubble jets

tendency of the relative velocity fluctuations of bubbles at the boundaries when

increasing the Reynolds number, which is also contrary to the numerical simula-

tions of the k-ε model. That shows the limitations of this model to describe that

kind of details of the flow, and for that purposes it would be necessary the use

of more elaborated CFD simulations, able to describe the details of the turbulent

structure, a problem that goes much beyond the scope of the present study.

A more accurate description of the system should also aim at a more realistic

modeling of the bubble trajectories. Diffusive trajectories are indeed too erratic on

small scales and overestimate significantly the probability of bubble encounters.

Introducing a more realistic tracking of the flow trajectories, even if still as passive

tracers, should take into account statistical correlations of the flow which would

clearly modify the statistics of bubble encounters. This point has remarkable

practical relevance because reducing the degree of bubble coalescence is important

to keep the monodispersivity of the suspension, and ultimately the control of the

surface-to-volume ratio. Our jets do exhibit a remarkably low degree of bubble

coalescence, a point that was already discussed by Carrera et al. (2008). A full

description of the dynamics of suspensions of spherical bubbles, including bubble-

bubble interactions and bubble-flow interactions could be approached with large

scale Lattice-Boltzmann simulations, in the spirit of the work of Yin et al. (2006).

In the case of bubble jets, however, the non-homogeneous conditions along the

jet makes this analysis very demanding. It is particularly difficult to incorporate

correctly the physics of the two-phase flow right at the exit of the injector, where

bubbles may significantly deform due to the strong slowing-down as they enter the

cavity, and the variations of the flow field are strong at the scale of bubbles. There

the problem is that of turbulent multiply connected free-boundary problem of

great numerical difficulty. In the following chapter, we address a simpler situation,

with more homogeneous turbulent conditions and bubbles that remain essentially

spherical. There a Lattice-Boltzmann approach will be used to characterize the

flow trajectories.



Chapter 4

Bubble suspensions in turbulent

duct flows

4.1 Introduction

Homogeneous bubbly flows with controlled bubble size have been largely studied

in the past in the case of normal gravity conditions [Kytömaa (1987); Tryggvason

et al. (2006); Mazzitelli et al. (2003)]. However, there is a lack of experimen-

tal data or bibliography for this kind of flows in microgravity. This is mainly

due to the large cost of microgravity experimentation, which constrains and slows

the scientific progress in reduced-gravity research. Furthermore, the technologi-

cal challenge to generate bubbles of uniform size without the help of buoyancy

forces have been an added difficulty. Colin et al. (2001) studied the distribution

of bubbles of 0.92 mm of diameter in a turbulent pipe of 4 cm diameter. They

generated them by injecting gas from an hypodermic needle of 0.15 mm diameter

into a box where a very low rate of liquid co-flow detached the bubble. Neverthe-

less, although this procedure allows to generate bubbles with a very precise and

controlled size, it also creates them at a low rate, which does not allow the type

of study of interaction between ensembles of bubbles and turbulence that we aim

at here.

Similarly, in the domain of microfluidics there are well known mechanisms

to generate perfectly monodisperse bubbles that would perform adequately in

microgravity (see for example [Gordillo et al. (2004)]). However, the low void

fraction of gas injected with these procedures makes them also insufficient for

the technological challenges that motivated our investigations, like life support

systems and environmental control for life in space. Even if a sufficiently large

rate of microbubbles of around 100μm could be achieved, they would essentially

be point-like with respect of the scales of turbulence and their influence on the

69
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Figure 4.1: Front and back view of the experimental setup
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flow would in principle be negligible, so the fundamental interest of turbulent

suspensions would also be missed. Hence aim at having bigger bubbles in order

to study some significant interactions between them and turbulence.

In this chapter we will present a series of experiments that were conducted in

the ZARM Drop Tower (Figure 4.1). The aim is to achieve, for the first time, a

homogeneous suspension of monodisperse bubbles of prescribed size, carried by a

turbulent co-flow, as a simple model system where interaction between bubbles

and turbulence in the absence of buoyancy may be studied experimentally and

compared to numerical simulations. The experiment was designed to control sep-

arately the bubble size (in the range of mm), the bubble density (in the range

of few percents of void fraction, to allow for particle tracking techniques and to

avoid coalescence) and the degree of turbulence of the carrying flow (in the range

of Re ∼ 103 − 104). For suspensions of air in water, these parameters imply

sufficiently small Weber number to ensure that bubbles were essentially non de-

formable (spherical), an important simplification of the problem. They also imply

that the bubble size is larger than the Kolmogorov length, to allow for nontrivial

effects on the flow, and at the same time smaller than the largest eddies. The

small void fraction also ensures that the bubble mean separation is comparable to

the most energetic eddies, thus favoring efficient spatial dispersion while avoiding

coalescence phenomena. To this aim we designed a combination of 4 independent

T-Junctions with capillary diameters dT = 1.6 mm to generate uniform slug flows,

and inject them into a vertical duct of 800 mm long and square section of 100x100

mm2. These dimensions were fixed by the physical conditions of the experiment

together with the available time of microgravity of 4.71 seconds of the ZARM

Drop Tower. In this channel, a turbulent co-flow drags and disperses the bubbles

from their point of injection. Bubbles typically travel distances comparable to the

duct length during the duration of microgravity conditions. Unlike the bubble

jets of chapter 3, in this setup the degree of turbulence of the carrying flow is

independent of the injection parameters that define the conditions of bubble gen-

eration. The latter can now be used to modulate to some extent the rate of bubble

formation and their size. Our setup cannot reach large void fraction of bubbles

under the nominal conditions of performance of our T-juntions. The natural way

to extend our setup in that direction would be to increase the number of injectors.

Images taken from high speed video cameras allow us to study the bubble

trajectories in space and their instantaneous velocities during the microgravity

experiments. In addition to the study of steady flow conditions, an interesting

aspect of this setup is that it allows us to study the decay of the so-called pseudo-

turbulence. This term designates the turbulence created by the inherent insta-

bility of the flow, generated by ensembles of bubbles rising under normal gravity

conditions. Our experimental protocol starts with the creation of such flow, that
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Figure 4.2: Base of the experimental channel
while injecting bubbles from the 4 injectors

Figure 4.3: Manifold to split the
main liquid flow into 9 lines

induces some degree of turbulence even in the absence of a carrying co-flow. In

microgravity, instead, bubbles will only rise due to the drag of the co-flow, so

the flow created by the pseudo-turbulence prior to the start of the microgravity

conditions will have to decay in a finite time. We can thus characterize the decay

of this pseudo-turbulence.

An important focus of interest of the experiment is the study the velocity fluc-

tuations of bubbles for different degrees of turbulence (essentially for two different

Reynolds numbers) and compare the results with numerical Lattice-Boltzmann

simulations of the turbulent flow. Finally we will briefly address the statistics of

trajectories, to gain insights on the mixing properties of the flow and the proba-

bility of bubble encounters. In particular we will compare the characteristic times

of separation between pairs of bubbles on the experiments with pairs of passive

tracers in the Lattice-Boltzmann simulations.

4.2 Experimental setup

4.2.1 General description

The main practical objective of the project is to achieve for the first time, a con-

trolled homogeneous distribution of monodisperse bubbles within a turbulent flow.
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To this aim we use a vertical duct of square section and dimensions 800x100x100

mm3. At the base of the channel we inject the carrying co-flow from 9 evenly-

spaced inlets that surround the 4 bubble injectors (Figure 4.2). Each bubble

injector consists of a T-junction (as the ones described in the previous chapter)

with capillary tubes of dT = 1.6 mm which connects to a glass tube of the same

inner size, allowing to inject the slug flow directly into the channel at a distance

of 150 mm from the base. In this way we grant to the co-flow of some initial space

to let it reach a more homogeneous and developed structure of its turbulent flow

before it interacts with the bubble jets. In order to accelerate and homogenize

the development of the co-flow turbulence, this flows through a wire mesh with

square holes of 10x10 mm2, which corresponds to the characteristic scale of the

most energetic eddies in steady conditions in such a duct.

The flow provided by the main water pump is split into 9 lines (one for each

inlet in the duct) by using the manifold shown on Figure 4.3. Due to space

restrictions inside the drop capsule (Figure 4.4), the main water tube suffers of a

sharp 90o bending just before connecting it to the manifold, which produce uneven

pressure distribution in the manifold. We corrected this effect by introducing a

screw-ring on each outgoing line of the manifold and manually adjusting their

tightening on each tube in order to obtain an even flow distribution through all

lines. Not correcting this effect would produce longer spatial transients in the

duct before the stationary distribution of the flow were reached, and could even

produce the occurrence of recirculation flows.

For the generation of bubbles, a second water pump has been used. The flow

from there has been distributed into four lines, each one connected to one T-

Junction. Similarly, the gas flow has been controlled with a pressure regulator

and, after distributing it into the corresponding four lines with another manifold,

have also been connected to the T-junctions. In order to obtain a controlled

small gas flow for each line, it has been added one precision orifice (of typically

0.0012 in � 30.5μm) at each air line just before the T-junction. These serve

to soften large gas pressure variations into small flow changes, providing really

controlled gas flows as well as a useful way to decouple the gas lines, achieving a

good and independent performance of the four bubble generators.

4.2.2 Pressure compensation system

As seen in chapter 3.3, T-junctions produce the same outcome independently of

the degree of gravity due to the negligible effect of the buoyancy forces upon the

process of bubble formation and detachment. Nevertheless, in our actual vertical

configuration with the injectors located below the large mass of water filling the

duct, the sudden loss of hydrostatic pressure when the microgravity conditions
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Figure 4.4: Schematics of the drop capsule
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Figure 4.5: Excessive release of pressure
due to the loss of hydrostatic pressure.
Snapshot taken 0.2 s after the start of
microgravity.

Figure 4.6: Schematics for the co-flow
liquid line with the pressure compensa-
tion system. Gray areas represent ele-
ments filled with water while white ones
are filled with air.

switch on, will produce a large instantaneous change in the operating conditions

in the T, inducing a transient in its performance that may have a non negligible

relaxation time, and that may have a significant effect on the very early stages of

the experiment.

The working pressure P of each T-junction in normal gravity conditions is

P = P0 + ρgh+ dP , (4.1)

where P0 is the reference pressure (i.e., the ambient pressure, supposing that the

system is open at the top of the capsule), ρgh is the hydrostatic term (with h the

height of the water column between the points where we measure P and P0), and

finally dP is the extra pressure needed in the capillary tube of the T-junction in

order to detach one bubble. When microgravity starts, bubble generators expe-

rience the loss of hydrostatic pressure, instantaneously obtaining a new working

pressure (P ′)
P ′ = P0 + dP , (4.2)

while the gas pressure on its capillary tubes still is P > P ′. That produces a

transient in which the injectors release the excess of gas (Figure 4.5) until they
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reach the new working pressure P ′.

The method that we have used in order to minimize this effect consists in

maintaining constant the working pressure of the T-junction (i.e., P ′′ = P ) by

increasing the pressure in the whole system during the microgravity conditions.

Being P ′′ the new working pressure during microgravity,

P ′′ = P ′′0 + dP , (4.3)

the new reference pressure P ′′0 should be

P ′′0 = P0 + ρgh (4.4)

In Figure 4.6 we show the schematics of the main water line for the injection of the

co-flow into the experimental channel. The gas tank and the three valves are used

in order to compensate the pressure loss in the T-junction during microgravity.

The procedure used to this aim is the following:

1. On ground, with valves “A” and “B” open, we regulate the pressure PT in

the gas tank until the water column below it reaches the same height at

which the T-junctions are placed. By doing that, we are setting all the air

in the tank (and in its connecting tubes) at the same pressure than in the

T-Junctions.

2. After adjusting the pressure in the gas tank, valve “A” is closed. From that

point on, we can keep working in normal gravity conditions, but only valve

“B” should remain open during this period.

3. At the start of microgravity, we close valve “B” and open valve “C” instead.

In that way PT becomes the new reference pressure P ′′0 while the hydrostatic
pressure disappears. Notice that we have kept valve “A” closed in order to

prevent possible co-flow deviations through the gas tank that could happen

if valves “A” and “C” were simultaneously open.

4.3 Turbulent duct flow

4.3.1 Analytical characterization

Through the present chapter we will describe the degree of turbulence in a duct

flow by means of the Reynolds number, defined as

Re =
UcLc

ν
, (4.5)
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with ν the kinematic viscosity of water, Uc the characteristic velocity of the flow

(its mean velocity) and Lc the characteristic size of the system (the width of a

transversal section of the channel, i.e. Lc = 100 mm). Even though the degree

of turbulence in the range of Reynolds numbers studied is only moderate, it is

convenient, as a theoretical reference, to consider the values of the relevant scaling

parameters of turbulence by using the expressions introduced in chapter 3.2 for

fully developed turbulence. We also use the self-similarity relation (3.10) applied

to the size of the most energetic eddies λMax to find their characteristic time

τMax. For the typical flow parameters used in our experiments, corresponding to

Re = 6000 and Re = 13000 we find:

Re λk λmin λMax τk τMax Tc

6000 0.15 mm 1.5 mm 10 mm 22 ms 360 ms 1700 ms
13000 0.08 mm 0.8 mm 10 mm 7 ms 170 ms 770 ms

Table 4.1: Scales of turbulence in a duct flow, being λk and τk the Kolmogorov scales,
λmin the size of the smallest eddies, λMax and τMax the scales of the most energetic
eddies and finally Tc =

Lc
Uc

the characteristic time of the flow.

Furthermore, as seen on equation (3.16), we find that the response time τB of

the typical bubbles injected into the channel is

τB =
d2B
36ν

�
{
70 ms , for dB = 1.6 mm

170 ms , for dB = 2.5 mm
(4.6)

Comparing the scales of turbulence in Table 4.1 with those associated to bubbles,

seen in equation (4.6), we find that λmin � dB � λMax and τk � τB � τMax,

implying that bubbles may be expected to exhibit an active behavior in relation

to the smallest structure of turbulence and, at the same time, not produce major

alterations on the main flow or on the most energetic pattern of turbulence.

In addition to this, the typical void fraction ϑ of gas injected into the channel

ϑ =
4Qg

4Ql +Qco-flow

� 0.5% , (4.7)

is quite small, pointing in the direction of a limited impact of bubbles into the

main structure of turbulence. This value is even smaller for the initial bubbles,

which have been injected during normal gravity conditions and for which buoyancy

forces have increased the distance between them.
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4.3.2 Lattice-Boltzmann simulations

In order to characterize the structure and properties of a turbulent flow through

a duct of square section we have performed 3D Lattice-Boltzmann simulations

as described in chapter 2.2. The channel has been discretized into a uniform

grid of 320x80x80 liquid nodes, representing a portion of 400x100x100 mm3 of

the duct, with periodic conditions at its ends. Our code have been parallelized

and run in the Mare Nostrum supercomputer at the Barcelona Supercomputing

Center (calculating typically with a set of 256 processors) and in a cluster of 16

processors at the Department of Applied Physics of the Polytechnic University of

Catalonia (UPC). An overall estimation of the total CPU time used, accounting

for checking and optimization of the parallelized code as well as for its subsequent

simulations, has been of around 80,000 hours.

Pattison et al. (2009) studied this kind of flow using the generalized lattice

Boltzmann equation in a uniform grid of 432x74x74 nodes for the case of a fric-

tional Reynolds number Re∗ = 300. They compared their results to experimental

measures as well as to simulations of other authors made using Direct Numerical

Simulations methods and Large-Eddy Simulations based on the filtered Navier

Stokes Equations. In order to check our code, we ran simulations for the same

conditions as Pattison et al. (2009)1 and found that the results coincide reasonably

well, except for small asymmetries product of insufficient temporal averaging. We

also ran a simulation with Re = 12700 in order to compare it with our experimen-

tal measures as well as to be able to contrast two different degrees of turbulence.

