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Chapter 1

General Introduction

The object of study in this dissertation is the interaction among the design of
institutions, the behavior of economic agents, and information. By institutions
we mean the set of rules and procedures that govern the way individuals and
other economic agents behave within the economy or other social structures. Two
examples of institutions that are studied here are collective decision-making rules
and markets for goods with limited supply (chapters 2 and 3).

Any given institution creates specific incentives for the participating agents
that form their behavior. Because of strategic interdependencies among economic
agents, it is not always clear how a particular institutional design may translate
in to agents’ behavior. The aggregation of agents’ behavior sometimes leads to
collective behavior that is not obvious ex ante (ch. 3). At a more elemental level,
prediction of behavior requires a good model of how individuals think, form
beliefs and act in strategic situations. This should not be assumed as given (ch.4).

When these interactions take place in an uncertain world, information becomes
crucial. What information is available and it’s value to agents depends on the
particular rules of social interaction. Agents on the other hand act on the basis of
available information and the shape it may have. But information has some special
properties that make it di�erent than other goods in the economy. The attempt
to understand the role of these special properties in the problem of designing
institutions is what connects the di�erent parts of this dissertation.

1



General Introduction

1.1 The value of information in collective choice

We start in chapter 2 by looking at an old question: what is the value of
information? We do so from the point of view of groups.

Although some individuals may derive utility from simply “consuming” in-
formation, it is generally accepted that its value lies in reducing uncertainty and
allowing for better decision making. While it is clear that information can have
a positive value to economic agents, it is not always clear how to compare the
value derived from one information structure to that of another. In a seminal
paper, Blackwell (1951) shows that only a partial order of information structures
is possible. Subsequent literature achieves more complete orderings of informa-
tion structures by focusing on particular families of decision problems. We follow
a similar approach focusing on collective choice problems instead of individual
decision problems.

We set up a fairly general model of collective decision making through voting.
Attention is restricted to groups in which members share a common objective. We
examine whether it is possible to compare information structures in terms of the
expected aggregate value they o�er the group. Our first result shows that such
a comparison is possible in some cases, for any such like-minded group and any
possible voting rule. Still, we show that the instances where such comparisons are
possible are very limited. The set of information structures that can be compared is
extended if one poses restrictions upon the profile of group members’ preferences
or the voting rule. We apply some of our results to a model in which information
is endogenous.

1.2 Demand in markets with limited supply

In chapter 3 we turn our attention to a di�erent institution: markets. Specific
features of markets, that a priori seem unrelated to information, can have signif-
icant e�ects on how agents shape their beliefs about the available goods. Beliefs
determine demand which may be a�ected in unexpected ways.

Some markets are characterized by limited supply. When this is the case, in-
terdependencies are created among market participants’ actions and outcomes:
some agents can obtain access to these goods only if others choose not to. If fur-
thermore actions are motivated by the available information, interesting strategic
e�ects are observed. In particular, agents that manage to obtain goods in such
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1.3 An experimental study of strategic thinking

markets may su�er a winner’s curse. This induces some agents to ignore their
private information and pass on opportunities that come in limited supply. They
do so without actually observing others’ actions. The simple knowledge that oth-
ers may have priority over oneself allows for the necessary inferences. Agents’
behavior in these environments leads to theoretical considerations that we explore
in this chapter. We o�er insights that are relevant to market design.

We look at a model in which agents can invest in a project with a limited
number of available slots. Agents have incomplete information about the projects
expected payo�s. Based on that, they must decide whether to invest in the risky
project or take a safe outside option. Slots are assigned following an exogenous
priority order. Low priority agents may face a winner’s curse: if they choose to
invest and obtain a slot in the project it must be that agents with higher priority
choose not to do so. In equilibrium, only high priority agents choose to invest
when their private information indicates they should. Low priority agents take
the outside option independently of their private information. This feature of
equilibrium is maintained when we look at variations of the model with priorities
assigned by lottery or determined by a Bernoulli process. We perform relevant
comparative statics and compare equilibrium outcomes of our simultaneous ac-
tion model with the ones from a social learning model. Our analysis highlights
unexplored links between market design features and the performance of such
markets. In particular, agents’ knowledge of the priority order a�ects both de-
mand and e�ciency. Furthermore, herding behavior occurs even in the absence
of social learning.

1.3 An experimental study of strategic thinking

In this last chapter of the dissertation we take a step back. Instead of looking
at a particular institution we switch the focus to individuals and the way they
behave across di�erent strategic situations.

The order and observability of actions in a game determine the informational
inferences players can make. Intuition suggests that such inferences require a
higher level of sophistication when they concern actions that are not directly
observed, like in simultaneous action games, compared to sequential games where
a player can observe others’ actions before making decisions. This intuition
contrasts with the assumption of full sophistication embodied in the Bayes-Nash
equilibrium concepts. Informational cascades the winner’s curse may depend on,
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General Introduction

respectively, the ability or inability to make such inferences.
We use a novel experimental design in which subjects play, both simultane-

ously and sequentially, a game in which either of these phenomena can occur. We
find that, in accordance to our intuition, some subjects participate in informational
cascades in the sequential game and su�er a winner’s curse in the simultaneous
game. “Level-k” thinking and “cursed equilibrium” are theories that have been
proposed to explain why an individual may su�er from the winner’s curse in com-
mon value auctions and other environments. Nevertheless, according to these
theories the same individual could not participate in an informational cascade.
Therefore, our results contradict the predictions of both classical and behavioral
theories.
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Chapter 2

Information and Collective Choice in
Like-minded Groups

...information is itself a commodity, being both scarce and valuable,
but it has properties that make it unique.

Prof. K. Arrow, XXIII Barcelona GSE Lecture

2.1 Introduction

Juries, FDA committees, hiring committees are all examples of groups of indi-
viduals that must make a decision: to convict or to acquit, to approve a drug or
not, to hire a particular candidate. Furthermore, all members of these groups are
like-minded because they share a common interest. If they had perfect information
about the problem at hand they would all agree on what decision the group should
take: acquit the innocent, reject a dangerous drug, hire an appropiate candidate
for the job. Disagreement may arise because of imperfections in the information
that the group members hold.