In Figure 4.7 we compare the computed flow in a transversal section of the

duct for the cases with Reynolds numbers of 3800 and 12700. Lines represent the

fluctuating component of the flow velocity (u′ = u−U). Length and color of the

lines show the magnitude of each vector in an arbitrary scale. In Figure 4.8 the

same comparison is made for the longitudinal section of the flow placed at midway

between walls in the z direction. In both figures, for higher Reynolds numbers a

finer and more detailed structure of turbulence may be appreciated, that includes

smaller eddies. Also, a higher degree of turbulence near the walls, in relation to

the central area of the duct, can be appreciated in all cases.

1Imposing the forced term as described by Pattison et al. (2009) to reach Re∗ = 300 we found
that this flow corresponds to Re = 3800. Similarly, when imposing Re∗ = 950, we obtained a
flow with Re = 12700, which is close enough to the value of our experimental measures in the
case of maximal co-flow injection.
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Figure 4.7: Transversal sections of the turbulent flow. Lines represent the fluctuating
component of the flow velocity u′. (Above): Re=3800. (Below): Re=12700.
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Figure 4.8: Velocity fluctuations u′ on a longitudinal section of the duct flow at
z = 0.5Lc. Flow goes upwards. (Left): Re=3800. (Right): Re=12700.

Figure 4.9: Mean secondary flows on a transversal section of the duct for Re = 3800
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As measured by many authors (see for example [Melling andWhitelaw (1976)]),

and in contrast to the case of pipe flow with a circular section, turbulent flow in a

square duct generates a weak remnant mean flow contained in the square transver-

sal plane of the flow, with pairs of symmetric vortices on each of the four edges of

the channel. Those are called secondary flows, as they have a magnitude signifi-

cantly smaller than the main longitudinal flow, and emerge only after careful time

averaging of the transversal flow. Their structure is such that flow approaches the

edges from the bisector of the right angle between walls, then it follows the wall

(moving really close to it) until it approaches the bisector of the wall, where it re-

turns to the central part of the section. In Figure 4.9 we show the mean secondary

flows obtained in our computations for the case of Re = 3800. Lines represent

the flow vector (0, Uy, Uz), being the length and color of the lines, the magnitude

of the vector in an arbitrary scale. Results have been obtained from averaging

over the whole length of the simulation, and over a period of 400,000 iterations

(corresponding to 500 s of simulated time for the parameters of our experimental

duct) after the simulation had reached the stationary regime. Given the difficulty

of observing such secondary flows, they constitute a good test of the numerical

simulation.

Analogously, we have done a statistical analysis for the computation with

Re = 12700, averaging over a period of 300,000 iterations (corresponding, in our

case, to 110 s of simulated time) after reaching the stationary solution of the flow.

Comparing the numerical results obtained from both simulations in Figure 4.10

we find that the dimensionless profiles of velocity remain essentially unaltered by

the change in the degree of turbulence in the flow. This is in agreement with the
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scaling picture of turbulence described in chapter 3.2, to the extent that the main

structure of the flow is determined by the largest scales of turbulence, while the

smaller ones define the scale of dissipation. The increase of the Reynolds number

produces the decrease of the smallest scales of turbulence, resulting in the addition

of more scales of velocity fluctuations that alter the fine detailed properties of the

flow, while the large scale structure remains unaffected.

In Figure 4.11 we show the secondary components of the mean flow velocity

for one of the simulations. It is easy to attribute the origin of the apparent asym-

metries to the secondary flows of Figure 4.9, which would still require further

statistical averaging to achieve convergence. Nevertheless, the figure is still inter-

esting in order to realize the order of magnitude of the intensity of the secondary

flows in relation to the main flow.

As a last overview of the properties of the computed flow, we study now the

profiles of its relative velocity fluctuations. We define σi as the root-mean-square

of the velocity fluctuations of the component i of the flow:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σx =
√〈

u′ 2x
〉
=

√〈
u2
x

〉− 〈ux〉2

σy =
√〈

u′ 2y
〉
=

√〈
u2
y

〉− 〈uy〉2

σz =
√〈

u′ 2z
〉
=

√〈
u2
z

〉− 〈uz〉2

(4.8)

In Figures 4.12 and 4.13 we show these profiles taken at depths y
Lc
= 0.5 and

0.25, respectively. In both cases we compare the relative fluctuations on each
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Figure 4.14: Snapshots of the same ensemble of bubbles in deionizated water. (Left):
Elongated bubbles in 1g. (Right): Spherical bubbles in μg, 0.2 s after the other picture.

direction and for different degrees of turbulence. It can be seen that changing the

Reynolds number has no significant effect upon the relative velocity fluctuations,

which is consistent with the scaling arguments.

4.4 Experimental results

4.4.1 Qualitative description

When we inject bubbles during normal gravity conditions, they are strongly ac-

celerated by buoyancy forces and rise through the channel following either helical

or zig-zag trajectories [Wichterle et al. (2009)]. In their path, they drag the liquid

on their surroundings, inducing velocity fluctuations that can be either dissipated

by viscosity or strongly enhanced by cooperative interaction between collections

of bubbles, up to scales of movement much larger than the size of the bubble,

creating what is known as pseudo-turbulence [Mazzitelli and Lohse (2009)].

In our experimental setup we have recorded the experiments using 4 high

speed video cameras: one capturing the bubble injectors, another filming the area

roughly at the center of the duct, and two more at the end of the channel, record-

ing it from two perpendicular directions. In Figure 4.14 we show two snapshots of

an experiment performed with de-ionizated water where the slight deformability

of bubbles of our typical size in the presence of buoyancy forces can be appreci-

ated. These deformability has also a relevant role in the vicinity of the injectors,

where bubbles suffer strong oscillations of their interphases due to the sudden
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deceleration that they experience and to the large gradients of flow velocity af-

fecting them in that region. From previous experience with similar injectors and

in other microgravity environments, such as parabolic flights, it seems that such

oscillations enhance significantly the rate of bubble coalescence right at the cavity

inlet, a complex phenomenon that could have several origins, including possibly

the resonances between the bubble oscillatory modes and the frequency of bubble

formation, which may be of the same order. We will not pursue this effect in

detail here, and we will rather focus our analysis in the case of bubbles of filtered

air in water with some degree of saline concentration. Specifically, and in order to

have large amount of water under the same solutal conditions, we used commercial

mineral water2. The presence of a minimal amount of solute in the liquid has sev-

eral important effects: it increases the surface tension, making the bubbles more

spherical; it produces a no-slip boundary condition at the gas-liquid interface; and

it significantly decreases the probability of coalescence when bubbles collide.

The vertical injection of bubbles from our four glass tubes creates four roughly

cylindrical columns of rising bubbles that interact strongly and follow complex

oscillatory rising paths. The strong buoyancy forces and the pseudo-turbulence

generated in the neighborhood of the bubbles, confine them in these columns

regardless of the degree of turbulence inherent in the duct co-flow. However, once

the buoyancy is switched off, bubbles quickly decelerate and relax to the local

liquid flow velocity within their viscous relaxation time. In a similar time scale,

the flow becomes more homogeneous and bubbles spread to fill the whole channel.

Even though some remnants of the pseudo-turbulence may have longer relaxation

times, the time scale of the experiment is sufficient to observe the emergence of a

steady regime dominated by the co-flow.

A substantial increase of the density of bubbles is observed when those that

have been first injected at the beginning of microgravity phase of the experiment

reach the area of observation of the different cameras. That is because bubbles

injected during normal gravity conditions, despite being generated at the same

frequency by the T-junctions, acquire a finite velocity with respect to the carrying

flow, due to buoyancy forces, implying that mean separation between bubbles is

larger. On the contrary, bubbles injected in microgravity disperse to a density

only dependent on the injection parameters, as previously seen in equation (4.7).

In Figures 4.15 and 4.16 we show some representative snapshots of the char-

acteristic situations described above, for two bubble sizes: dB = 1.6 mm and 2.5

mm, respectively. For both figures, cases a and b compare the performance of the

injectors in normal gravity and in microgravity. Case c shows the distribution of

2Ionic content in mg/l are: Na+ (16.4), K+ (2.4), Mg2+ (51.4), Ca2+ (184.5), Cl− (45.7),
SO2−

4 (411.2) and HCO−3 (278.5)
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a) b)

c) d)

e) f)

Figure 4.15: Snapshots for experiments with Ql = 70 ml
min and Qg = 46 ml

min (dB �
1.6mm) from each injector. Cases (a)-(e) correspond to Re = 13000, while (f) is for
Re = 6000. (a): Injection in 1g. (b): Injection in μg. (c): Bubbles in 1g. (d): Bubble
suspension in μg of bubbles injected during 1g conditions. (e)&(f): Bubble suspension
of bubbles already injected in μg conditions
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a) b)

c) d)

e) f)

Figure 4.16: Snapshots for experiments with Ql = 18 ml
min and Qg = 46 ml

min (dB �
2.5mm) from each injector. Cases (a)-(e) correspond to Re = 13000, while (f) is for
Re = 6000. (a): Injection in 1g. (b): Injection in μg. (c): Bubbles in 1g. (d): Bubble
suspension in μg of bubbles injected during 1g conditions. (e):&(f): Bubble suspension
of bubbles already injected in μg conditions



4.4. Experimental results 87

# Ql (ml/min) Qg (ml/min) Qco-flow (l/min)

D1 75 34 35
D2 30 16 35
D3 70 51 80
D4 70 51 35
D5 37 19 80
D6 70 46 35
D7 70 65 77
D8 70 46 81
D9 18 46 81
D10 70 46 81
D11 18 46 81

Table 4.2: Parameters of injection correspondent to the experimental drops used for
the data analysis in the present work. Ql and Qg stand, respectively, for the liquid and
gas flow rate injected at each one of the four equivalent T-junctions. Qcoflow is the total
liquid flow rate through the nine inlets

bubbles in normal gravity conditions. Despite that they have risen a distance of

nearly 60 cm within a turbulent flow, it is easy to see how they still remain con-

fined at the central part of the duct due to the buoyancy forces. Case d shows the

distribution of bubbles at the same distance in microgravity conditions, after the

spreading of bubbles takes place. Finally, cases e and f show the higher density

of bubbles achieved when those that have been injected in microgravity reach the

observation areas. Density is even bigger in f, due to its slower co-flow.

4.4.2 Statistical analysis

As we did in the previous chapter, we process the images taken from the video

cameras to highlight the bubbles interphase and then we use a Particle Tracking

software to identify the paths described by all the bubbles in the recordings. The

injection parameters for the cases analyzed are listed on Table 4.2.

For experiments of isolated bubbles it would be possible in principle to recon-

struct their three-dimensional trajectory from the data extracted of the pair of

video cameras that simultaneously film at perpendicular planes of the duct. In

practice, however, this is not possible in our case due to the large number of bub-

bles, implying a high degree of screening and the inherent difficulty of matching

the bubble identities in corresponding snapshots. Therefore, as in the previous

chapter, we are not able to measure the components of position and velocity over

the visual direction z, perpendicular to the pictures. In the data analysis it is

thus necessary to take into account that local fields at positions (x, y) are in fact
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Figure 4.17: Profiles of mean velocity
of bubbles 〈ux〉 at various times of the
experiment for a single realization (D8)
with Re = 13000
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Figure 4.18: Profiles of mean velocity of
bubbles 〈ux〉 averaged over the measures
of 4 different cameras of two equivalent
experiments (D8+D10) at Re = 13000,
at various times of the experiment
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Figure 4.19: Profiles of velocity fluctuations σx of
bubbles averaged over the measures of 4 different
cameras of two equivalent experiments (D8+D10) at
Re = 13000, at various times of the experiment

averaging properties in regions that may be significantly different, like regions far

or near the sidewalls.

For the following figures we have performed a statistical analysis of the bubble

velocity in the duct. We have averaged their velocity on each point over temporal

intervals of 0.6 s (being t = 0 the beginning of microgravity). In addition to this,

we have also averaged over the direction of the main flow (x), assuming it to be

homogeneous for the relatively small distance contained in the observation field

of one video camera (around 10 cm).

In Figure 4.17 the profiles of mean velocity of bubbles are displayed for a typ-

ical realization with Re = 13000 and bubble size dT = 1.6 mm. The irregularities
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shown in those profiles are due to the poor statistics (for the obvious reasons

of limited access to microgravity conditions) of the experimental averaging and

provides a grasp of the large velocity fluctuations taking place in a given real-

ization of the flow, corresponding to the relatively high degree of turbulence. In

order to obtain the regular profiles of mean velocity, we average the results over

four equivalent realizations with the same characteristics. The resulting profiles

of mean velocity and root-mean-square of velocity fluctuations are shown on Fig-

ures 4.18 and 4.19, respectively. In both figures it can be appreciated a decrease

in time of their magnitudes, which is due to the decay of pseudo-turbulence, a

first rough characterization of the temporal evolution associated to the relaxation

of the flow dragged by buoyancy forces prior to microgravity.

Due to the unavoidable averaging over the visual direction, and given also

the unavoidable limited replicability of an experiment with the large fluctuations

inherent to the turbulence, it makes no sense to try to obtain averaged information

on a local basis. Therefore we will compare the different cases by averaging out

the spatial information into a single parameter for each profile. This averaging

will be appropriately weighted using information from the same experiments as

follows,

ūi =

∑
k

〈 ui(yk) 〉 n(yk)∑
k

n(yk)
, (4.9)

σ̄i =

∑
k

σi(yk) n(yk)∑
k

n(yk)
, (4.10)

where n(y) stands for the mean number of bubbles on each point of the y direction

for a given temporal period, and yk is the position in the y direction of the k-th

element of the profile. This averaging will reduce each profile into one character-

istic parameter of the flow while granting prevalence of the information from the

areas with larger number of bubbles, which are statistically more significant. This

reduces the impact of the contributions closer to the sidewalls, while focussing on

the central areas of the duct, where the flow is really mixed and fairly uniform

and homogeneous. Note that we have used the mean density of bubbles instead

of using the total number of velocity measurements since the latter are highly

correlated in a single trajectory of a given bubble.

In Figure 4.20 we compare the results obtained over the averaging of multiple

equivalent realizations with Re = 13000 for two different sizes of bubbles, but

maintaining constant the injected gas void fraction. Results show no noticeable

difference on the relative velocity dispersion for both sizes of bubbles, suggesting
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Figure 4.21: Evolution in time of the
mean velocity of bubbles ūx. Each color
correspond to a different single experi-
ment (see the legend in Fig 4.22).

that bubble size does not seem to play a significant role in this characterization

of turbulence in our range of parameters.

In Figure 4.21 we represent the averaged velocity of bubbles as a function of

time for several realizations with various injection parameters, being each color

a label for each different experiment. Circles stand for cases with co-flows of

Re = 6000 while crosses correspond to Re = 13000. Experimental values have

been fitted to an exponential decay of the form

ūx = ūx0 + Ae−t/τ , (4.11)

where ūx0 is the mean velocity of the stationary flow, A stands for the added

mean flow from pseudo-turbulence at t = 0 and τ is an effective relaxation time

of pseudo-turbulence. Our fitted values read:⎧⎨⎩ ū
(Re=6000)
x =

(
5.3 + 6.8e−t/1.01s

)
cm
s

ū
(Re=13000)
x =

(
12.1 + 4.0e−t/1.09s

)
cm
s

(4.12)

In equation (4.12) we see that, in both cases, the decay of pseudo-turbulence has a

relaxation time τ � 1s. that is essentially independent from the Reynolds number

of the carrying flow. It is interesting to recall that the response time τB of a

bubble, as seen on Eq. (4.6), depends on its size but it is τB < 0.2 s for all the

injection parameters studied in our experiments. That indicates that the remnants

of pseudo-turbulence persist for a relatively long time after the relaxation of all

bubbles to their local flow velocity.
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Figure 4.22: Relative velocity fluctuations for several different experiments. Circles
correspond at cases with Re = 6000, crosses are for Re = 13000. (Left): Fluctuations
on the direction of the main flow. (Right): Fluctuations transversal to the main flow.