Groups can usually choose between a number of di�erent sources of informa-
tion that can reduce uncertainty about the outcome of their decision. Juries can
hear di�erent witnesses or admit specific evidence; an FDA committee can choose
from an array of clinical trials for a drug; a hiring committee can ask for references
from di�erent sources, or have the candidate take specific tests. Given limited
resources, these like-minded groups often face the choice of a specific source of
information over another. Answering the question “what information source is
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Information and Collective Choice in Like-minded Groups

better for the group?” is not straightforward. In this paper we show why not and
under what conditions one can give a clear answer to that question.

It is well known that such an answer is not straightforward even for individual
decision makers. They can not be hurt by any additional information, but the
seminal work of Blackwell (1951) (4) shows that one cannot always rank two
alternative sources of information. They can be ranked when one source A is
equivalent to source B plus some noise. In that case source B is preferred because
it is, unambiguously, a more precise statistic of the state of the world than A.
But, in general, which one is better depends on the decision problem at hand.
Subsequent literature has tried to provide partial answers by looking at specific
families of decision problems. We further discuss these studies in the literature
review section.

When one looks at the problem from the point of view of a group, the prob-
lem of aggregating preferences con�icts with the comparison of informativeness
provided by di�erent sources. The focus of this paper is the understanding and
resolution of these con�icting interests from the group’s point of view. Therefore,
we set up a collective choice problem, general enough to encompass di�erent eco-
nomic situations. The group faces a binary choice problem. The collective choice
problem is resolved through voting. All information is public. In such a model
and with preferences being common knowledge there is no scope for strategic
manipulation of votes. What makes the problem of ranking preferences over
information harder for a group? The following example illustrates the relevant
di�culties.

Example 1. Consider a hiring committee comprised by two members: Anne and
Bob. They face the choice of whether or not to hire a candidate for a job. The
candidate may, or may not, be a good fit for the job. Any of the two possibilities
is equally likely. The table in figure 2.1 gives Anne and Bob’s valuations of any
possible outcome of their decision.

6



2.1 Introduction

Likelihood of 
recomendation

Candidates condition

Fit for job Not fit

Recomendation

Hire

Do not 
hire

Likelihood of 
recomendation

Candidates condition

Fit for job Not fit

Recomendation

Hire

Do not 
hire

Likelihood of 
recomendation

Candidates condition

Fit for job Not fit

Recomendation

Hire

Do not 
hire

(Anne, Bob)
Candidates condition

Fit for job Not fit

Committee!s 
decision

Hire

Do not 
hire

Figure 2.1: Anne’s and Bob’s valuation of possible outcomes

Both members of the committee would agree on the best decision if they knew
whether the candidate is appropiate for the job or not. Note also that while both
agree on their valuation of making a wrong decision in either case, they also
agree that the opportunity cost of not hiring a good candidate is higher than
the opportunity cost of hiring an unfit candidate. That is, they both have a bias
towards hiring. The bias is higher in Anne’s case. Let us assume that unanimity
is required in order to hire the candidate.

Before taking a decision they have the choice to either have somebody inter-
view the candidate or have him take a test. Each of these procedures can give
some additional information. To keep the example simple, suppose that the out-
come of both procedures can be deduced to a binary noisy signal, in the form
of a recommendation: ’hire’ or ’don’t hire’. This recommendation is public: the
result of the interview or the test is common knowledge for both individuals. The
tables in the following figures show the likelihood of each recommendation in
each possible case, for each one of the two procedures.

Likelihood of 
recomendation

Candidates condition

Fit for job Not fit

Recomendation

Hire

Do not 
hire

Figure 2.2: Interview

Likelihood of 
recomendation

Candidates condition

Fit for job Not fit

Recomendation

Hire

Do not 
hire

Likelihood of 
recomendation

Candidates condition

Fit for job Not fit

Recomendation

Hire

Do not 
hire

Likelihood of 
recomendation

Candidates condition

Fit for job Not fit

Recomendation

Hire

Do not 
hire

Figure 2.3: Test

The question we examine is which of the two procedures gives a higher ex-
pected value to the committee. After receiving a recommendation, Anne and
Bob update their beliefs about the candidate’s fitness for the job. They use their

7



Information and Collective Choice in Like-minded Groups

posterior to calculate their expected value from each of the two possible actions
and vote for the action that gives them a higher expected value. It turns out that
following an interview, both Anne and Bob would vote to hire the candidate.
That is, a negative recommendation from an interview is not strong enough to
overcome their bias towards hiring the candidate. On the other hand, if instead
of an interview they use a test, Bob would vote according to the recommendation
while Anne would still vote for hiring the candidate, regardless of the recommen-
dation. Given that unanimity is required for a hire, the committee always hires
the candidate after an interview, but only hires him if this is recommended after
a test. We can thus calculate the expected social welfare for the committee after
each of the two procedures:

W(interview) =
1
2

(1 + 1) +
1
2
· 0 = 1

W(test) =
1
2

[3
4

(1 + 1) +
1
4
· 0

]
+

1
2

[1
2
· 0 +

1
2

(1
4

+
2
3

)]
=

43
48

Social welfare is higher when using the interview.
It is interesting to notice that the test is actually a more precise procedure. The

posterior belief after a recommendation to hire is the same in both procedures.
But a recommendation not to hire from the test gives a higher posterior belief that
the candidate is not fit, compared to the same recommendation from an interview.
This means that less precise public information has a higher social value.

In this example it is easy to see that this happens because the less precise
recommendation does not affect the committee’s decision either way: Anne’s
and Bob’s bias is too strong and the recommendation is too weak. The strong
recommendation from the interview may affect the vote of Bob but not the vote
of Anne, since she is more biased. Still, given the decision rule here, this means
that with the test, the final outcome may change, Anne does not want.

We do not examine how Anne and Bob decide whether to use an interview
or a test. We just make the comparison between the expected value generated by
each of these procedures.

In this example we perform the exercise of comparing two di�erent sources of
public information for a particular group. It is always possible to perform such
a comparison for a given pair of information sources, a particular group and a
particular decision rule. In the remainder of the paper we show when such a
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2.1 Introduction

comparison is possible for di�erent combinations of individuals valuations and
decision rules. As in the example we focus on situations with a binary choice and
two possible states of nature. Unlike the example, we do not limit the analysis to
binary signals but allow for the public signal to have any general form. Groups are
allowed to have any possible number of members (even infinite). We only restrict
individual valuations to be such that under perfect information all individuals
would agree on the optimal choice.

2.1.1 Results

We show first that it is possible to establish a partial order on information
sources such that a particular source gives a higher value than another, for any
possible profile of individual valuations and any possible voting rule. Alas, the
cases where such an order is possible are limited. We show for instance that
the only binary signal that dominates other binary signals in such a way is the
perfectly revealing signal.

The partial order can be extended if one restricts the domain of possible in-
dividual valuations. In particular, if we restrict attention to groups that a priori
receive the same expected value from both alternatives, it is possible to establish
an extended partial order on information sources, for any possible voting rule.
We give examples of parametric families of such sources that can be ordered
according to some parameter. These include power distribution functions and
exponential functions.

For any group, there may exist an optimal voting rule that maximizes social
welfare. Such an optimal rule pinpoints a particular individual within the group
as a decisive voter. If there exists an ordering on information sources according
to the expected value they give to the decisive voter, then this order holds for the
group if the optimal voting rule is applied.

Finally we use some of our results in an application of collective choice design.
We look at a case where the group may obtain information before making a deci-
sion. This depends stochastically on how many of the group members want the
group to receive this public information. We show how this demand for informa-
tion depends on the voting rule used and we characterize the rule that maximizes
the expected social value for the group. We then use the fact that some infor-
mation structures can be ordered for any voting rule and perform comparative
statics. It turns out that the more informative the available information structure,
the more conservative is the optimal voting rule.
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Information and Collective Choice in Like-minded Groups

Throughout our analysis we assume that individual values from di�erent
outcomes represent the individuals’ true valuations. This does not a�ect our
analysis since we only perform comparisons of information structures without
considering any mechanism for choosing a particular one among the available
alternatives. For the cases covered in our first result, individuals would have
no incentive to misrepresent their valuations: when information sources can
be ordered in such a way, all group members agree with the group’s ordering.
When this is not possible, individuals could have incentives to misrepresent their
valuations if this could a�ect the choice of information source. Such manipulation
would not make any sense in order to a�ect the group’s final choice: given binary
choices and the type of preferences we consider, voting is a strategy-proof method.
By misrepresenting their valuations the agents cannot obtain a better outcome.

2.1.2 Literature review

The seminal contribution to the literature on information structure compar-
isons is Blackwell (1951) (4). There, an information structure is more informative
than another if it is preferred by any decision maker for any possible decision
problem.This strong condition induces a partial order on information structures.
A more comprehensive order is o�ered by Lehmann (1988) (15), who focuses
on specific decision problems that are monotone, and on information structures
that satisfy a monotone likelihood condition. Persico (2000) (19), Athey and Levin
(2001) (1) and Jewitt (2007) (14) move in the same direction and extend Lehmann’s
ordering for more general classes of monotone problems. In a recent contribution,
Cabrales, Gossner and Serrano (2012) (5) provide a complete order on information
structures, based on a measure of entropy in the decision maker’s beliefs, in a class
of investment problems. Ganuza and Penalva (2010) (7) take a di�erent approach
than these papers. They provide an ordering that is not based on any class of
decision problems. Instead, they order di�erent information structures in terms
of the variability of conditional expectations they generate. They use this order
to study the incentives of an auctioneer to disclose information. Similarly to all
these papers, the present one shares the aim of comparing di�erent information
structures. It di�ers in doing so from the point of view of a group of agents instead
of a single decision maker.

A series of papers by Gersbach (1991 (9), 1992 (10), 1993 (11), 2000 (12)) study
the value of public information for groups that face a collective choice problem.
Through di�erent examples it is shown that it is possible for public information

10



2.1 Introduction

to be harmful for even a majority of voters. There are important di�erences
between our work and Gersbach’s contribution. Gersbach’s approach is valid for
a more general family of collective choice problems, with multiple alternatives
and no restriction on preferences, but it only considers comparisons between
two extreme cases: perfect uncerainty or perfect information. Our institutional
restrictions in the choice problem allow us to compare situations with di�erent
degrees of uncertainty

Messner and Polborn (2012) (17) and Strulovici (2010) (21) are two papers
that look at the attitude towards experimentation of groups of individuals, that
make decisions collectively. In both of them the setup is dynamic. In the first
one, the group faces the option to take a decision immediately, or to wait to
obtain more information. In the second one, the group decides through voting
whether it wants to continue experimenting with a particular policy. Continuous
experimentation allows voters to learn about the policy’s e�ects on their welfare.
Both papers focus on the choice of the collective decision making rule and on how
it determines the degree to which group members learn. Similarly, one way to
look at what we do in this paper is to think that the group is engaged in a one stage
experimentation game in which experimentation can take di�erent forms and we
look at which type of experimentation o�ers the highest value to the group.

The study of collective choice by groups of individuals that share a common
goal, in environments with incomplete information, goes back to Condorcet in
the 18th century and was studied later as well by Marshak and Radner (1972)
(16) in their theory of teams. More recently, Austen-Smith and Banks (1996) (2)
showed that strategic considerations may not allow the correct aggregation of
information in such groups. Feddersen and Pesendorfer (1997) (6) show that if
the size of the group goes to infinity, information is correctly aggregated. Persico
(2004) (20), Gerardi and Yariv (2008) (8) and Gershkov and Szentes (2009) (13)
study how the incentives of group members to acquire information depend on
the design of the decision mechanism. Bergemann and Välimaki (2005) (3) survey
the literature on information acquisition in the context of committees and other
mechanism design problems. In all of this line of the literature, any information
that the agents have or may acquire is a priori private. This gives rise to particular
strategic considerations on their part when making decisions on whether or not to
acquire information, on how they communicate with others or on how to vote. All
these are absent in our setting: attitudes towards information depend strictly on
individuals’ valuations and the design of the decision process, not on the possible
existence of any private information.
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Information and Collective Choice in Like-minded Groups

The possible value of public information to a set of individuals is studied
in Morris and Shin (2002) (18). In their setting, individuals are involved in a
game where actions have strategic complementarities. They find that more public
information is socially beneficial when agents have no private information. When
this is not true, more public information may hurt society. In their paper decision
making is decentralized. Public information can help agents make better decisions
but may also serve as a coordination device. In our setting, decision making is
centralized. Public information’s value lies solely in its instrumental function in
improving decision making by reducing uncertainty about the state of the world.

2.2 The model.

In this section we setup a model of collective choice. Any results we obtain
concerning the possibility of ordering information sources refer to this model.