In Figure 4.22 we plot our results on the relative fluctuations of velocity, nor-

malized to the characteristic velocity Uc of the co-flow (i.e., its mean velocity, as

measured by a flow-meter placed right after the pump). Each color denotes a

specific experiment as in the previous figure. A first remarkable observation is

that the experiments with smaller Reynolds numbers have a larger value of the

relative velocity fluctuations. Note that this not only contradicts simple scaling

arguments but in particular our explicit Lattice-Boltzmann numerical results for

the specific geometry and the Reynolds numbers of the experiments, as discussed

in Figures 4.12 and 4.13, where we saw that, without bubbles, the magnitude

of the relative velocity fluctuations is essentially independent of Re. This result

seems to be indicative of an active effect of bubbles. Note also that the increase

of relative velocity fluctuations with decreasing Re is consistent with a similar ob-

servation for the case of bubble jets, right at the margins of the jets, as discussed

in Fig. 3.19, at the end of the previous chapter. It is worth remarking that since

we are measuring velocities on bubbles while we have no tracer of the actual liq-

uid flow, it is not possible to assert an actual modification of the statistics of the

carrying flow due to the presence of bubbles. Strictly speaking we only observe

that bubbles do not seem to be tracing the carrying flow.

A detailed analysis show that for all the experiments with Re = 6000 (circles),

fluctuations decay with a similar characteristic time and seem to relax to the

same asymptotic value, even though the initial value of the velocity dispersion

varies largely from experiment to experiment. We have not found any correlation

of this initial dispersion with the injection parameters of bubbles. Without the

possibility to repeat further the experiments, at this point we can only attribute

this effect to an inherent variability of the preparation of the initial condition,
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which cannot be fully controlled. For cases with Re = 13000 (crosses), unlike for

small Reynolds numbers, pseudo-turbulence seems to have a minor effect into the

velocity fluctuations. The fitting curves in the figures has been added to guide

the eye through the evolution of the cloud of points. To define them, we have

first fitted a relaxation time τ (which is the parameter that seems more robust)

for each direction of a characteristic experiment, and then we have imposed these

values of τ in the fitting of the rest of the data. The resulting curves are:⎧⎨⎩ σ̄
(Re=6000)
x =

(
0.10 + 0.43e−t/3.2s

)
Uc

σ̄
(Re=13000)
x =

(
0.11 + 0.08e−t/3.2s

)
Uc

(4.13)

⎧⎨⎩ σ̄
(Re=6000)
y =

(
0.13 + 0.21e−t/2.4s

)
Uc

σ̄
(Re=13000)
y =

(
0.08 + 0.05e−t/2.4s

)
Uc

(4.14)

From these fittings it is interesting to observe the resulting relaxation times

of τ = 3.2 s and 2.4s, respectively. These are significantly larger than the values

found for the relaxation of the mean velocity (τ = 1.0 s) in Eq.(4.12). This

suggests that velocity fluctuations of the pseudo-turbulence effectively decay to

the co-flow values in a slower time scale than the mean velocity.

Finally, even though the asymptotic value of the relative fluctuations is subject

to relatively larger uncertainty than the time scales, it seems that the fluctuations

of the transversal y-components show a significant dependence of the relative

fluctuations on the Reynolds number, along the lines of the overall tendency to

decrease for increasing Re. For the longitudinal components, however, the fitted

asymptotic value does not exhibit any conclusive tendency in this respect.

4.4.3 Statistics of bubble pairs

As a last insight on the dynamics of bubble suspensions in a turbulent flow, we will

study the behavior of pairs of bubbles and compare them to numerical predictions

obtained in simulations. To this aim, we have introduced a large amount of

point-like passive tracers on our Lattice-Boltzmann simulations as described in

chapter 2.2.9. We have placed them in a regular initial configuration at relative

distances of 1.25 mm and we have studied the statistical evolution of the averaged

distance between pairs of tracers, as a function of time.

In Figure 4.23 we show a transversal coordinate as a function of time, and

the projection on the transversal section of four trajectories described by tracers

located initially on a close neighborhood. It can be observed that the tracers
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Figure 4.23: Transversal trajectories described by 4 passive tracers initially separated
a distance of 1.25mm of each other in a flow with Re = 3800

remain close to each other for a certain finite time and then they strongly diverge

from each other.

Experimental measurements have been taken from the trajectories of bubbles

previously captured with particle tracking methods. Those located at a distance

smaller than 2 mm of another bubble (measured from their centers), have been

considered a pair and have been used to calculate the averaged temporal evo-

lution of their separation. In Figure 4.24 we display the evolution of the mean

distance between pairs of bubbles at different temporal ranges of the microgravity

experiments. It is important to recall that pseudo-turbulence is decaying during

the experiment, affecting the measured magnitudes. Noisy signals at the final

part of the lines denote a lack of sufficient statistics, caused by the high degree

of screening between bubbles in the videos, which makes impossible to follow the

trajectory of a bubble for a long period of time. Thus, as time increases, we are

losing the track of more bubble pairs and by consequently we get poorer statistics.

In Figure 4.25 we plot the mean separation of bubble pairs, measured after the

first second of microgravity. Each line corresponds to a different set of injection

parameters. Dark blue line has been averaged over the measures of four video

cameras from two equivalent experiments. We find that the measurements for

equivalent degrees of turbulence share a similar slope once they have reached the

linear regime, defining an effective rate of separation.

In Figure 4.25, dashed lines correspond to the linear fittings:
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Figure 4.24: Mean separation of pairs of bubbles. Each line correspond to a temporal
range of the experiment in microgravity. (Left): Single experiment (D4) withRe = 6000.
(Right): Single experiment (D8) with Re = 13000.

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

t (s)

d
(c

m
)

D8+D10 (Re=13000)

D5 (Re=13000)

D1 (Re=6000)

D2 (Re=6000)

Figure 4.25: Mean separation of pairs of bubbles for different pa-
rameters of injection. Results have been taken after the first second
of microgravity. Dashed lines are fittings of the correspondent data

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d(Re=6000) =
(
1.90 cm

s

)
t+ 0.04cm

d(Re=6000) =
(
1.84 cm

s

)
t+ 0.15cm

d(Re=13000) =
(
2.85 cm

s

)
t+ 0.02cm

d(Re=13000) =
(
2.99 cm

s

)
t+ 0.12cm

(4.15)

A clear dependence with Reynolds number can be observed on the rate of

separation obtained in the fittings. For an increase of Re by a factor � 2.2, the

separation rate is increased by a factor � 1.6.

At this point it is important to call the attention upon the fact that the pairs

of bubbles defined from experimental images are in most cases just apparent, due
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apparent pairs of tracers (i.e., initial
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to the lack of information about the depth along the visual direction z. A large

majority of them will be separated distances much larger than the bubble size

and thus following rather independent trajectories. If we consider that a pair of

bubbles is real when their initial separation Δz0 in the visual direction is lower

than 1.5 mm, for a homogeneous distribution of bubbles in our duct of width

Ly = 100mm we obtain a proportion of about 3% of real pairs, against 97% of

apparent ones. One could think of different strategies to differentiate the two

populations of pairs, with the help of a detailed statistical study of tracers in the

simulations. However, due to the small statistical significance of the real pairs,

the lack of more experiments to increase the amount of data makes any of such

attempts virtually hopeless.

In Figure 4.26 we show the evolution of the mean separation between real pairs

of tracers, obtained from our simulations for two different degrees of turbulence.

The first noticeable observation is that real pairs of tracers, unlike our experi-

mental measures, have an average separation that grows closer to exponentially

in time. This rate is defined by an exponent L , which we may assimilate to an

effective Lyapunov exponent, that controls the average rate of exponential sepa-

ration δ(t) = δ(0)eL t of infinitesimally close trajectories in a chaotic dynamical

system [Salazar and Collins (2009)]. Fits in Figure 4.26 correspond to:

⎧⎨⎩ d(Re=3800) = (0.11cm) e(0.52 s−1)t

d(Re=12700) = (0.11cm) e(0.80 s−1)t
(4.16)

which adjust nicely to simulations until the finite size effects of the duct section

become important and slow down the growth, as can be observed in the figure,
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Figure 4.28: Distribtion of punctual tracers for a slice of the duct of Δz = 5mm at
the midplane between walls. Simulation with Re = 12700.

for long times in the most turbulent case.

In order to compare the experimental measurements with those of simulations

taken in equivalent conditions, we have evolved the initially structured configu-

ration of tracers for a long period of time, reaching a homogeneous distribution.

Figure 4.28 show a slice of Δz = 5mm of the duct, to get a sense of the high den-

sity of tracers and their homogeneous distribution in space. We have measured

the average separation of apparent pairs of tracers by selecting as a pair only those

initially separated a distance smaller than 2 mm in the x − y plane, but larger

than 1.5 mm in the z direction. Figure 4.27 shows the resulting curves, describ-

ing a linear growth of the separation, like in the experimental measurements of

Figure 4.25, until the finite size effects of the duct enter into play. The fits of

Figure 4.27 are given by⎧⎨⎩ d(Re=3800) =
(
0.54 cm

s

)
t+ 2.27cm

d(Re=12700) =
(
2.07 cm

s

)
t+ 2.79cm

(4.17)

which show a dependence of the rate of separation between tracers with Re similar

to the experimental case of equation (4.15). In this case, an increase by a factor

� 3.3 of the Reynolds number causes a factor � 3.8 in the growth of the separation

rate.

The last aspect we will analyze concerning the dynamics of bubble pairs is

the measurement of the statistics of times before separation beyond a minimum
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Figure 4.29: Crosses represent the duration of experimental (apparent) pairs of bub-
bles. Circles indicate the number of pairs to which we have lost track, after a given
time, due to screening effects. (Left) Experiment D4, Re = 6000. (Right) Experiment
D3, with Re = 13000.
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Figure 4.30: Normalized probability distribution of duration of pairs of tracers. (Left)
Re = 3800. (Right) Re = 12700.

distance. In the experimental measurements, as well as in the simulations, we have

considered the time lapse between the moment the pair reduces its separation

to a distance smaller than 2 mm and the moment it surpasses 4 mm, always

taken between their respective centers. In Figures 4.29 and 4.30 we show the

experimental data and the simulated predictions, respectively.

Results are hard to compare due to the large amount of screening events in

the experimental images, that produce an increasing uncertainty in the shape of

the curves as the time lapse grows. In simulations, significant differences are ob-

served between the distribution of probability for real pairs of tracers and that of

apparent pairs, with much longer life times for real pairs, as a result of the strong

correlations of velocities in nearby bubbles, as opposed to the case essentially un-
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correlated for distant ones. From the detailed knowledge of the statistics of the

time separation of both apparent and real pairs, taken from numerical simula-

tions together with the appropriate characterization of the screening effects, the

proper fitting functions could be obtained that would allow to correctly project

the experimental data into a reduced set of parameters in order to extract the

statistics of real versus apparent bubble pairs, and thus try to detect whether this

observable captures some effect not contained in the passive tracer picture. We

have not pursued this idea because, as pointed out before, the limited number of

experiments available prevents from reaching statistically significant conclusions

for the minority of the events of interest, namely those corresponding to the real

pairs.

4.5 Conclusions

A new experimental setup for the study of monodisperse bubble suspensions in

microgravity has been design and assembled. It has been prepared to resist the

highly demanding mechanical requirements of experimentation in a drop tower,

for which the setup needs to resist peaks of deceleration around forty times larger

than normal gravity. With that new experimental setup we have conducted a

series of 36 drops of 4.7 s in drop tower of ZARM in Bremen.

It is worth remarking that, with the innovative procedure here developed, its

has been achieved for the first time in microgravity, a relatively homogeneous sus-

pension of monodisperse, highly spherical bubbles in a turbulent flow. Achieving

this type of configuration with the possibility to control separately the bubble size,

the bubble density and the degree of turbulence, opens the possibility to obtain

valuable data for both fundamental and applied studies, in relatively simple sit-

uations, amenable to theoretical analysis and interpretation. The key innovation

in our setup is the combination of several independent T-junctions, which inject

uniform and equally spaced bubbles into a square duct, within a turbulent flow.

In this configuration, the minimum degree of turbulence used (Re = 6000) has

proved to be enough to disperse bubbles through the duct.

Bubble density has been chosen so that bubble separation is of the order of the

most energetic eddies in the flow, and smaller in diameter, so that the turbulence

is most effectively exploited as a dispersion mechanism to distribute bubbles as

homogeneously as possible in the duct, while minimizing the possibility of bubble

coalescence. At the same time bubbles are larger than the dissipative scales of

the turbulence, so that in principle they can have a nontrivial interaction with the

turbulence, instead of a mere passive tracer role. Under the experimental condi-

tions, the Weber number (which measures the ratio of inertial to capillary forces)
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is small enough to keep the bubbles essentially spherical, resulting in important

simplifications for theoretical and simulational modeling.

After a proper statistical analysis of the velocity of bubbles (captured from

particle tracking techniques upon the processed videos of the experiments) it has

been possible to analyze quantitatively for the first time the decay of the pseudo-

turbulence. We have found that, while the viscous response time of a bubble is

τB < 0.2 s for our bubble sizes, implying a quick deceleration of the bubbles after

the gravity swicth-off, the mean velocity of the residual flow initially dragged by

the buoyant bubbles relaxes with a larger time of τ = 1.0 s. In addition to this,

for the case of a co-flow with Re = 6000, the excess of velocity fluctuations in the

flow due to the pseudo-turbulence decays with a relaxation time of τx = 3.2 s in

the direction of the main flow and τy = 2.4 in the direction transversal to it. For

the cases with Re = 13000, instead, it has not been found any significant impact

of the pseudo-turbulence upon the degree of velocity fluctuations of the flow. This

seems to be due to the fact that the higher degree of intrinsic turbulence of the

co-flow masks the effects of pseudo-turbulence.

Large scale Lattice-Boltzmann simulations have been performed to produce

reference states of turbulence with the exact conditions of the experiments but

without bubbles, to allow direct comparison with experimental data, and in par-

ticular to elucidate possible active roles of bubbles in modifying the carrier flow,

or deviating from the mere passive tracer behavior. One of the conclusions of the

numerical study is that the relative velocity fluctuations (scaled to its character-

istic velocity) of a turbulent liquid flow is essentially independent of the degree of

turbulence, in accordance with scaling arguments of fully developed turbulence,

which do not have to be necessarily applicable in a finite duct at our values of

Reynolds number. In the experiments, however, we observe that the relative ve-

locity fluctuations displayed by bubbles deviate from this prediction, and reflect

a tendency do decrease with increasing Reynolds number. This is consistent with

similar observation in the previous chapter for turbulent bubble jets, and seems

to be a genuine active effect of bubbles.