2.2.1 Like-minded groups.

Consider a set of agents I (possibly infinite) that have to choose, jointly, between
two possible collective actions, x ∈ X = {0, 1}. These may represent, for example,
two alternative policies, or two di�erent candidates for a post. We may refer to
these simply as the “low” and “high action”. There is an unknown state of nature
that can have two possible values, θ ∈ {0, 1}. We may also refer to these as the
“low” and “high” state respectively. Agents share a common prior regarding the
state of nature. Let π represent the ex-ante probability agents assign to the state
of nature being high: π = Pr(θ = 1).

Individual valuations depend both on the collective action x and the state of
nature θ and are given by a function ui(x, θ, ti). Notice that we only assume that
all individuals’ utility functions depend on the same variables, namely x, θ and
an idiosyncratic parameter t ∈ T ⊆ R. This parameter represents the possible
bias of an individual towards either one of the actions the group may take. In
particular, let λi(t) = ui(1,1,t)−ui(0,1,t)

ui(0,0,t)−ui(1,0,t)
be an agent’s bias function. That is the ratio

of the opportunity cost from choosing the low action in the high state, over the
opportunity cost from choosing the high action in the low state. We make the
following assumption:

Assumption 1. The bias function λi(t)increasing in t and
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for t > t′,
λi(t) > λ j(t′) , ∀i, j ∈ I

What this says is that individuals of a higher type are more biased in favor
of the high action. Furthermore, it states that it is possible to order individuals
in terms of their bias simply by knowing their type t and without any further
information about their valuations. We take advantage of this fact to lighten
notation and we from now on refer to the bias of individual i simply as λ(ti),
omitting the subscript for λ.

It is helpful for our analysis to assume that agents are distributed over the
type space T following a distribution ξ(t) which may be either continuous or
discrete. All agents have equal mass. The total mass of agents is normalized
to 1:

∫
T
ξ(t)dt = 1. In the case of a discrete distribution the integral should be

substituted by a summation.
We shall further assume that all agents together form what we name a like-

minded group (LMG)1.

Definition 1. A set of individuals I is a like-minded group if:

ui(θ, θ, ti) > u(1 − θ, θ, ti),

∀ θ ∈ {0, 1}, ti ∈ T, i ∈ I

Assumption 2. I is a like-minded group.

As can be seen from the definition, all members of a LMG agree on what the
best action is in each state of nature. This does not mean that members of a LMG
always agree on what action the group should take. Given the uncertainty about
the state of nature there may be disagreement resulting from individual biases in
favor of the lower or higher action.

Tables 2.4 and 2.5 show two examples of 2-member groups. The numbers
in the cells represent the value for each group member of given the action in a
specific state. Group 1 is not a LMG. Agents disagree on the optimal choice in
the high state. Group 2 is a LMG. Assuming the numbers represent the values of
agents 1 and 2 respectively we can compute λ1(t1) = 1 > 1

4 = λ2(t2), which means
t1 > t2: agent 2 is biased towards the low action.

1The term ’committee’ is often used in the literature to describe groups with such preferences.
But besides preferences, the term also has connotations of relatively small groups and `committee
members` are often assumed to possess private information which they are expected to aggregate.
These characteristics are not present in our model and we therefore prefer this alternative term.
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θ = 0 θ = 1
x = 0 10, 10 10,8
x = 1 8, 8 8,10

Figure 2.4: Group 1 is not a LMG

θ = 0 θ = 1
x = 0 1, 100 0, -10
x = 1 0, 20 1,10

Figure 2.5: Group 2 is a LMG

2.2.2 Information.

The group receives a public signal s ∈ S ⊆ R (common to all individuals)
about the state of nature before taking a decision. In particular, the signal s
is distributed according to a cumulative distribution function Fθ(s) on the set S
of possible signals. From now on we refer to either the information structure
(the pair {F0(s),F1(s)}) or the distribution (the unconditional distribution F(s;π))
interchangeably or simply by F. We use fθ(s) to denote the probability density
function for continuous signals and use the same notation for discrete signals,
implying fθ(s) = Pr(s|θ) for such signals. We assume that the distribution satisfies
the monotone likelihood ratio property (MLRP).

Assumption 3. f1(s)
f0(s) ≥

f1(s′)
f0(s′) ⇔ s > s′.

In other words, higher public signals imply that the high state of nature θ = 1
is more likely.

For the moment we make no further assumptions on S. While we use integrals
over subsets of S in the analysis that follows, and unless mentioned otherwise,
results also hold in the case of a discrete signal space and proofs can be obtained
by substituting integrals with summations.

2.2.3 Individual and Collective Choice.

Individual choice

Before setting up our model of collective choice it is useful to understand how
individuals behave in such a setup. Or, in di�erent words, by looking at “groups”
of a single individual.

Let φi : S → X be a decision rule for an individual agent i. Given a decision
rule φi and an information structure F, an agent’s ex ante expected value is:

Ui(φi,F, ti) = π

∫
s∈S

ui(φi(s), 1, ti) f1(s)ds + (1 − π)
∫

s∈S
ui(φi(s), 0, ti) f0(s)ds
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2.2 The model.

Now let φ̂i : S×T→ X be the optimal decision rule i.e. the one that maximizes
the individuals expected payo� given the public signal. It can be easily seen that
the MLRP on the information structure implies that φ̂i(s, ti) is a threshold function.

Lemma 1. There either exists a threshold s̃i(ti) such that:

φ̂i(s, ti) =

1, s > s̃i(ti)

0, otherwise

or φ̂i(s, ti) is constant.

Proof. All proofs of lemma’s and propositions can be found in the appendix. �

In particular, the threshold s̃(t) is defined as follows:

s̃(t) =

{
s :

f1(s)
f0(s)

π
1 − π

λ(t) ≤ 1
}

(2.1)

Furthermore, this threshold is decreasing in the agent’s type.

Lemma 2.
s̃(t) ≥ s̃(t′) f or t < t′.

At this point we make one last assumption on the set of possible signals that
comes with no loss of generality, but makes sure that the threshold is always well
defined:

Assumption 4. There exists s ∈ S, with s < s, ∀ s ∈ S \ {s}, and F(s) = 0. We further
assume s = −∞ if and only if (−∞, s′) ∈ S for some s′ ∈ R

For the analysis that follows it may be useful to remark that given the way we
define the threshold, s̃(ti) is the highest value of s such that i still prefers x = 0 over
x = 1. This is particularly important in the case of discrete signals.

Collective choice

The group makes decisions using a voting rule in the following way: Action
x = 0 is taken if a proportion of at least q ∈ [0, 1] members of the group agree to
take this action. Members of the group agree to take an action if it is the optimal
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decision they would take as individual decision makers2. Therefore it is given by
the function φ̂i(s, ti). Thus, the group’s decision function is:

x(q, s) =

 1,
∫

T
φ̂(s, t)ξ(t)dt < q

0, otherwise

Given the preferences, it is easily seen that after receiving the public signal the
group divides into two ordered subgroups.

Lemma 3. Given a public signal ŝ, there exists t̃(ŝ) such that:

φ̂(ŝ, t) =

1, t > t̃(ŝ)

0, otherwise

Furthermore, t̃(s) is decreasing in s.

Some individuals of a low type with a threshold s̃ above the received signal
consider x = 0 optimal. The rest of the group, that is higher type individuals,
consider x = 1 as optimal. The groups final decision will depend on whether the
mass of the first of these subgroups is larger than the quota q. If it is, then according
to the decision rule, the group takes action x = 0. If not, it takes action x = 1.
If the voting rule is simple majority we know that the group’s decision always
coincides with the vote of the median voter. The following lemma generalizes
this idea for all possible q-rules.

Lemma 4. The decisive type is the policy type td(q) that satisfies:∫
(−∞,td)

ξ(t)dt < q and
∫

(−∞,td]
ξ(t)dt ≥ q

The group’s decision function can be written as follows:

x(q, s) =

 1, td(q) > t̃(s)

0, otherwise

It is easy to see why this result holds: to know whether the group takes action
0 or 1 we just have to know whether an individual with the decisive type td prefers

2As was mentioned in the introduction, given preferences individual preferences, voting under
any q-rule is strategy proof. This means that voting for one’s preferred choice is a dominant
strategy.
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0 or 1. Given lemma 3, we know that if an individual of type td prefers x = 1, so
will all individuals to his right (of a higher type) and following the decision rule,
x(q, s) = 1. If the individual prefers x = 0, then so will all individuals to his left
as well, and their mass is more or equal to q and therefore x(q, s) = 0. Note that
the decisive type is defined in a way that depends on the distribution of types for
a particular group and is always well defined.

Now set-up a model of collective choice for LMG’s, in the following section
we examine whether it is possible to order di�erent distributions with respect to
the value they provide to the group in this framework.

2.3 Comparing Information Structures

The value of information lies in the degree to which it allows an agent to
take better decisions. Therefore, when comparing two information structures,
say F and G, one is said to be more informative than the other when it allows the
decision maker to expect a higher payo� from a decision under this information
structure rather than the other. Making such a comparison for a specific decision
problem is not complicated. But when the same comparison is made for a di�erent
information problem the previous ranking in terms of informativeness may not
hold. A vast literature in economics and statistics has studied the properties of
information structures that allow such comparisons and giving orderings that are
valid for more or less general families of decision problems. In this section we
attempt a similar exercise. Instead of looking at individual decision problems, we
focus on a collective choice problem. When is an information structure better for
the group than another one?

We attempt to answer this question in terms of the collective choice model
setup in the previous section. Still, for this question to have a content one must
define the value of information for a group. As in Gersbach (1991 (9); 1992 (10);
1993 (11); 2000 (12)), we choose to follow a utilitarian approach. We consider
the sum of individual group members’ valuations following the collective choice
made under a particular information structure to represent the value of this in-
formation for the group.

Definition 2. A group’s value from an information structure F is:

V(φ̂d,F, π, q) =

∫
T
Ui(φ̂d,F, π, ti, q)ξ(ti)dt
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Having defined the value of information for groups we can now define in-
formativeness for a group. Like in the literature concerning comparisons of
information structures for individual decision makers, we consider a particular
information structure to be more informative than another if it o�ers a higher
expected value to the decision maker. In our case the decision maker is the group.
Formally, we use the following definition:

Definition 3. We say that F is more informative for the group than G and denote it
as:

F >I G

if and only if:
V(φ̂d,F, π, q) ≥ V(φ̂d,G, π, q)

2.3.1 Strong dominance

It follows from these definitions that how we rank two distributions depends
not only on the their characteristics but also on the heterogeneity and distribution
group members’ preferences, and the decision rule used to make the collective
choice. Appropriate restrictions on these objects could deliver an answer to our
question but with a loss in generality. We first attempt to provide a more general
answer. This is in terms of conditions on distributions that, if satisfied, give a
ranking of distributions that does not depend on the group’s characteristics and
the decision rule used. The only essential assumption is that of the group being
like-minded.

The following definition formalizes the type of relation among distributions
we look for:

Definition 4. We say that F strongly dominates G if F , G and the conditions of
Proposition 1 hold for F and G. We denote such a relationship as

F� G

We obtain a partial order of distributions in terms of strict dominance. Our
first main result gives the conditions that allow us to rank two distributions in
such a way.

Proposition 1. Let I be a like-minded group with ti ∈ T. Let F, G be two information
structures and ŝH(k) = argmax{ h1(sH)

h0(sH) ≤ k} for (H, h) ∈ {(F, f ), (G, g)}.
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Then,
F� G

if and only if, for all k > 0,
F0(ŝF(k)) ≥ G0(ŝG(k)) (2.2)

and

F1(ŝF(k)) ≤ G1(ŝG(k)) (2.3)

To understand the conditions in Proposition 1 notice that: F0(s̃F(td(q)) is the
probability that the group takes the right decision (x = 0) when the state is θ = 0,
while 1 − F1(s̃F(td(q)) is the probability of taking the right decision (x = 1) when
the state is θ = 1. Changing the voting rule changes the type of the decisive
voter and therefore also s̃(td(q)). If the conditions in the proposition hold, then
for any possible voting rule and any possible group or, intead, any possible value
of s̃(td(q)), the probability of making the right decision in any of the two states of
nature under F is higher than under G. In other words, using F reduces both type
I and type II errors.

As we show next, these are very strong requirements for comparing distri-
butions. In particular, if F >I G for any group, then it must also be true for
single individuals. That is, any individual decision with preferences as the ones
in our model agrees on the ranking of F and G. Recall that in the example of the
introduction, although individuals would separately agree on one ranking, the
ranking for the group was the opposite.

Furthermore, given that by using F instead of G, both types of errors are
reduced, all members in a group are better-o� when the group makes the decision
under F. It would be therefore useless for any member of the group to miss-
report his true valuation if that could a�ect the choice of information structure.
Still, although everybody would agree on the best distribution for the collective
choice, there does not have to be agreement with the group’s final decision. For
a given public signal from F there may still be some individuals supporting the
high action and others supporting the low action.