The Lattice-Boltzmann simulations have also been used to study the statistics

of point-like tracers of the flow. In particular we have studied the first-passage

time statistics associated to the separation of two-close tracers. We find that the

average distance between a pair of tracers increase exponentially with an effective

time scale that depends on the degree of turbulence in the flow. For the case

of a pair of apparent tracers, though, where both tracers are closer in the plane

of the pictures but far in the other direction (unmeasurable in our experiments)

the average separation between them increases linearly with time. In the analysis

of experimental data, we find a similar behavior for the apparent pairs, which

dominate the statistics. Real pairs are comparatively rare, and any statistical
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method to extract the corresponding information for those cases suffers from the

overall lack of sufficient statistics of the experiments, which cannot be repeated

as many times as desired for obvious reasons.



Chapter 5

Effects of g-jitter in Bridgman

solidification

5.1 Introduction

The impact of different mechanical disturbances on crystal quality is a longstand-

ing and crucial issue in crystal growth under microgravity conditions [Duffar et al.

(2001); Benz and Dold (2002); Friedrich et al. (2003); Polezhaev and Nikitin

(2009); Duffar (2010)]. Typical disturbances in microgravity environments in-

volve different accelerations in the form of quasi-steady residual values, short

pulses, pulse trains of finite duration and high frequency background signals or g-

jitters [Duffar and Garandet (2000); Nikitin et al. (2001); Bessonov and Polezhaev

(2001); Levtov et al. (2009); Zavalishin et al. (2009, 2010); Casademunt and Viñals

(2001)]. Since the frequency structure of realistic accelerometric signals is often

very complex due to the large number of uncontrolled sources that may be present

in a given microgravity environment, a possible strategy that has been proposed is

to model g-jitters as stochastic processes, in particular because it is difficult to as-

sess a priori the extent to which the linear superposition principle of the effects of

the forcing at different frequencies can be invoked in general, due to nonlinearities

of the equations.

Stochastic characterization of real g-jitters was first discussed by Thomson

et al. (1997), and stochastic modeling of g-jitters was applied to different physical

processes relevant to both fundamental physics and space technology, such as in

coarsening of colloidal suspensions [Thomson et al. (1997)], fluid-fluid interfaces

[Zhang et al. (1993); Casademunt et al. (1993)] and in thermal natural convection

[Thomson et al. (1995)]. In the present chapter1 we pursue this approach in a

1This work has been accepted for publication on J. of Crystal Growth [Ruiz et al. (2012)].
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realistic modelization of different prototypic setups of crystal growth in micro-

gravity in the context of semiconductor materials. As impact indicators we use

here the time evolution of the longitudinal and transversal segregation parameters.

Following Refs. [Zhang et al. (1993); Casademunt et al. (1993); Thomson et al.

(1995)], we will model a generic stochastic acceleration environment by means of

the so-called narrow-band noise, a rather general Gaussian stochastic process that

is characterized by three parameters: the noise intensity, a characteristic domi-

nant frequency where it may be peaked, and a correlation time that controls band

width of the frequency spectrum. This stochastic process interpolates between

the two extreme cases of white noise and single-frequency noise.

The convective response of the velocity field in a cavity with a stochastic g-

jitter transversal to a thermal gradient in a generic fluid configuration was studied

in detail by Thomson et al. (1995). Here we will extend that approach to include

typical confined crystal growth configurations and the coupling of the dopant con-

centration field to the flow field. We will also focus on parameter values and

configurations that are as close as possible to realistic conditions of actual solid-

ification setups in space. Therefore we aim at a quantitative characterization of

segregation phenomena as a function of the statistics of the g-jitter. Furthermore,

we will propose a simplified heuristic model that captures the behavior of the

system with a remarkable accuracy with only a few parameters to be obtained

from the full integration once and for all. The model provides a qualitative and

quantitative understanding of the response of the dopant field to the acceleration

driving forces, and becomes a predictive tool to check the effects of any arbitrary

acceleration signal with a considerably reduced numerical effort. As a general

conclusion, we will find that the system response is strongly dominated by the

low-frequency components of the forcing.

5.2 Definition of the model and numerical inte-

gration

5.2.1 The problem. Setup and physical context

We study the directional solidification of a semiconductor melt inside an ampoule

with a dopant as a diluted solute and in the presence of a weak fluctuating gravity.

See Fig. 5.1 for a sketch of the geometrical configuration used.

The density gradients that drive natural convection receive in general contri-

butions from both temperature and solute concentration fields. However, in the

case of the present semiconductors, the dopant concentration is sufficiently small
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Figure 5.1: Global setup of the problem. Top and bottom: sketches of the two thermal
profiles employed in the work (see text).

to neglect its contribution to buoyancy when compared to that due to thermal ex-

pansion. In addition, the typically small Prandtl numbers of both semiconductors

imply that thermal field is only weakly affected by the induced convection and in

general it reaches its essentially steady configuration in a very short transient. On

the other hand, the solute diffusion is slower. Solute is expelled by the advance-

ment of the solidification front, which forms a layer ahead the interface. This

solute layer, in the absence of gravity, has a width of the order of the diffusion

length D/vp and, as shown by Tiller et al. (1953), is built on a time scale of the

order of D/kv2p, being D the solute diffusivity, k the segregation coefficient and vp
the velocity of the solidification front imposed externally (see also [Smith et al.

(1955); Caroli et al. (1993); Garandet et al. (2000)]).

Due to the incompressibility of the liquid phase, any residual acceleration

can be assimilated to an effective (time-dependent) gravity, which will in general

induce some degree of convection due to thermal buoyancy. Accordingly, there

will be a significant solutal transport due to advection that will in general result

in an inhomogeneous concentration profile in the final crystal. Our objective in

this study is to correlate the type of time dependent residual gravity to the dopant

segregation resulting from the thermally-induced solutal convection.

Within a perturbative approach of the effect of the residual gravity, it makes
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sense to consider only an effective gravity vector that is oriented transversally

to the advance of the solidification front. This is due to the fact that only the

components of the density gradient that are perpendicular to the effective gravity

do generate vorticity in the flow, and to lowest order the density gradient is ori-

ented longitudinally. Transversal components of the density gradient will only be

generated by convection due to the residual gravity and therefore their coupling

to possible longitudinal components of gravity would correspond to higher order

corrections. The geometric arrangement is thus that of natural (lateral) convec-

tion. Note that components of gravity parallel to the main density gradient can

in principle generate convection through a Rayleigh-Bénard instability, but this

would only occur for much larger values of gravity. We will also assume that the

effective gravity has zero mean. If the mean value is significantly different from

zero, the nature of the problem is fundamentally different as it will be dominated

by this constant component.

In our simulations we switch on the time dependence of the residual gravity

at a time when the solidification length is roughly 25% of the total length, so

that the density profile has already developed when g-jitter starts. This is done

for simplicity in order to avoid nontrivial and nongeneric effects associated to the

early stages of rapid variation of the concentration profile, but the analysis could

as well be generalized to g-jitters starting at t = 0. Also, to avoid end wall effects,

we stop the simulation at a time when the solidification length is less than 70%

of the total length of the ampoule.

5.2.2 Model equations and parameters

The numerical simulation of the growth process involves the resolution of the

time dependent transport equations in the melt ahead of the solidification front

with the appropriate boundary conditions at the moving interface, which we will

consider as flat. Local equilibrium then implies that the interface is at the melting

temperature, moving at a constant velocity vp. Because of the continuous decrease

of the melt volume in the ampoules of the characteristic setups of crystal growth

in space facilities [Ruiz (2007)], the computation domain corresponding to the

melt is a rectangle of height H and a time dependent length L(t) = L(0)− vpt.

The transport equations for the velocity, temperature, and dopant concentra-

tion of the melt are written for an incompressible fluid in the Boussinesq-Oberbeck

approximation as follows,

∇ · v = 0, (5.1)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P + ν∇2(v) + B̃(t)ŷ, (5.2)
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∂T

∂t
+∇ · (Tv) = α∇2T, (5.3)

∂c

∂t
+∇ · (cv) = D∇2c. (5.4)

The buoyancy term B̃(t) in the Navier-Stokes equation is given by

B̃(t) = βTT g̃(t), (5.5)

where βT is the thermal expansion coefficient, T the temperature and g̃(t) the time

dependent gravity (in the transversal y-direction), which, in general, is an arbi-

trary function of time. Note that we neglect contributions to buoyancy originated

at concentrations gradients.

In the stochastic case this fluctuating gravity has been modeled as a narrow-

band noise, a stochastic process defined as Gaussian, with zero mean, and a spec-

trum given by Thomson et al. (1995)

P (ω) =
G̃2τ̃

2π

(
1

1 + τ̃ 2(Ω + ω)2
+

1

1 + τ̃ 2(Ω− ω)2

)
. (5.6)

which is peaked at ±Ω with a peak width of τ̃−1. Accordingly, the autocorrelation
function reads

〈g̃(t)g̃(t′)〉 = G̃2e−
|t−t′|

τ̃ cosΩ(t− t′), (5.7)

where G̃2 = 〈g̃2〉 is the second moment of the noise and τ̃ is its correlation time.

The limit τ̃ → ∞ with G̃2 finite corresponds to a monochromatic noise with

frequency Ω. Close to this limit, G̃2 is the appropriate measure of the noise

intensity. In the opposite limit, τ̃ → 0 with Dg = G̃2τ̃ finite, this process reduces

to a Gaussian white noise. Close to this limit the appropriate definition of noise

intensity is Dg. Finally, for Ω = 0 the narrow-band noise reduces to the so-called

Ornstein-Uhlenbeck process [Gardiner (2009)].

The narrow-band noise can be easily generated in practice by using the follow-

ing expression:

g̃(t) = S̃1(t) cosΩt+ S̃2(t) sinΩt, (5.8)

where S̃1, S̃2 are two independent Ornstein-Uhlenbeck processes defined by

< S̃i(t) > = 0, (5.9)

< S̃i(t)S̃j(t
′) > = G̃2δije

− |t−t′|
τ̃ , (5.10)

for i, j = 1, 2.
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Finally, for the ampoule walls, the diffusion equation reads

∂T

∂t
= αsol∇2T. (5.11)

Table 5.1 shows the parameter values involved in all these equations for the two

materials considered Ge : Ga and GaAs : Se, two common choices flown in many

space missions, for instance in the early Apollo-Soyuz mission (Ge : Ga; 1971) or

during NASA Space Shuttle missions (GaAs : Se; USMP1,1991 and EURECA,

1992). For characteristic values of g̃(t) we have taken those fitted by Thomson

et al. (1997) from real g-jitter data collected by a SAMS detector during a SL-J

mission.

We define dimensionless variables by using H as length scale, H2/ν as time

scale, and the initial temperature difference along the cavity ΔT = Th(0) − Tm

as the characteristic temperature scale, where Tm is the melting temperature and

Th(0) the initial highest temperature of the domain at the opposite side of this

moving interface. We thus define the dimensionless temperature deviation as

θ =
T − Tm

ΔT
. (5.12)

As discussed by Thomson et al. (1995), for a stochastic case with significant high-

frequency components it is appropriate to scale the gravity by an acceleration

scale of the form
√

G̃2τ̃ ν/H so that

g =
H√
G̃2τ̃ ν

g̃. (5.13)

Similarly, it is appropriate to define a stochastic Rayleigh number of the form

Ra∗ =
βTΔTH2

√
G̃2τ̃

ν
√
α

. (5.14)

The dimensionless form of the parameters defined with a tilde will thereafter be

written without tilde. Therefore, we have

G2 =< g2 >=
Pr

τ
(5.15)

and

B(t) =
Ra∗

Pr
(S1(t) cosΩt+ S2(t) sinΩt)θ = Bst(t)θ, (5.16)

with Bst(t) the dimensionless stochastic buoyancy factor. Functions Si(t) have

been scaled with the same factor that gravity, and times and lengths are now

dimensionless. As an illustrative example, Fig. 5.2 shows a typical power spec-
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trum of Bst(t), generated with typical parameters extracted from g-jitter data

corresponding to real microgravity environments, as mentioned above.

With regard to thermal boundary conditions, two generic profiles have been

considered (see Fig. 5.1). The first one is a moving hyperbolic profile of tem-

perature directly applied to the external part of the ampoule wall. The second

one is a moving linear thermal profile also applied to the external part of the am-

poule wall. Since experiments are usually carried out under vacuum conditions,

it is reasonable to neglect any external convective transport and simply apply the

thermal profile on the ampoule walls considered isotropic, non-reactive and with

low thermal conductivity (the values used in all cases are very close to those of

quartz). The thermal contact between the inner solid walls and the liquid phase

have been considered perfect excluding the formation of free surfaces inside the

ampoule, and heat flux continuity has been imposed in the internal side of all

walls.

The solidification front moves at constant velocity vp, and the solute concen-

tration at both sides of the interface are related by the segregation coefficient k

as cS = kc. Then, the solute conservation at the interface reads

∂c

∂x
= −Sc vp (1− k)c (5.17)

where Sc= ν/D is the Schmidt number. Eq.(5.17) is thus the boundary condition

imposed on the concentration field at the interface. For the other boundaries, zero

solute flux is imposed. Finally, no-slip boundary conditions for the velocity field

are applied to all the boundaries of the domain including the solid-liquid interface.

The quality of the grown crystals is usually defined in the literature in terms of

the dopant segregation and typically make use of two quantitative indicators, the

longitudinal and the transversal segregation parameters [Garandet et al. (1994)].

The dimensionless longitudinal segregation parameter defined as a transversal

average

ζ(x) =

∫ 1

0

csol(x, y)dy (5.18)

is most adequate to characterize the overall transients of the build-up of the con-

centration profile thus characterizing the history of the process, given that the x-

coordinate is directly mapped to time. Here we will mostly focus on the transversal

segregation parameter defined as

ξ(x) =
csolmax(x)− csolmin(x)

csolavg(x)
, (5.19)

where csolmax, c
sol
min, and csolavg are the maximum, minimum, and average concentration



108 Chapter 5. Effects of g-jitter in Bridgman solidification

-120 -60 0 60 120
0.0

2.5

5.0

7.5

10.0

-120 -60 0 60 120

10−5

10−4

10−3

P
(ω
)
(1
0−

3
)

ω (s−1)

Figure 5.2: Two-sided power spectrum of a typical dimensionless stochastic buoyancy
factor signal. The inset show a central detail in logarithmic scale.

values along the transversal direction in the solid interface. This indicator is most

sensitive to the convection induced by the residual gravity and reflects all the

complexity of the time-dependence of the g-jitter.

5.2.3 Numerical methods

The transport equations have been integrated using finite volume methods. To

do this, all the equations are rescaled in the x direction (to a unity computational

length) and then discretized in a non-uniform mesh. We have used the SIMPLE al-

gorithm (Semi-Implicit Method for Pressure-Linked Equations), discretizing both

convective and diffusive terms by a centered scheme and using averaged values

for transport coefficients. Pressure has been solved by means of the Fast Fourier

Transform method (FFT). As starting condition we use fluid at rest (v = 0),

the melting temperature (θ = 0) for all the domain and a homogeneous value of

the concentration (c = 1). More computational details may be found in [Ruiz

(2007)] and also in Table 5.1. The simulation of the stochastic signal for the

time-dependent gravity g(t) is based on an adapted integral algorithm [Fox et al.

(1988)] for which we have used a pseudorandom number generator first introduced

by Marsaglia et al. (1990) and later improved by James (1990).
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Figure 5.3: Comparison between the longitudial segregation numerically obtained in
the pure solutal diffusion case (thick line) and the corresponding analytical solution for
the semi-infinite diffusion problem (thin line), as a function of the percentual solidified
fraction; (a) Ge : Ga and (b) GaAs : Se.

5.3 Results from direct numerical integration

5.3.1 The build-up of the concentration profile

As a first check and reference case we numerically solve the purely diffusive case

of solidification in the absence of convection, at zero-g, and compare the results

obtained with analytical predictions. In this case the results directly show the

transient process of redistribution of solute while the layer ahead the interface

is formed [Tiller et al. (1953)]. Fig. 5.3 shows our numerical solution for the

pure solutal diffusion case in terms of the longitudinal segregation as a function

of the solidified fraction f , defined as the percentual fraction of the length of the

whole rectangular cavity that has solidified. Since the pulling velocity is constant,

f = 100 vpt

L(0)
is directly a measure of time. The Smith solution [Smith et al. (1955);

Garandet et al. (2000); Verhoeven et al. (1988)] of the 1D semi-infinite diffusion

problem is plotted for comparison. Explicitly, this solution reads

cs
c0
=
1

2
+
1

2
erf

(
A1

√
f
)
+

A2

2
e−A3f − A2

2
e−A3ferf

(
A1A2

√
f
)
, (5.20)

where A1, A2 and A3 are constants that depend on the segregation coefficient. The

agreement between both curves is excellent. A slight departure at late stages can

be attributed to finite size effects, not included in the analytical approximation.

Notice also that for the GaAs:Se case the steady state of the concentration field

is attained but in the Ge:Ga case, the initial transient is not complete even at the

end of calculations due to the small value of the segregation coefficient (see Table

5.1).
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Figure 5.4: (a) Two stochastic transversal segregation realizations corresponding to
linear (thick line) and hyperbolic (thin line) thermal boundary conditions in the Ge : Ga
case; (b) Detail on the relation existing between the stochastic transversal segregation
output (top) and the noise input -equivalently, the stochastic buoyancy factor- (bottom)
for a small temporal window labeled as 1 in (a). The correlation time, τ̃ , and the
frequency, Ω, used here for the generation of the stochastic buoyancy factor are 1 s and
40πs−1 respectively.

5.3.2 Stochastic g-jitters

The numerical integration of the stochastic case for the two materials and the two

thermal boundary conditions considered here produces the stochastic transversal

segregation realizations such as those shown in Figs. 5.4 and 5.5. In both exam-

ples we have used low values of G̃ =
√〈g̃2〉 = 2 × 10−4 cm/s2. The response of

the system as measured by the stochastic transversal segregation parameter can

typically be seen as the superposition of an erratic, slow, large-amplitude wan-

dering and a small amplitude rippling on the scale of the characteristic frequency

Ω of the noise (see the detailed comparison of the stochastic buoyancy and the

segregation parameter in Figs. 5.4b and 5.5b). Results show that the Ge : Ga

growth system seems to be more sensitive than the GaAs : Se one to this type of

perturbations and that, in all cases, the hyperbolic thermal boundary condition

produces a large-scale response significantly bigger than the one obtained under

linear thermal boundary conditions. The latter is clearly associated to the fact

that the effect of the thermal buoyancy is stronger in the hyperbolic case due to

larger temperature gradients. On the other hand, the dependence on the sub-

stance is not so direct. While the larger value of Schmidt number of GaAs : Se

would seem to favor a stronger advective transport, one has to take into account

that the boundary layer of excess concentration in front of the interface, of size

of the order of � = D/vp, is also smaller for GaAs : Se. With regard to the

longitudinal segregation, the noises considered here do not significantly alter the
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40πs−1 respectively.

basic diffusive state, so the Smith solution fits well the computed profiles in both

Ge : Ga and GaAs : Se cases. From a general perspective, it is worth remarking

that, even though the power spectrum of the g-jitter is strongly peaked at Ω the

response at this time scale is of very low amplitude. On the other hand, the wan-

dering of the segregation parameter at time scales of the full experiment exhibits

much larger amplitudes even though it is associated to the low-frequency part of

the g-jitter spectrum, which is several orders of magnitude weaker (see Fig. 5.2).

In coming sections below we will analyze this phenomenon in more detail.

While single realizations of the evolution illustrate the typical outcome one

may expect in a single experiment, in order to properly characterize the quan-

titative response of the system to this kind of stochastic g-jitter, it is necessary

to consider averages over an ensemble of independent realizations. The correct

simulation of the response of the system to the whole range of time scales of the

stochastic g-jitter makes the direct integration of the evolution equations highly

demanding. Due to this high computational cost, we have limited the statistics

of each case to 25 realizations (see additional quantitative details in Table 5.1).

Results of the time-dependent averages of the different stochastic transversal seg-

regation coefficients are shown in Figs. 5.6 and 5.7. The four curves of each figure

correspond to different levels of noise intensity. The curves appear still rather

noisy due to the relatively poor statistics, but show that the response is approxi-

mately proportional to the noise amplitude G̃. In the asymptotic steady regime, a

temporal average is expected to be equivalent to an ensemble average. Therefore,
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Figure 5.6: Ge : Ga averaged transversal segregation curves as a function of the per-
centual solidified fraction for four different values of the the external noise intensity.
(a) hyperbolic thermal profile, (b) linear thermal profile. The noise amplitudes G̃ cor-
responding to the four curves are, from top to bottom, 4 × 10−3, 2 × 10−3, 10−3 and
2 × 10−4 cm/s2 respectively. Also, in all cases, the correlation time and the frequency
are τ̃ = 1s and Ω = 40πs−1.
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Figure 5.7: GaAs : Se averaged transversal segregation curves as a function of the
percentual solidified fraction for four different values of the external the noise intensity.
(a) hyperbolic case; (b) linear case. The noise amplitudes corresponding to the four
curves are, from top to bottom, 4×10−3, 2×10−3, 10−3 and 2×10−4 cm/s2 respectively.
Also, in all cases, the correlation time and the frequency are τ̃ = 1s and Ω = 40πs−1.
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Figure 5.8: Steady state average values of the four different averaged transversal
segregation curves as a function of the square root of the dimensional noise intensity.
Upper and lower triangles corresponds to the Ge : Ga hyperbolic and linear cases, while
that squares and circles corresponds to GaAs : Se hyperbolic and linear ones.

we may effectively improve the statistics by fitting a horizontal line in the steady

part of the evolution. Then, the obtained values of the asymptotic saturation of

the response do scale linearly with G̃, as shown in Fig. 5.8. This fact suggests that

a linear response theory approach may be adequate enough for the description of

the behavior of the system in all situations considered here.

5.3.3 Deterministic sinusoidal g-jitters

Since the spectrum of the narrow-band noise used in this study is quite nar-

rowly peaked at a characteristic frequency, it is very interesting and illustrative to

consider the reference case of a deterministic harmonic g-jitter with that same fre-

quency. Thus, to compare with the stochastic results we consider a dimensionless

deterministic buoyancy term of the form

B(t) = A cos(Ωt+ φ)θ = Bdet(t)θ, (5.21)

with Bdet(t) the dimensionless deterministic buoyancy factor. In order to compare

stochastic and deterministic signals with similar intensity (as long as the power

spectrum is well peaked at ±Ω), we must have that A is of the order of typical

maxima ofBst(t) (see the more detailed discussion of Thomson et al. (1995)). Since

we will show that the response is stronger for the stochastic case, and for Ωτ 
 1, a

conservative choice is to slightly overestimate the amplitude A to be compared to a
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Figure 5.9: Two deterministic transversal segregation realizations corresponding to
two different thermal boundary conditions, linear and hyperbolic, in the Ge : Ga case.
Inset: Detail on the relation existing between the transversal segregation output (top)
and the deterministic buoyancy factor (bottom), for a small temporal window (labeled
as 1 in the main figure). Parameters of the deterministic signal correspond to the
equivalence to the noisy case with a noise amplitude G̃ equal to 2 × 10−4 cm/s2 (see
text).

given stochastic signal by imposing that A > Bst(t) during the whole realization.

In view of Eq.(5.16), the values of B are proportional to Ra∗/Pr (which is a

Grashoff number based on the stochastic G̃ times the stochastic functions S(t)).

But because S(t), due to the employed nondimensionalizations, are proportional

to the square root of Pr/τ , B(t) scales with Ra∗/
√
τPr. A last fit using the values

of the different Bst(t) gives the final relationship A = 5.2Ra∗/
√
τPr.

The deterministic g-jitter in the simulation has been switched on in the same

way as in the stochastic case. In order to properly follow the fast temporal vari-

ations of the deterministic signal the values of the corresponding time steps have

been kept also the same.

As before and independently of the thermal conditions used, axial segregation

remains unchanged. So, Smith’s profile fits the results for both Ge : Ga and

GaAs : Se cases. With regard to the deterministic transversal segregation, Figs.

5.9 and 5.10 show two examples of the results obtained. The overall effect of a
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Figure 5.10: Two deterministic transversal segregation realizations corresponding to
two different thermal boundary conditions, linear and hyperbolic, in the GaAs : Se
case. Inset: Detail on the relation existing between the transversal segregation output
(top) and the deterministic buoyancy factor (bottom), for a small temporal window
(labeled as 2 in the main figure). Parameters of the deterministic signal correspond to
the equivalence to the noisy case with a noise amplitude G̃ equal to 2× 10−4 cm/s2

sinusoidal forcing instantaneously switched on consists of a sudden, fast increase

of the response up to a maximum value and then a slower decrease asymptotically

to zero, with characteristic time scales that depend on the material, and type

of boundary conditions considered. This behavior is to be compared with the

stochastic one which, on average, saturates to a finite asymptotic value different

from zero. The arguments used for the stochastic case apply now to explain

that the Ge : Ga case is slightly more sensitive than the GaAs : Se one to

this kind of perturbations and, in all cases, the hyperbolic thermal boundary

condition produces a response significantly bigger than the one obtained using

linear thermal conditions. Superposed to this overall envelope, small ripples with

negligible amplitude appear following the oscillations of the harmonic forcing. A

phase shift between the resulting segregation and the external forcing is, in general,

expected as is seen in the insets of Figs. 5.9 and 5.10.

Fig.5.11 shows the dependence of the maximum of the response to the ampli-

tude and the phase of the forcing. The dependence on the amplitude reflects the
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Figure 5.11: Maximum value of the transversal segregation parameter during the
temporal evolution of the deterministic case, as a function of (a) the square root of the
equivalent noise intensity, (b) the phase of the harmonic perturbation. Upper and lower
triangles corresponds to the Ge : Ga hyperbolic and linear cases, while that squares
and circles corresponds to GaAs : Se hyperbolic and linear ones. The deterministic
amplitudes A used here correspond to the four noise intensities employed for the noisy
case by employing the appropriate proportionality factors (see text).

validity of linear response theory. Remarkably, the dependence of the response

on the phase of the forcing is very strong, with a very pronounced minimum at

a phase close to zero. The reason behind this behavior and the other observed

features in both stochastic and deterministic cases will become clear in the fol-

lowing section, where a simple analytical model of the system will be discussed.

As a general observation, we point out that the overall response is significantly

smaller in the deterministic case than in the stochastic one, as shown in Fig.

5.12, as a consequence of the different low-frequency content of the two type of

perturbations.

Remarkably, the ratio of the average segregation in the stochastic case to the

maximum of the deterministic one remains roughly independent of the forcing

intensity and of the type of thermal boundary conditions. However, a significant

dependence of this ratio on the substance is obtained. Specifically, the case of

Ge : Ga seems to have a larger ratio of the stochastic to deterministic response.

This dependence must be traced back to the interaction with the low-frequency

part of the spectrum, which in turn depends on the characteristic time scales of

dissipation of each substance, as described in the following section.

As a final comment, it is worth stressing that the resulting segregation pa-

rameter values corresponding to the action of the accelerometric signals employed

in this work, modeled from real g-jitter measurements in microgravity platforms

[Thomson et al. (1997)], result in principle to be sufficiently small to be neglected
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Figure 5.12: Ratio of the averaged transversal segregation rate of the noisy case to the
maximum of the deterministic one, for the different simulated systems, as a function of
the signal amplitudes. The error bars associated to each one of the averaged transversal
segregation curves have been calculated evaluating the standard deviation of the data
against the mean value in the corresponding asymptotic steady regime.

for most practical purposes. However, as it has just been mentioned, the analysis

of the system to be done in the next section will show the importance of the low

frequency components of the gravity, which for real signals could differ substan-

tially. We will come back to this point below. The modeling to be developed

in the next section, which will be tested with the previous results, will permit

to make quantitative predictions for arbitrary noise statistics or for particular

time-dependent signals.

5.4 Heuristic model

5.4.1 Definition of the model

In this section we will show that all the above phenomenology in the response of

the concentration field to the present acceleration environment can be captured

with remarkable accuracy by an extremely simple heuristic model. In addition to
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the theoretical insight into the dynamical behavior of the system, this simplified

model will provide an interesting predictive tool where the effects of any given

acceleration signal from real data, could be tested without relying on the full

numerical integration of the problem.

The model starts by assuming a linear response of the flow field to the buoyancy

force, which is justified because the forcing induced by the residual acceleration

is assumed to be small. The linearized equation for the vorticity, in the frame

moving with vp, takes the simple form

∂�ω

∂t
= vp

∂�ω

∂x
+ ν∇2�ω + �g(t)× �∇ρ, (5.22)

where ρ is the mass density. In general the density gradient contains contribu-

tions from both thermal and solutal gradients, but in our problem the thermal

contributions to buoyancy are strongly dominant and we can neglect the dopant

concentration gradients in Eq.(5.22). To linear order the density gradient is given

by the unperturbed problem, which because of the small values of Prandtl number,

will remain essentially constant in time after a very short transient.

As a result the spatial structure of the buoyancy term will define the spatial

structure of the response. Extending the heuristic analysis of Thomson et al.

(1995), the basic point is that the vorticity generated by the buoyancy acquires

a single-vortex structure as for weak natural convection. This will combine, in

general, different eigenmodes of the cavity, but we assume that it will be dominated

by a single slow mode. The characteristic time scale of this slow mode must be of

the order of a viscous relaxation time.

Within the same spirit, we assume that the strength of the coupling of the

buoyancy term is also characterized by a single parameter F . This yields a simple

equation for the amplitude of the single-vortex mode of the form

ω̇ = −aω + FB(t), (5.23)

where both a and F can be estimated but can be more precisely fitted from numer-

ical simulations of the full problem. The accelerometric signal B(t) corresponds to

what previously denoted by Bst(t) or Bdet(t). B(t) can in principle be an arbitrary

function of time of order one but, once the problem has been linearized, it will

be sufficient to study sinusoidal dependences of it. Note that, by construction,

such a simple model is not expected to capture the correct response to the very

high-frequency components of the signal.

Since the thermal field is essentially decoupled from the flow for our values of

Prandtl number, we only need to couple the flow field to the solute transport. We

are thus left with the linearized equation for the concentration departure from the
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steady profile as δc(x, y) = c(x, y) − c0(x) which, in the frame moving with the

solidification velocity vp, takes the form

∂δc

∂t
= vp

∂δc

∂x
+D∇2δc− δ�v · �∇c0, (5.24)

where the velocity field δ�v is small, given by the order of �ω ≡ �∇ × δ�v. In prin-

ciple the unperturbed profile is weakly time-dependent during the experiment.

This is expected to have a small effect, in particular in the time window here

explored, which excludes the initial stages of the concentration build-up in front

of the interface, where this time dependence may be more significant. We will

see a posteriori that this assumption is justified. Then, consistently with the

simple response to buoyancy of the flow field, we may expect that an effective

description in terms of an amplitude for the concentration distortion with a single

relaxation time may capture the dominant large-scale and long-time behavior of

the concentration distortion.

The coupling with the flow field is described by the last term of Eq. (5.24).