We now give an example of two distributions F and G for which the conditions
in Proposition 1 are satisfied and hence F� G.

Example 2. Let F and G be two distributions over four different values: SH =
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{s1
H, s

2
H, s

3
H, s

4
H}, for H ∈ {F,G}. The table in Figure 2.6 gives the complete description

of the two distributions.

F0 f0 F1 f0
f1
f0

G0 g0 G1 g1
g1

g0

s1
F 0.9 0.9 0 0 0 s1

G 0.3 0.3 0 0 0

s2
F 0.975 0.075 0.025 0.025 1

3 s2
G 0.8 0.5 0.15 0.15 3

10

s3
F 1 0.025 0.1 0.075 3 s3

G 1 0.2 0.5 0.35 7
4

s4
F 1 0 1 0.9 ∞ s4

G 1 0 1 0.5 ∞

Figure 2.6: These distributions are such that F� G

To check whether the conditions of Proposition 1 are satisfied we calculate the
pairs {ŝF(k), ŝG(k)} for different values of k and see whether the inequalities (2.2)
and (2.3) hold.

{ŝF(k), ŝG(k)} =



{s1
F, s

1
G} , k ∈ (0, 1

3 )

{s2
F, s

1
G} , k ∈ [ 1

3 ,
3

10 )

{s2
F, s

2
G} , k ∈ [ 3

10 ,
7
4 )

{s2
F, s

3
G} , k ∈ [ 7

4 , 3)

{s3
F, s

3
G} , k ∈ [3,∞)

The graph of the two distributions in figure 2.7 allows to easily check that the
inequalities (2.2) and (2.3) hold for each one of these pairs.
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s1 s2 s3 s4

1

0

0.5

F0

G0

G1
F1

Figure 2.7: The cdf’s for F and G.

It was mentioned already that the cases where a distribution strongly domi-
nates another one are not common. Our next result re�ects exactly that.

Proposition 2. Let F,G be such that F� G.

1. If G1 = 0 for some s > −∞ , then there exists sF ∈ SF : Pr(θ = 0|sF) = 1

2. If G0 = 1 for some s < ∞ , then there exists sF ∈ SF : Pr(θ = 1|sF) = 1

To understand the statement in the proposition it is useful to note which
possible forms of G are not included. If SG = R and G is such that both g0(sG) and
g1(sG) asymptotically tend to zero in both directions (as s increases or decreases),
then Proposition 2 does not apply. If this is not true in either direction and F� G,
then F must be such that the most extreme signal in the respective direction is
fully revealing of the state.

As a consequence of Proposition 2, it turns out that the extend to which one
can order distributions in terms of strict dominance is limited. Many situations
where, intuitively, a certain information structure seems more informative than
another are not included in this order.Furthermore, even some comparisons that
are possible under the Blackwell criterion are excluded here. This becomes par-
ticularly striking when one considers comparisons among binary signals. The
following corollary is an application of Proposition 2 to this case.

21



Information and Collective Choice in Like-minded Groups

Corollary 1. If F � G and SH = {s′H, s
′′

H}, for s′H < s′′H and H ∈ {F,G}, then F must be
fully revealing: Pr(θ = 0|s′F) = Pr(θ = 1|s′′F ) = 1.

What is stated here is the following: a fully revealing signal is the only informa-
tion structure that can strictly dominate a binary signal. This shows that the strict
dominance relation is much stronger than any intuitive notion of informativeness
one might have. Simply reducing the noise in a signal is not enough.

Why is this so? The best way to understand this is to return to example from
the introduction. The signal from the interview is such that the group’s choice
is not a�ected by the signal’s realization. The group always hires the candidate
after an interview. This means that the group never makes the error of choosing
not to hire when it should be hiring. Let’s call this a type I error. It may make
the error of hiring when it should not be doing it. This would be a type II error.
A more precise signal, like the one from the test leads to a collective choice that
depends on the realization of the signal. Therefore, after a test the group may
commit a type I error with a positive probability. We know from Proposition 1
that under strict dominance both types of errors must be reduced. It turns out that
it is always possible to construct such an example like the one in the Introduction
with binary signals, unless the dominating signal is perfectly revealing. The same
reasoning lies behind the more general result in the proposition.

One conclusion that we can draw at this point is that being able to make
comparisons between distributions focusing only on their properties and without
any restrictions on the groups preferences or decision rule is closer to an exception
than to a rule. This gives rise to the question of whether one can extend this partial
order by setting restrictions on either the group’s preferences or the voting rule
used. The next section deals with the first type of restrictions.

2.3.2 Restricted preferences

It is not hard to find pairs of distributions that satisfy inequalities (2.2) and (2.3)
in Proposition 1 for a particular profile of group members’ valuations. But these
may no longer hold once we consider another group, containing more biased
individuals. This happens, when the voting rule is such that one of these biased
individuals becomes decisive. It is not hard to understand then, that if inequalities
(2.2) and (2.3) hold for a particular group, they should also hold for any group
where “extreme” biases are reduced. This idea is formalized in the following
proposition.
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Proposition 3. Let F, G be two information structures and ŝH(k) = argmax{ h1(sH)
h0(sH) ≤ k}

for (H, h) ∈ {(F, f ), (G, g)}. If:

F0(ŝF(k)) ≥ G0(ŝG(k)) and F1(ŝF(k)) ≤ G1(ŝG(k))

∀ k ∈
[
1 − π
π

1
λ(t̄)

,
1 − π
π

1
λ(t)

]
, 0 < t < t̄

then
F >I G ∀ I , q , and T ⊆ [ t , t̄ ]

Up to here, our results concern cases where one distribution is such that a
decision can be made by the group in a way that the probability of making the
correct decision is higher in any state of the world. We now turn to cases where
this may not be true but a particular distribution still o�ers a higher expected
value than another. To obtain such conditions we must make specific restrictions
on the group’s preferences. For these it is useful to define here a measure of the
group’s bias.

Definition 5. The group’s bias is:

�(u,T) =

∫
T
[ui(1, 1, ti) − ui(0, 1, ti)]ξ(ti)dt∫

T
[ui(0, 0, ti) − ui(1, 0, ti)]ξ(ti)dt

Notice that the group bias is not the average of the group’s members’ biases.
For instance, in the example of a LMG in Figure 2.5 the individual biases of the
two group members are λ(t1) = 1 and λ(t2) = 1

4 . The average bias is then 5
8 . On

the other hand, the group’s bias, as defined here, is �(u,T) = 1+20
1+80 = 21

81 . That is,
the magnitude of individuals’ valuations matter.