Consistently with the single-mode effective description, this term reduces to a

linear coupling between the amplitude of the concentration mode and of the vor-

ticity mode. This leads to an equation for the amplitude c of the concentration

disturbance of the form

ċ = −bc+ γ′ω, (5.25)

where b and γ′ are also parameters to be fitted from the full equations. The

time scale associated to b will necessarily be a characteristic diffusion time of the

solute. For times smaller that b−1 the coupling term proportional to γ′ in Eq.

(5.25) describes the advection of the concentration by the fluid motion. At longer

times, the inhomogeneity created must be relaxed by solutal diffusion.

Combining the two Eqs. (5.23) and (5.25) we get

c̈+ (a+ b)ċ+ abc = γB(t), (5.26)

where we have defined γ ≡ γ′F . We therefore get a simple ordinary differential

equation, that of a forced harmonic oscillator with damping, for the temporal

evolution of a single variable c(t), the amplitude of the main mode of the concen-

tration distortion, and whose absolute value should be related to the segregation

parameter evaluated for the complete system in previous sections. This simpli-

fied model depends on three parameters: a and b, related to dissipative temporal

scales of the system, and γ, which couples the c(t) variable to the actual accelero-

metric signal, and thus provides the scale for the response to the forcing. We

will see that this extremely simple description explains remarkably well many of

the observed features in the full direct numerical simulation of the problem, not



120 Chapter 5. Effects of g-jitter in Bridgman solidification

only at a qualitative level but also quantitatively to a remarkable extent. The

set of parameters of the model are expected to be characteristic of the specific

material and setup configuration, but independent of the type of time dependence

of the forcing. Therefore, if suffices to determine the model parameters from a

single simulation for each case. Then, as long as this reduced linear response

model is sufficiently accurate, the same parameters will serve for any arbitrary

time-dependence of the forcing 2. The order of magnitude of the parameters a

and b can be estimated from simple dimensional analysis. The relaxation time

of the vorticity for instance, must take the form of a−1 ∼ Λ2
ω/ν, where Λω is a

characteristic scale of the problem in the longitudinal direction, since for our large

aspect ratio, the vorticity relaxation in much faster in the transversal direction.3

Similarly, for solutal diffusion we must have b−1 ∼ Λ2
c/D. In this case however,

the relevant longitudinal length scale is essentially given by the diffusion length

�D = D/vp, which is smaller than H so, in our cases it is the transversal diffusion

which is the dominant relaxation mechanism. We will see in the following sections

that the actual parameters a and b that best fit the full simulations are indeed

insensitive to the intensity of the forcing and to the actual thermal boundary con-

ditions and, consistently with the above dimensional analysis, they depend only

on the geometry and the material parameters (see Table 5.2).

5.4.2 Periodic forcing

If we assume a periodic forcing of the form B(t) = A cos(Ωt+ φ), with the initial

conditions c(0) = 0 and ċ(0) = 0, the solution of Eq. (5.26) reads

c(t) = c1e
−at + c2e

−bt + c0 cos(Ωt+ φ− δ), (5.27)

2In situations where the transient dynamics of the unperturbed concentration layer in front
of the interface can not be neglected, for instance if the time-dependent gravity is switched on
from the start of the experiment, an appropriate, slow time-dependence of γ(t) can be assumed
to improve the analysis

3Note that, since L is time dependent, the vorticity relaxation time is in principle slowly time
dependent too. The results obtained in the fitting procedure for a in the following sections are
thus effective values and may differ for distinct substances, even though the vorticity relaxation
is in principle decoupled from the solutal concentration dynamics. That is, the effective value of
a obtained from the evolution of the concentration field may encompass a history dependence
that in turn is controlled by the solutal time scales.
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where the constants c1, c2, c0 and δ are given by

c1 =
c0

a− b
(b cos(φ− δ)− Ω sin(φ− δ)) , (5.28)

c2 =
−c0
a− b

(a cos(φ− δ)− Ω sin(φ− δ)) , (5.29)

c0 =
γA√

(ab− Ω2)2 + [(a+ b)Ω]2
, (5.30)

δ = tan−1
Ω(a+ b)

ab− Ω2
. (5.31)

To gain insight into this solution, it is useful to consider the physically relevant

limit Ω 
 a, b, i.e. gravity oscillations are rapid compared to the scales of the

response of the system. Then we can write down an approximate solution as

c(t) � γA

Ω

sinφ

(a− b)

(
e−bt − e−at

)
+

γA

Ω2
cos(Ωt+ φ− π). (5.32)

The form of this solution as a function of time, given essentially by the first term

of the r.h.s. of Eq. (5.32), is very similar to the responses obtained by numerical

simulations of the complete system, as shown for instance in Figs. 5.9 and 5.10.

It presents a monotonous increase from zero, with initial slope −γA sinφ/Ω. In

fact, even though the average acceleration is zero, the phase of the cycle at t = 0

provides in general an overall drift that is independent of a and b (as seen also by

Thomson et al. (1995)). At the appropriate time scales, dissipation will take over

to stop and reverse the growth of concentration distortion. The response thus

reaches a maximum and then it decays to zero again asymptotically controlled

by in the time scale max(a−1, b−1). Superposed to this shape, we must add the
oscillatory part of the solution (last term of Eq. (5.32)), which has much smaller

amplitude, and thus appears as a small, fast ripple of the solution as obtained in

the full numerical simulation, although the phase of this oscillation with respect

to the forcing cannot be captured by our low-frequency model.

Remarkably, the strong dependence of the system response on the initial phase

φ of the forcing as seen in Fig. 5.11b is perfectly explained by our heuristic model.

Given the dissipative time scales, the value of the maximum of the time-dependent

response will depend directly on the initial growth of the response, which in turn

is controlled by the initial phase. One expects maximal and minimal response

near the extreme and the zeros respectively of the sinφ factor of the approximate

solution, i.e. maximal near φ = ±π/2 and minimal near φ = 0. This is exactly

what is observed in the full numerical results, as shown in Fig. 5.11b.

We will make use of this deterministic oscillating case to find the parameters

a, b, γ of the effective model Eq. (5.26). To simplify the procedure we employ
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the prediction of Eq. (5.27), but without the oscillating term, which becomes

irrelevant for this purpose. The fitting function is then

cfit(t) = c1e
−at + c2e

−bt, (5.33)

with c1, c2 given by Eqs. (5.28-5.31). Then it is easy to fit a, b and c0 for a single

accelerometric signal, and find the third model parameter γ by using Eq. (5.30).

An example of this nonlinear fitting can be found in the inset of Fig. 5.13. There

we fit this function to the complete solution for GaAs : Se (thick line) in the

hyperbolic case, with an oscillating forcing corresponding to G̃ = 4× 10−3 cm/s2

and φ = −π/2. For details about the quantitative values of all fittings, see Table
5.2. Notice the low values of the auxiliary parameter c0 for both substances due

to the low intensities of the noises used. Also note that the values of a, b and

γ are dependent on the used substance but practically constant independently

of the noise intensity. This agrees well with the fact that these parameters are

related with intrinsic scales of the system, independently of the external forcing.

In principle one could use a single fit for each given substance and geometry to

find the corresponding parameters a, b, γ of the model and apply it to any other

accelerometric signal.

5.4.3 Stochastic forcing

We now consider the case in which the accelerometric signal B(t) is a narrow-

band noise as defined in Eqs. (5.6) and (5.7). To this end we can integrate by

standard ODE methods (fourth order Runge-Kutta) the heuristic model defined

by Eq. (5.26) and the fitting parameters obtained with the deterministic case.

We can now compare the simulation with the complete model and the heuristic

approximation, using exactly the same time-dependent signal g(t). The results

are shown in Fig. 5.13.

Note that the agreement is very good, not only in the magnitude, but even in

the detailed shape of the response. Given the extreme simplicity of the heuristic

model, this level of agreement of both simulations is remarkable. We see that

this heuristic approach can become a powerful predictive tool when the aim is to

elucidate the effect of different time signals for Bst(t), in particular if the forcing is

stochastic and therefore some statistics are required. Note that the computational

demands for the heuristic model have been dramatically reduced by several orders

of magnitude with respect to the complete problem.

We can gain further insight on the behavior of the physical system by analyzing

more in detail the properties of the model given by Eq. (5.26). In particular,

the response of the system can then be worked out from the response function of
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Figure 5.13: Stochastic transversal segregation parameter as a function of time, for
GaAs : Se, obtained from both the complete simulation (thick line) and the integration
of the heuristic model (thin line) by employing the same noisy signal. Inset: nonlinear
fitting of Eq. 5.33 to the simulation of the complete model for the deterministic case,
which is used to obtain the value of the three parameters needed in the noisy case.

Eq. (5.26) and in terms of a generic power spectrum of the noise P (ω). Specifically,

the variance of the c(t) variable in the steady state is given by

〈c2〉 = γ2

∫ +∞

−∞

dω

(ω2 + a2)(ω2 + b2)
P (ω). (5.34)

For the power spectrum of narrow-band noise Eq. (5.6), and in the limit Ω
 a, b,

this takes the simple form

〈c2〉 � γ2 π

ab(a+ b)
P (0). (5.35)

This expression can be computed easily and reads

〈c2〉 � γ2

ab(a+ b)

Ra∗2

Pr

1

1 + τ 2Ω2
(5.36)

Corrections of higher order in a/Ω, b/Ω can be explicitly computed, but they are

uninteresting for the present discussion. What is of importance here is that in view
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of Eq. (5.35) it is apparent that the response of the system will depend basically

on the low-frequency limit of the noise spectrum.

This fact is remarkable, since the zero frequency component can be a very

small contribution to the total noisy signal. This is particularly true for narrow-

band noise, for which the power spectrum is dominated by the main peaks at the

nominal frequency, i.e. ±Ω (see Fig. 5.2). Note that the narrow-band noise, for the

relatively large correlation times considered here, is similar to a monochromatic

noise with some wandering in phase and amplitude. The key point here is that,

while in the deterministic monochromatic signal the scale of the effect on the

system was given by its amplitude A, which is related to the area of the peak at

P (ω = Ω) of a similar narrow-band noise, the main contribution to the effects

of the narrow-band noise is given by the value of P (0), and not by P (Ω). In

other words, if we compare two signals with roughly the same frequency and

amplitude, one deterministic and the other noisy, the response of the system will

be significantly different, and will be stronger for the noisy signal, which has a zero-

frequency component that is small but non-zero, compared to the deterministic

monochromatic signal, which gets the low-frequency components only from the

initial switch-on. We can see that in Fig. 5.12, where we plot the rate of the

mean value of the transversal segregation parameter in the steady state of several

noisy cases to the maximum of the deterministic response in their corresponding

cases. In all cases the response to the narrow-band noise is one to two orders of

magnitude larger than to the deterministic oscillations.

We should also stress that the parameters of the narrow-band noises [Thomson

et al. (1997)], while obtained from accelerometric signals in real microgravity en-

vironments, were estimated to mainly model the principal frequency components

of the accelerometric signal. The specific zero frequency components and hence

the system responses are thus possibly underestimated. The results above call

then for a more detailed characterization of real signals, in particular for low fre-

quencies, which could be present to a much larger extent than in the narrow-band

noises employed here. Note also that, in view of the system sensitivity to the low

frequencies, the possible presence of a small constant component superposed to

the stochastic signal could have a strong effect in the response of the system. To

assess whether that is the case, depending on the system parameters, one should

compare the solution for the noisy case in Eq. (5.35) to the solution of the model

Eq. (5.26) for a constant forcing. It is easy to show that a constant buoyancy

B, superposed to a fluctuating one with power spectrum P (ω), will indeed be

dominant if P (0)� B2(a−1+b−1), i.e. the effect of the constant term depends on

the longest of the temporal scales of the problem, as long as the system is let to

reach its steady state. For a shorter temporal window, the same condition applies

but by employing as temporal scale the duration of the window.
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Figure 5.14: Square of the noise as a function of time, in logarithmic scale and in
dimensionless units. Thin line: Both filtered and non-filtered signals (they superpose
and are indistinguishable at this scale); Thick line: filtered low frequency component,
corresponding to the difference between both signals (see text).

To further illustrate the effect of the low-frequency region of the spectrum we

perform a very illuminating test. Given an appropriate separation of scales (peak

width much smaller than the dominant frequency, i.e. Ωτ 
 1), for a narrow-band

noise the filtering of small frequencies gives a signal apparently indistinguishable

from the original signal, but which in light of Eq. (5.35) should produce very

different results when applied to the system. To show that, we have performed

the filtering of a narrow-band signal with amplitude 2 × 10−4 cm/s2, removing
frequencies in a small window around the zero frequency (namely all frequencies

smaller than Ω/35.). We have then applied both signals (filtered and non-filtered)

to both the complete and the heuristic models for the GaAs : Se case. The com-

parison of both signals is shown in Fig. 5.14. They are effectively indistinguishable

when represented at the scales of the typical values of the signals themselves. We

have also represented the difference between both signals. We see that the dif-

ference is several orders of magnitude smaller than the signals themselves, and of

a very slow temporal dependence. In Fig. 5.15 the responses of the models are

shown. Remarkably, we see that both filtered and non-filtered signals, apparently

so similar to the eye, produce completely different responses when applied to both

models.
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Figure 5.15: Comparison between the transversal segregation signals obtained using
the complete problem (thick lines) and the heuristic one (thin lines) for a noise with
low frequencies (a) included, (b) excluded.

This test also visualizes that the comparison between the complete model and

its heuristic approximation is not quite satisfactory when the low-frequency filter

has been applied to the stochastic signal. This is an indication that the heuristic

model, which has reduced the description effectively to slow modes, is essentially

a low-frequency approximation and obviously, it cannot be expected to capture

the whole richness of the complete problem. The bottom line is thus that, as

long as there is a significant (even small) low-frequency content of the g-jitter,

this will be dominant and therefore the heuristic model will provide a reasonably

accurate approximation of the system response, and explain all the phenomenology

observed when changing the substance and the boundary conditions in terms of the

two corresponding time scales to be fitted in each case. This is quite remarkable

given the drastic simplification of the system description.

5.5 Conclusions

We have addressed the effects of a generic stochastic g-jitter into some realistic

experimental setups for semiconductor crystal growth in microgravity. Specifically

we have studied directional solidification of two semiconductor melts with a diluted

dopant. We have compared direct numerical computation of the full problem in the

presence of narrow-band noise and periodic deterministic signals of comparable

intensity, showing that the segregation parameter that measures the resulting
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Magnitude . Ge : Ga GaAs : Se Units

Cell height H 2.5 2.5 cm

Aspect ratio AR 4 4 L(0)
H

Final solidified fraction F 55 68 %L(0)

Kinematic viscosity ν 1.30× 10−3 4.88× 10−3 cm2/s

Diffusion coefficient D 1.9× 10−4 4.5× 10−5 cm2/s

Thermal diffusivity α 1.82× 10−2 7.17× 10−2 cm2/s

Segregation coefficient k 0.087 0.3 -

Relative wall diffusivity αr 5.9× 10−2 15.1× 10−2 (αamp/α)

Front velocity vp 1.× 10−4 1.4× 10−4 cm/s

Prandtl number Pr 7.15× 10−3 68.× 10−3 (ν/α)

Schmidt number Sc 6.8 108.4 (ν/D)

Peclet number Pe 19.2× 10−2 7.2× 10−2 (V H/ν)

Amplitude of the gravity
signal

G̃ (2− 40)× 10−4 (2− 40)× 10−4 cm/s2

Correlation time (τ̃ =
1s)

τ 2.1× 10−4 7.8× 10−4
τ̃ ν

H2

Characteristic period
(T ∗ = 0.05s)

T 1.0× 10−5 3.9× 10−5
T ∗ν
H2

Stochastic Rayleigh
number

Ra∗ 0.117 . . . 2.34 0.054 . . . 1.072
βTΔTG̃H2

ν

√
τ̃

α

Time step Δt 5.× 10−7 1.95× 10−6 -

Total points used in each
realization

N 1.25× 107 1.25× 107 -

Number of NBN consid-
ered in the ensemble av-
erage of independent re-
alizations

- 25 25 -

Table 5.1: Definition and numerical values of the different parameters used.
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G (10−4 cm/s2) 2 10 20 40

Ge : Ga
a 5.57 / 6.27 5.57 / 6.27 5.57 / 6.27 5.57 / 6.27
b 1.437 / 1.488 1.437 / 1.488 1.437 / 1.488 1.437 / 1.488

c0 × 1010 1.179 / 4.248 5.894 / 21.24 11.79 / 42.48 23.58 / 84.96
γ × 102 8.606 / 31.01 8.605 / 31.01 8.605 / 31.01 8.605 / 31.01

GaAs : Se
a 1.199 / 1.281 1.197 / 1.281 1.198 / 1.281 1.197 / 1.281
b 0.186 / 0.189 0.186 / 0.189 0.186 / 0.189 0.186 / 0.189

c0 × 1012 2.564 / 10.00 12.78 / 49.97 25.61 / 99.96 51.13 / 199.9
γ × 103 1.738 / 6.780 1.733 / 6.774 1.736 / 6.776 1.733 / 6.773

Table 5.2: Quantitative results of the different fittings effected in this work. For each
substance and configuration a single run using a deterministic signal with φ = −π/2
has been employed. Left / right hand side corresponds to a linear / hyperbolic thermal
arrangement.

quality of the crystal becomes larger in the case of stochastic forcing, although in

general it remains sufficiently small for practical purposes. This first indication of

the importance of the low-frequency domain of the forcing signal has been analyzed

in detail with the help of a reduced description of the system that has turned

out to be a remarkably accurate modeling of the system response to arbitrary

time-dependent g-jitter. The model involves two effective time scales, one from

viscous dissipation and one from solutal diffusion. Those can be fitted from the

simulation of a single convenient case, and on the basis of linear response theory,

the model can be extended to arbitrary signals. The accuracy of this model has

been checked in representative cases. The combination of the analytical insights

from this approximation, and the full computation of the complete problem in a

variety of cases yields the two main conclusions of this work. First, we show that

the low-frequency part of the g-jitter spectrum is dominant with respect to the

overall response of the system, even if orders of magnitude smaller than other high-

frequency components. Consequently, it would be very interesting to have access

to details of accelerometric signals other than the main frequency components

(those modeled by the narrow-band noise parameters), in particular with regard

to the low frequency part of the spectrum. Consistently, if a small non-zero

steady gravity component g is present, its effect in the segregation parameter may

be significant. The low-frequency component P (0) of the stochastic background

will only dominate over the constant term if P (0)
 g2T , where T is the longest

characteristic time of the system or the time window of observation, whichever is

smaller. Second, we show that a two-time scale linear response reduction of the

problem is quantitatively accurate and independent of the type of time-dependent

signal, for each given set of material parameters and boundary conditions. This
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simplified modeling, which defines a low-frequency approximation of the linear

response of the system, may potentially loose accuracy in those situations where

the low-frequency components are not present or have been filtered out. For most

practical situations, however, the heuristic model proposed provides a remarkable

numerical tool to reasonably predict the behavior of such systems under arbitrary

forcing without relying on very demanding numerical computation.





Chapter 6

Conclusions and perspectives

6.1 Summary of results and publications

Here we briefly revisit the main results and conclusions of this thesis in an itemized

summary:

• We have developed a state-of-the-art Lattice-Boltzmann code capable to

study relatively high levels of three-dimensional turbulence, around Re ∼
104 for pipe flows. We have parallelized it and tested it satisfactorily against

recent results in the literature. In particular, we have introduced and ex-

plored a simple filtering procedure to suppress some numerical instabilities

at high Reynolds numbers. With this code we have reproduced the con-

ditions of experiments on duct flows for a simple liquid, in the absence of

bubbles, as a reference state for comparison with the experiments performed

with bubbles. In particular we have obtained and fully characterized steady

turbulent flows for the cases of Re = 3800 and Re = 12700.

• We have developed an effective stochastic model for turbulent bubble jets,

based on the k-ε approach to turbulence, with a local diffusivity depending

on the local degree of turbulence. The model treats bubbles as passive

tracers and is only expected to be correct asymptotically downstream. We

have solved it using finite-volume techniques with the commercial software

FLUENT. We have also performed systematic particle-tracking analysis of

the drop tower experiments of Carrera et al. (2008), and obtained data for

the statistics of the spatial distribution of bubble density, bubble velocity

and dispersion of bubble velocity.

• We have obtained that the k-ε model accounts reasonably well for the over-

all structure of jets, specifically for the three statistical observables studied,
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except for a few centimeters from the injection point. The model fails at

predicting the opening angle of the bubble jet and its (weak) dependence

with the Reynolds number. Bubbles at the margins of the jet exhibit rela-

tive velocity fluctuations that decrease for increasing Re, as opposed to the

prediction of the k-ε model. The failures of the model occur at the jet mar-

gins, suggesting that the approach does not capture the correct physics of

the boundary between turbulent and laminar flow, while bubble dispersion

near the jet boundaries seems to be sensitive to that.

• We have achieved for the first time the experimental realization of a homoge-

neous suspension of monodisperse, highly spherical bubbles, in a turbulent

carrier flow with controlled Reynolds number, in microgravity conditions.

This proof of concept is the most innovative aspect of this thesis. We have

defined and checked a method that allows to control different statistical and

flow parameters separately, including bubble size, bubble density, and degree

of turbulence of the liquid carrier. The method exploits the T-junction slug-

flow generation introduced by Carrera et al. (2008). This has been achieved

for bubble sizes in the millimeter range, Re ∼ 104, and void fractions of few

percents. Optimal performance of the injection system has been achieved

for bubbles in the range between 1.6 and 2.5 mm of diameter.

• We have monitored and characterized quantitatively for the first time the

decay of pseudo-turbulence (i.e. the excess turbulence generated by buoyant

bubbles) as gravity is instantaneously switched-off. Bubble columns formed

under buoyancy forces spread quickly to a homogeneous suspension. Bubbles

relax to the local fluid velocity in the time scale of their viscous relaxation

τB < 0.2, while the mean velocity of the flow in our typical conditions

relaxes with a larger characteristic time of 1.0 s. For cases with a co-flow of

Re = 6000, velocity fluctuations of the pseudo-turbulence in the directions

longitudinal and transversal relax with characteristic times of 3.2 s and 2.4

s, respectively. For stronger turbulence (Re = 13000) we have not measured

a significant change in the velocity fluctuations, probably due to the relative

less significant effect of the pseudo-turbulence.

• We have performed systematic particle-tracking analysis of the high-speed

movies of the experiments on turbulent bubble suspensions, with focus on the

statistics of mean velocity profiles and in particular on the relative dispersion

of bubble velocities. In addition to the pseudo-turbulence transient, our

results seem to observe a tendency of the relative velocity fluctuations to

decrease for increasing Reynolds numbers, a result that is consistent with

the observations at the margins of turbulent jets. This result contradicts

the prediction of independence of this observable on Re from simple scaling
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arguments. We have explicitly checked the prediction from the Lattice-

Boltzmann simulation of the real conditions of the experiment and find also

no dependence of those fluctuations with Re. Altogether, the evidence is

that the decrease of the relative fluctuations with Re would be a genuine

active effect of bubbles (not contained in the passive tracer picture). This

informs us that bubbles do not behave in this respect as passive tracers, but

we cannot conclude on whether the presence of bubbles modifies significantly

the degree of turbulence of the carrier flow, at the small void fraction here

considered.

• We have performed a thorough statistical characterization of the first passage-

time statistics for the separation of close pairs of passive tracers in our

Lattice-Boltzmann simulations. We show that the average distance between

them increase exponentially in time with an effective exponent that depends

on the degree of turbulence of the fluid. In the case of apparent pairs, they

separate with a linear dependence in time. The comparison with actual

bubble pairs in experiments shows a similar tendency of the separation rate

with Re but in general the comparison is not conclusive because of the small

number of real pair events in the experiments (which cannot be repeated at

will) in comparison with dominant statistics of apparent pairs.

• We have solved numerically the Navier-Stokes equation coupled to thermal

and solutal diffusion for the evolution of dopant concentration in semicon-

ductor Bridgman solidification. The problem has been solved under the

effect of stochastic g-jitters transversal to the temperature gradients. We

have systematically characterized the response of the segregation parame-

ter that measure the final quality of the crystal. It has been observed that

the low-frequency part of the g-jitter spectrum is strongly dominant with

respect to the overall response of the system, even if orders of magnitude

smaller than the other high frequency components of the g-jitter spectrum.

• We have proposed and checked a very simple heuristic model, for the seg-

regation of the dopant in semiconductor crystal growth, that defines a low-

frequency approximation of the linear response of the system with two ef-

fective time scales, one from viscous dissipation and another from solutal

diffusion. Those parameters can be estimated a priori but they are bet-

ter fitted from one single realization of the g-jitter signal. After this fit, the

model reproduce remarkably well the results from the full numerical integra-

tion of the problem, for any arbitrary signal with good accuracy and huge

computational cost savings in relation to the full computational problem.

The approach is a valuable predictive tool to estimate effects of arbitrary

g-jitters at very low computational cost.
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The results of this thesis have been partially published, but remain yet unpub-

lished to a large extent. Two publications have already been accepted and two

more are currently in preparation. The accepted publications are:

• P. Bitlloch, X. Ruiz, L. Ramı́rez-Piscina, J. Casademunt, “Spatial structure

and velocity fluctuations in turbulent bubble jets in microgravity”, Interna-

tional Journal of Transport Phenomena, 12(3-4), 189-197 (2011).

• X. Ruiz, P. Bitlloch, L. Ramı́rez-Piscina, J. Casademunt,“Impact of stochas-

tic accelerations on dopant segregation in microgravity semiconductor crys-

tal growth”, Journal of Crystal Growth (2012), in press.

DOI: http://dx.doi.org/10.1016/j.jcrysgro.2012.06.027.

The first one contains the first part of chapter 3, with the discussion of the the-

oretical approach. The data analysis from the drop tower experiments of turbulent

bubbles and its comparison with the theoretical prediction, as it is discussed in the

second part of chapter 3 will be published in another paper, currently in prepara-

tion. The second accepted publication corresponds essentially to the entire chapter

5. Finally, the results of chapter 4, including the description of the experiment,

the Lattice-Boltzmann simulations and the data analysis, are expected to give rise

to another paper, also in preparation. In addition, the results of this thesis have

been presented in a number of specialized conferences and meetings in the field of

microgravity, and have reached the community with significant impact even before

their publication. In this sense, it is worth mentioning the interest expressed by

the European Office of Aerospace Research and Development (EOARD), as part

of the United States Air Force Office of Scientific Research (AFOSR), to the point

that they have offered to fund the continuation of our research for the coming

three years, extending it to include phase change and thermal management for

space applications. This EOARD project is currently in force.

6.2 Perspectives of future work

The perspectives for continuation of the work here reported encompass two main

areas: (i) the completion of the study of bubble suspensions, from the data already

acquired in the past campaigns in the ZARM Drop Tower, and its full publication;

and (ii) the pursuit of an extension of the methods and ideas of the present study

to include heat exchange and control.

(i) The huge amount of experimental data, over 350 Gbyte in high speed

movies, from the 36 drops at ZARM has not been fully processed. A selected set

of drops that performed optimally were selected for the presented data analysis.



6.2. Perspectives of future work 135

However, some others present anomalies and malfunctions of the experimental

setup are important to analyze, in order to improve the know-how for future

experiments, given the limited access to repetition of this type of experiments.

With this analysis and the completion of the particle-tracking processing, possibly

with some improvement in the statistics of some observations, we will conclude

the first part of this study, which aimed at developing the capacity of creating

controlled bubble suspensions and to use it in a first characterization of simple

cases. After this proof of concept, the method could now be pursued in more

refined studies that could build on the experience of these first campaigns. An

interesting complementary study that would not require microgravity conditions

would be the characterization of the carrier flow in the exact same experimental

setup, with Particle Image Velocimetry techniques (without bubbles), to allow for

a more direct comparison of the passive vs active role of bubbles. The possibility to

include the PIV system in the capsule for the full two-phase flow in microgravity,

is technically possible but much more complicated.

(ii) The main effort in the next years will be devoted to the EOARD project

Injection of nucleate-boiling slug flows into a heat exchange chamber, for which

ESA has already committed to fund 4 campaigns at the ZARM facilities during

this period, for a total of 64 new drops, under project Slug Boiling. The main idea

is to devise a new system of slug flow injection, inspired in our previous studies,

but forming bubbles out of liquid by local boiling, rather than two-phase mixing.

Suspension of vapor bubbles once injected in a liquid cavity will then be used to

study the behavior of vapor/liquid bubble suspensions under different heat control

conditions for both fundamental and applied interests.

Indeed, one of the most critical issues for applications in space technology

is precisely the development of high performance thermal management systems

that take advantage of the large latent heat transportation. In particular, many

thermal control systems involve liquid/vapor phase change in flowing conditions,

a situation that is known as flow boiling. Although the interest on flow boiling

in microgravity heat transfer is high, the existing experimental data is still quite

limited, fragmentary, and often incoherent, while the knowledge of the fundamen-

tal physical mechanisms involved is far from satisfactory. Most research efforts so

far have been driven more by the urgency of the engineering need of quantitative

characterization, than the fundamental understanding of the physics involved. It

is the purpose of the proposed research to make a step forward by combining our

previous expertise in management of (non-thermal) two-phase flows in micrograv-

ity, with the needs of a more basic understanding of the physical processes involved

in flow boiling heat transfer. Our rationale is similar to the one behind the stud-

ies in this thesis, that is, to focus on situations that are sufficiently simple and

controllable so that one can get high quality data, which can be amenable to theo-
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retical analysis and interpretation. The goal is to search for fundamental insights

that may eventually lead to innovative approaches and potential breakthrough in

space technology. The key innovation of our research plan is to consider for the

first time the induction of controlled nucleate boiling in a capillary tube, with

the practical goal of achieving a periodic slug flow. Bubbles will be nucleated at

specific sites and detached by a laminar cross-flow to fill the entire diameter of the

capillary. Once such slug flows are properly generated, we will be able to gener-

ate novel configurations of bubble suspensions to study coalescence, phase change

dynamics and heat exchange in general in a turbulent medium under controlled

conditions.



Apèndix A

Resum en català

A.1 Dolls turbulents de bombolles

En els darrers anys, el nombre d’investigacions realitzades en l’àmbit dels fluids

bifàsics en condicions de microgravetat s’ha incrementat substancialment. Alguns

dels motius són la creixent demanda tecnològica per a aplicacions espacials i la

necessitat de perfeccionar el rendiment dels dispositius utilitzats actualment per

a l’exploració de l’espai. Per exemple, els sistemes de suport vital i de control

ambiental són dos casos que es veurien àmpliament beneficiats pels avenços en el

control de fluids bifàsics en condicions de gravetat redüıda.