It turns out that by restricting the group’s bias to a particular value that de-
pends on the prior belief about the state, one can find conditions that allow for a
comparison between distributions that holds for any voting rule. These are given
in the following result.

Proposition 4. Let I be a like-minded group such that �(u,T) = 1−π
π . Let F and G be two

information structures and let ŝH(k) = argmax{ h1(sH)
h0(sH) ≤ k} for (H, h) ∈ {(F, f ), (G, g)}.

Then
F >I G , ∀ q

if and only if,
F0(ŝF(k)) − F1(ŝF(k)) ≥ G0(ŝG(k)) − G1(ŝG(k))

23



Information and Collective Choice in Like-minded Groups

∀ k > 0

Example 3. Here we give an example of a family of distributions that can be
ordered in the way described in Proposition 4, assuming a uniform prior: π = 1

2 .
Consider the family of power distribution distributions F(s;α), with F0(s;α) =

1− (1− s)α and F1(s;α) = sα, s ∈ [0, 1] and α ≥ 1. This family satisfies the following
properties:

1. F0(s;α) > F0(s;α′) and F1(s;α) < F1(s;α′) for α > α′.

2. f1( 1
2 ;α)

f0( 1
2 ;α)

= 1 for all α ≥ 1.

The following graph represents two distributions from this family with α > α′.

s

 

1

0

0.5

F0(s;α)

F0(s;α')

F1(s;α')

F1(s;α)
10.5

Figure 2.8: Two distributions from the power distribution family, with α > α′.

Let ŝ(s) = {s′ : f1(s;α)
f0(s;α) =

f1(s′;α′)
f0(s′;α′) }. The following is true:

• From property 2 above we have that ŝ(1
2 ) = 1

2 . Then, one can observe from
Figure 2.8 that

F0

(1
2

;α
)
− F1

(1
2

;α
)
> F0

(1
2

;α′
)
− F1

(1
2

;α′
)
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• For s ∈ [0, 1
2 ) it must be ŝ(s) < s. Hence, it must be:

F0(s;α) − F1(s;α) > F0 (ŝ(s);α′) − F1 (ŝ(s);α′)

• For s ∈ (1
2 , 1] it must be ŝ(s) > s . Hence, again it must be:

F0(s;α) − F1(s;α) > F0 (ŝ(s);α′) − F1 (ŝ(s);α′)

Summing up, the above means that the condition in Proposition 4 holds and thus,
we can say that for a like-minded group with �(u,T) = 1 and a uniform prior,
the family of power distributions can be ordered according to Proposition 4 in the
following way: F(s;α) > F(s;α′) for all α > α′.

The previous example demonstrates that when restricting our attention to
unbiased groups the scope for ordering distributions, in terms of informative-
ness for the group, increases. With the following example we demonstrate that,
nevertheless, there are limits to the possibility of ordering distributions. The pre-
vious example may lead one to believe that state-wise stochastic dominance of
the distributions3 would be enough, but his is not true.

Example 4. Consider two distributions F and G. The signal may take one of
three possible values: S = {s1, s2, s3

}. The table in Figure 2.9 gives the complete
description of the two distributions.

F0 f0 F1 f0
f1
f0

G0 g0 G1 g1
g1

g0

s1 0.8 0.8 0.05 0.05 1
16 0.7 0.7 0.1 0.1 1

7

s2 0.95 0.15 0.4 0.35 7
3 0.85 0.15 0.5 0.4 8

3

s3 1 0.5 1 0.6 12 1 0.15 1 0.5 10
3

Figure 2.9: These distributions can not be ordered, even when �(u,T) = 1

These two distributions can not be compared in the terms posited in Propo-
sition 4. Suppose the group uses a voting rule such that λ(td(q)) ∈ (3

8 ,
3
7 ). Then

3By this we mean the following: F0(s) > G0(s) and F1(s) < G1(s).
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s̃F(td(q)) = s2 and s̃G(td(q)) = s1. But in that case, F0(s2) − F1(s2) = 0.55 while
G0(s1) − G1(s1) = 0.6, and the condition of Proposition 4 does not hold. The
following graph depicts the cumulative distribution functions forboth F and G:

 

 

s1 s2 s3

1

0

0.5

F0

G0

G1
F1

Figure 2.10: F and G can not be ordered for the group.

As can be seen from the graph, G0 stochastically dominates F0 and F1 stochas-
tically dominates G1. Yet, this is not enough to consider F more informative than
G for any voting rule.

Up to this point we have examined cases where an ordering of distributions is
possible for any possible voting rule. In the remainder of this section we examine
the possibility of ordering distributions when a particular voting rule is applied,
and its role in the group’s members demand for information.

2.3.3 The optimal voting rule

Our results show that it is possible to compare distributions without paying
attention to the specific voting rule. Still, di�erent voting rules a�ect the final
outcome of the collective choice process. It makes sense then to ask whether there
exists an “optimal voting rule”, and if the answer is a�rmative, what institutional
elements determine it.
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Our optimality criterion, in accordance with previous sections, is aggregate
expected value maximization. As we show, it is possible for such an “optimal”
rule to exist. Furthermore, it depends only on the profile of the group members’
valuations.

Lemma 5. The group’s value is maximized for q∗ =
{
q : λ

(
td(q∗)

)
= � (u,T)

}
According to Lemma 5 an optimal rule must be such that the bias of the decisive

voter must coincide with the group’s bias. In other words, the group’s expected
value is maximized if it makes decisions in the same way as an individual decision
maker with the same bias would make them.

Whether such a member exists within the group is not guaranteed by any
means. If group members form a continuous in the type space, then there should
exist an individual with the required bias. On the other hand, when the set of
agents is discrete there may not exist such a representative agent. The example
of Anne and Bob in the introduction is such an instance. The group’s bias is

�(u,T) =
1
4 + 2

3
1+1 = 11

24 and does not coincide with any of the two agents’ biases
because: λ(tAnne) = 1

4 and λ(tBob) = 2
3 . As a consequence, it seems easier to

approach an optimal voting rule in large groups than in small ones.

2.3.4 The optimal voting rule and comparisons of information
structures

Having defined the optimal voting rule is such way we apply it in the task of
comparing distributions. This is done in the following result.

Proposition 5. Let F and G be two information structures. Let q = q∗. If F >d G , then
F >I G.