En concret, la generació de suspensions de bombolles monodisperses de di-

mensions controlades permetria la maximització de la superf́ıcie de contacte entre

gasos i ĺıquids, fet necessari per aplicacions en motors de propulsió i reactors qúı-

mics, aix́ı com en bioreactors, on es requereix una oxigenació uniforme de cultius

o teixits en creixement. No obstant, fins molt recentment, a la literatura hi ha

hagut una mancança d’estudis en aquests tipus de suspensions en condicions de

gravetat redüıda. Un dels motius principals d’aquesta manca és la dificultat asso-

ciada a la generació de bombolles de mida controlada sense l’ajuda de les forces

de flotació. T́ıpicament, els sistemes estudiats en la literatura que controlen les

dimensions de les bombolles treballen amb la injecció de caudals molt petits de

gas, ja sigui a partir de la formació de bombolles micromètriques o amb ritmes

lents de generació, que no permeten l’obtenció d’una fracció volúmica de gas prou

gran.

Recentment, el nostre grup va dur a terme una sèrie d’experiments en la torre

de caiguda del ZARM (“Centre de Tecnologia Espacial Aplicada i Microgravetat”)

a Bremen en els que s’utilitzava per primera vegada una junció en T per a la

generació de bombolles en l’àmbit de la microgravetat [Carrera et al. (2008)]. El

dispositiu es basa en dos tubs capil·lars de 1.5 mm de diàmetre connectats en
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forma de T. Mitjançant la injecció simultània de ĺıquid per un dels tubs i gas per

l’altre, connectat transversalment al flux principal, s’aconsegueix que les bombo-

lles es separin degut a la combinació de les forces capil·lars i d’arrossegament,
essent negligibles les forces de flotació en aquestes condicions i, per tant, propor-

cionant un mètode de generació de bombolles insensible a la gravetat. Aix́ı, es

forma en el capil·lar de sortida un flux de bombolles equiespaiades i de mida uni-
forme, de l’ordre del diàmetre del tub. Aquestes són, al seu torn, injectades a una

cavitat cúbica de 10 cm per banda plena de ĺıquid, distribuint-se en una forma

aproximadament cònica, corresponent a la zona turbulent del doll submergit de

ĺıquid.

És ben conegut que el grau de turbulència en un doll submergit es manté

constant al llarg del seu eix. Les dimensions dels remolins que el constitueixen

van augmentant amb la distància al punt d’injecció en la mateixa mesura que

en disminueix la seva velocitat, mantenint l’estructura espaciotemporal del flux

estad́ısticament invariant sota un reescalament adequat de temps i espai. Les

bombolles, en canvi, mantenen el seu diàmetre constant durant tot l’experiment,

causant un impacte diferent en el fluid portador que les arrossega en funció de la

distància de l’injector a la que es trobin. En el moment d’entrada a la cavitat són

molt grans comparades amb els gradients de velocitat del flux, mentre que a una

certa distància arribarien a ser menors que les escales més petites de la turbulència.

El mateix ocorre amb el seu temps de resposta a les fluctuacions de velocitat de la

turbulència, atès que inicialment són incapaces de seguir les ràpides fluctuacions

del flux mentre que, a una determinada distància, les fluctuacions assoleixen uns

temps caracteŕıstics molt majors que els de resposta de les bombolles. Tot això

apunta en la direcció que les bombolles haurien de causar un impacte important

en el flux per als primers 5 cm de la cavitat, i decréixer gradualment el seu efecte

en el doll a distàncies majors.

Com a estudi teòric de referència utilitzem el programari de FLUENT per

a resoldre el camp de velocitats promig del doll turbulent. Aquest es calcula a

partir del mètode de volums finits, utilitzant el model conegut com a realizable

k-ε per a la modelització de la turbulència mitjana a cada punt del sistema. Un

cop coneguda la solució estacionària del camp de velocitats, descrivim la concen-

tració mitjana de bombolles a través d’una equació tipus Fokker-Planck per a la

distribució de probabilitats de trobar una bombolla a cada posició

∂P (r, t)

∂t
+∇ · (UP ) = ∇ · [Dp∇P ] , (A.1)

que ha sigut integrada juntament amb el camp de velocitats del flux. En aquesta

aproximació, tractem les bombolles com a traçadors passius del flux mitjà, que

es veuen arrossegats per advecció, seguint les ĺınies de corrent. Al mateix temps,
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es desplacen entre les diferents capes internes del doll mitjançant un procés de

difusió, que reflecteix les fluctuacions associades a la turbulència. El coeficient de

difusió efectiu Dp en el marc d’aquest model k-ε està relacionat amb el grau local

de turbulència i ve donat per

Dp = 0.09
k2

ε
. (A.2)

Les possibles discrepàncies entre aquest model i els resultats experimentals

permetran discernir fins a quin punt les hipòtesis del model s’ajusten a la realitat,

o cal invocar en algun moment el caràcter actiu de les bombolles per explicar

algun efecte.

Donat que les mesures experimentals han sigut preses a partir de les filmacions

d’una càmera d’alta velocitat, la distància de la bombolla en la direcció de la

visual, perpendicular al pla enregistrat, no és mesurable. Això provoca que a

l’hora de fer estad́ıstica de velocitats i posicions de bombolles i comparar amb les

previsions del model, cal projectar els resultats obtinguts de les simulacions sobre

la direcció de la visual. En general s’observa que les prediccions del model sobre

l’estructura espaial del doll de bombolles, aix́ı com del camp de velocitats mitjà i de

les seves fluctuacions, s’ajusten força bé als experiments dins del marge d’incertesa

experimental, per als dos paràmetres d’injecció estudiats corresponents a Re = 690

i 1170. Tot i aix́ı, s’observen alguns efectes que no incorpora correctament un

model de turbulència tan senzill. A distàncies grans del punt d’injecció, s’obté

un angle d’obertura del doll lleugerament major que el predit per la simulació.

La lleugera dependència de l’obertura del doll amb el nombre de Reynolds també

sembla incorrecta en el model. Ambdós efectes molt probablement tenen a veure

amb el fet que el model no captura correctament la f́ısica de la interfase entre el

flux turbulent a l’interior del doll i el laminar a l’exterior. Finalment, també en

els marges del doll s’observa una tendència a la baixa de la dispersió relativa de

velocitats en augmentar el nombre de Reynolds, contradient tant la predicció del

model k-ε (que apunta en la direcció contrària) com simples arguments d’escala

(que prediuen independència del nombre de Reynolds). Aquestes observacions són

molt probablement la signatura d’un comportament actiu de les bombolles en el

flux.

A.2 Suspensions de bombolles en un canal tur-

bulent

L’objectiu d’una bona part del present treball és la generació i l’estudi de sus-

pensions de bombolles monodisperses en el si d’un flux turbulent. A tal efecte



140 A. Resum en català

utilitzem quatre juncions capil·lars en T, com la utilitzada en la secció anterior,

per injectar bombolles en un canal de secció quadrada i dimensions de 80x10x10

cm3. El flux en el canal es controla independentment dels paràmetres que governen

la generació de les bombolles, de manera que podem variar el grau de turbulència

en el fluid portador sense modificar les dimensions de les bombolles ni la seva

freqüència d’injecció. Els paràmetres d’estudi han estat triats de manera que les

bombolles (t́ıpicament en el rang entre 1.6 mm i 2.5 mm) siguin menors que els

remolins més energètics del medi (de l’ordre de 10 mm), per tal d’afavorir la seva

dispersió en el canal d’una forma el més homogènia possible, i a la vegada evitar

fenòmens de coalescència. Al mateix temps, les bombolles són majors que l’escala

de Kolmogorov, que ens determina les fluctuacions més petites del medi (de l’or-

dre de 0.1 mm), per tal que potencialment puguin tenir un paper més actiu en el

flux, en contraposició al paper de simples traçadors passius del mateix. A més,

en el rang de paràmetres escollit les bombolles són essencialment indeformables,

mantenint per tant la seva esfericitat, cosa que en simplifica considerablement el

seu estudi.

Per a caracteritzar la turbulència s’ha preparat un codi de simulació tipus

Lattice-Boltzmann. Aquest ha sigut degudament paral·lelitzat i executat en el su-
percomputador Marenostrum del Barcelona Supercomputer Center utilitzant 256

processadors. També s’ha calculat durant llargs peŕıodes de temps en un clúster de

16 nodes propi del Departament de F́ısica Aplicada de la Universitat Politècnica

de Catalunya. Els resultats de les simulacions per a Re = 3800 estan en ple acord

amb els obtinguts per Pattison et al. (2009). S’ha resolt el flux també per a un cas

amb Re = 12700. En comparar els resultats entre ambdós nivells de turbulència

es troba que el grau de fluctuacions escalades segons la velocitat caracteŕıstica del

medi es manté constant independentment del Re, resultat que està d’acord amb

els arguments d’escala de la turbulència completament desenvolupada.

S’han dut a terme un total de trenta-sis llançaments del nou sistema experi-

mental des de la torre de caiguda del ZARM i s’ha aconseguit, per primera vegada

en microgravetat, una suspensió monodispersa de bombolles en el śı d’un flux tur-

bulent. Els resultats de l’anàlisi de dades experimentals mostren un efecte observat

per primera vegada: la dinàmica de relaxació de l’anomenada pseudo-turbulència,

és a dir, de l’excés de turbulència generat col·lectivament per les bombolles en la
fase de gravetat normal degut a les forces de flotació. Hem observat que la seva

velocitat mitjana relaxa amb un temps caracteŕıstic de τ = 1.0 s, mentre que la

dispersió de velocitats, en canvi, relaxa amb una escala de temps més gran, de

τx = 2.4 s en la direcció del flux i de τ = 3.2 s en la direcció transversal a aquest.

Pel que fa a les mesures de la dispersió relativa de velocitats, observem en

general una tendència d’aquest observable a disminuir quan augmentem el nombre

de Reynolds. Aquest resultat és coincident amb la tendència observada per a dolls
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turbulents (en condicions diferents), i apunta a un efecte genüınament actiu en el

flux, en el sentit que les bombolles manifesten un comportament diferent del de

traçadors passius.

Finalment s’ha estudiat l’estad́ıstica de temps de separació entre parelles de

bombolles i s’ha comparat amb la predicció de traçadors passius simulada amb

el mètode de Lattice-Boltzmann. Per bé que l’estad́ıstica dels experiments no

permet detectar efectes actius, s’ha pogut caracteritzar el temps de separació de

parelles de bombolles reals (no aparents).

A.3 Efecte de les vibracions gravitatòries resi-

duals en solidificació tipus Bridgman de se-

miconductors

L’impacte causat per diferents tipus de pertorbacions d’origen mecànic de l’entorn

microgravitatori, en la qualitat final de cristalls crescuts en plataformes orbitals

ha estat des de fa temps un tema de crucial importància tecnològica. Les t́ıpiques

pertorbacions sofertes en els entorns de microgravetat comporten diversos tipus

d’acceleracions residuals en forma de polsos breus, trens de polsos de duració finita,

valors residuals quasi-estacionaris i, per últim, sorolls de fons d’alta freqüència o

vibracions gravitatòries.

Donat que l’estructura de freqüències d’un senyal acceleromètric real en una

plataforma orbital és sovint molt complexa, atès el gran nombre de fonts incon-

trolades que hi contribueixen en un entorn donat de microgravetat, una possible

estratègia proposada ha sigut modelitzar aquestes vibracions com una gravetat

estocàstica.

La caracterització estocàstica de vibracions gravitatòries va ser discutida per

primera vegada per Thomson et al. (1997), i la seva modelització va ser aplicada

a diversos processos f́ısics rellevants tant per a la f́ısica fonamental com per a

la tecnologia espacial, incloent estudis de solidificació de suspensions col·löıdals,
interfases entre fluids o la convecció tèrmica natural. Nosaltres hem seguit aquest

punt de vista per estendre’l a l’estudi del creixement de cristalls de semiconductor,

cas que implica un grau més de complexitat, en incorporar fenòmens de convecció

termosolutal indüıts per les acceleracions residuals.

Com a indicadors d’impacte de les vibracions residuals en la qualitat dels cris-

talls hem utilitzat l’evolució temporal dels paràmetres de segregació longitudinal

i transversal, que mostren les variacions de concentració del dopant en les respec-

tives direccions del cristall. Hem modelitzat una acceleració estocàstica genèrica
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a través d’un senyal de soroll de banda estreta, definida com un procés estocàstic

Gaussià caracteritzat per tres paràmetres: la intensitat del soroll, una freqüència

dominant a on aquesta pot estar picada i un temps de correlació que controla

l’amplada de banda de l’espectre de freqüències. Aquest procés estocàstic inter-

pola entre els casos extrems de soroll blanc i soroll monocromàtic, permetent-nos

una modelització més realista dels senyals obtinguts en entorns de microgravetat.

La resposta convectiva del camp de velocitats en una cavitat, deguda a un

senyal estocàstic vibratori transversal a un gradient tèrmic, va ser estudiada en

detall per Thomson et al. (1995). Nosaltres estenem el treball per incloure confi-

guracions t́ıpiques de creixement de cristalls i l’acoblament de la concentració de

dopant al camp de velocitats. També ens centrem en valors de paràmetres i con-

figuracions properes a condicions realistes d’experiments de solidificació a l’espai.

L’objectiu és obtenir una caracterització quantitativa del fenomen de segregació

que vingui determinada com una funció de l’estad́ıstica de vibracions gravitatò-

ries. Hem realitzat la simulació completa del problema i a més, hem proposat

un model heuŕıstic simplificat que captura el comportament del sistema amb una

precisió notable, amb només uns pocs paràmetres lliures que poden ser ajustats en

un sol cas, romanent constants per a qualsevol altra senyal. El model proporciona

una comprensió qualitativa i quantitativa de la resposta del camp de dopants a les

acceleracions, convertint-se en una eina predictiva de gran valor pràctic i teòric,

que permet comprovar els efectes de qualsevol senyal acceleromètric arbitrari amb

un cost computacional dramàticament redüıt. Com a conclusió general d’aquest

estudi, trobem que la resposta del sistema ve fortament dominada per les compo-

nents de baixa freqüència del soroll gravitatori, inclús malgrat que aquesta zona

de l’espectre tingui un contingut diversos ordres de magnitud menor que altres

zones de l’espectre a freqüència finita.
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(2009), “Experimental study of a microchannel bubble injector for microgravity

applications”, Microgravity Sci. Technol., 21(1), 107–111.

Balachandar, S. and Eaton, J. K. (2010), “Turbulent dispersed multiphase flow”,

Annu.Rev.Fluid Mech., 42, 111–133.

Benz, K. W. and Dold, P. (2002), “Crystal growth under microgravity: present

results and future prospects towards the International Space Station”, Journal

of Crystal Growth, pp. 1638 – 1645.

Bessonov, O. A. and Polezhaev, V. I. (2001), “Mathematical Modeling of Con-

vection in the DACON Sensor under Conditions of Real Space Flight”, Cosmic

Research, 39, 159–166.

Bhatnagar, P. L., Gross, E. P. and Krook, M. (1954), “A Model for Collision

Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-

Component Systems”, Phys. Rev., 94, 511–525.

Biesheuvel, A. and Wijngaarden, L. V. (1984), “Two-phase flow equations for a

dilute dispersion of gas bubbles in liquid”, Journal of Fluid Mechanics, 148, 301–

318.

Binney, J. and Tremaine, S. (2008), Galactic Dynamics, Princeton series in astro-

physics.

143



144 REFERENCES

Bitlloch, P., Ruiz, X., Ramı́rez-Piscina, L. and Casademunt, J. (2011), “Spatial

structure and velocity fluctuations in turbulent bubble jets in microgravity”,

International journal of transport phenomena, 12(3-4), 189–197.

Boltzmann, L. (1872), “Weitere Studien über das Wärmegleichgewicht unter Gas-
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