According to this result, if the optimal voting rule exists and the decisive voter
it defines is such that one distribution is more informative than the other for this
individual, then the same is true for the group. The importance of this result
lies in the fact that the use of the optimal rule not only maximizes the group’s
expected value. It also allows to use notions of informativeness established for
individual decision problems to the group’s problem. This means for instance
that any set of distributions that can be ranked according to Blackwell’s criterion
for individuals, can be ranked in the same way for a group that uses an optimal
voting rule. But Blackwell’s criterion is not the only useful one. Our decision
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problem is such that when the group is comprised of a single individual, it falls
within the class of monotone decision problems. Lehman (1988) gives criteria
according to which distributions can be compared in the context of monotone
decision problems. Under these same criteria it is possible to rank distributions
that are not comparable according to Blackwell’s notion of informativeness.

2.3.5 Group members’ demand for information

We have looked at the comparison of information structures from two points
of view: the group’s and the individual’s as a decision maker. Speaking in the
terms of our introductory example, the first refers to the value of information to
the group formed by Anne and Bob. The second refers to the value of information
to either Anne or Bob in a case where one of them is deciding on his or her
own whether or not to hire the candidate. The first is the main object of this
paper. The second serves as a yardstick that allows us to measure the degree
to which the notion of informativeness for the group departs from the notion of
informativeness for individuals.

There is a third point of view though that may be useful when applying
the concepts of this paper in economic models of collective choice: the value
of information to individuals within the group. Again in terms of the example,
this refers to the value of information to Anne when she must make a decision
together with Bob. The next section considers an application where this value is
relevant. In general it will may be relevant in cases where group members must
take actions that in�uence the choice of the information structure that is chosen
to make the final decision. An example of this would be if group members are to
vote on what source of information should be used.

Our next result characterizes this demand for information within the group.
It should be no surprise that this demand depends on the voting rule that is used.

Let �q(F,G) = {t : EF[u(x(q, sF), θ, t)] ≥ EG[u(x(q, sG), θ, t)]}. That is, �q(F,G) is the
set of the group’s members that prefer distribution F over G or, in other words,
all i ∈ I such that F >i G. The following lemma characterizes this set.
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2.4 A model with endogenous information acquisition.

Lemma 6. Let {t, t̄} = {min{T},max{T}} and t̂(q) =
{
t : λ(t) = 1−π

π
F0(s̃F(td(q))−G0(s̃G(td(q))
F1(s̃F(td(q))−G1(s̃G(td(q))

}
.

�q(F,G) =


[t, t̄] , F0(s̃F(td(q))) ≥ G0(s̃G(td(q))) and F1(s̃F(td(q))) ≤ G1(s̃G(td(q)))

[t, t̂(q)] , F0(s̃F(td(q))) ≥ G0(s̃G(td(q))) and F1(s̃F(td(q))) ≥ G1(s̃G(td(q)))

[t̂(q), t̄] , F0(s̃F(td(q))) ≤ G0(s̃G(td(q))) and F1(s̃F(td(q))) ≤ G1(s̃G(td(q)))

∅ , otherwise

First, if F and G are such that given the voting rule there is a higher probability
of taking the right decision in both states of the world under F, then all group
members prefer the decision to be taken under F. Second, if the distributions are
such that under F it is more likely to take the right decision in the low state but
less likely in the high state, then there exists a type t̂ that is indi�erent between
the two distributions, and all individuals to his left prefer F over G. This situation
is reversed if under F it is more likely to take the right decision in the high state
but less likely to do so in the low state. Finally, if a right decision in any state is
more likely under G, then all agents prefer that distribution over F.

So, according to this result, group members are split: the ones of a lower type
prefer one distribution while others of a higher type prefer the other one. Notice
though that this division depends directly on the voting rule. Changing the voting
rule not only moves the line of division. It can also lead to a switch of preferences
for some group members.

This concludes our analysis of the possibility of comparing di�erent distribu-
tion structures. In the following section we apply some of our results to a more
structured collective decision problem. We do this to demonstrate the applicabil-
ity of the tools we introduce in the study of collective decision making and the
design of relevant institutions.

2.4 A model with endogenous information acquisi-
tion.

We now turn to an example of an application where we can make use of the
ranking resulting from a comparison of information structures. In the model
we consider, the group must make a decision. more information arrives if the
group is willing to wait for it. Group members that want the group to obtain
more information will try to prolong the waiting time. Others will press for an
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immediate decision. The more individuals press for either option, the more likely
it is to happen. This is similar to the models of Gersbach (1992) (10) and Messner
and Polborn (2012) (17) but with one big di�erence: there is no vote to decide
whether or not to wait for more information. It is determined stochastically,
depending on the proportion of group members that support this option.

As we know from our previous analysis, the demand for information in the
group depends on the voting rule used. First we characterize the optimal vot-
ing rule for this setting. This di�ers from the optimal rule we described in the
previous section where information was considered entirely exogenous. That is
because now its e�ect on the demand for information, and hence on the likelihood
of obtaining more information, must be taken in to account. The trade-o� is the
following. Positioning the voting rule away from q∗ increases the demand for
information within the group and therefore the likelihood to obtain more infor-
mation before takingthe final decision. On the other hand, the final decision is
not taken optimally any longer.

The optimal voting rule in this setting depends on the information structure
that may provide the public signal. For some information structures that can be
ranked according to Proposition 4, more informative distributions are associated
with optimal rules for endogenous information that are further away from the
optimal rule for exogenous information.

2.4.1 The model with endogenous information

To simplify the analysis, in this section we assume that I is a continuum dis-
tributed uniformly in the unit interval: ξ(t) = 1 , t ∈ [0, 1]. Given this assumption
we can economize on notation. In particular, note that now td(q) = q. This comes
without any particular loss in generality, since we have not imposed any restric-
tions onλ(t). We further assume that the group is unbiased, in terms of Proposition
4 : �(u,T) = 1−π

π . This assumption is quite restrictive and not necessary in order to
perform our analysis. Still, it lets us focus on the role of information when setting
the optimal voting rule without having to bother about the group’s bias or priors.

As mentioned before, the group faces two alternative scenarios: to have some
additional information or none. Let the public signal be σ ∈ {∅, s}, with s ∼
F(s). Again, in order to keep analysis tractable we focus on distributions with
a continuous domain: s ∈ [s, s̄]. The following lemma characterizes the group’s
decision rule under no information:
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2.4 A model with endogenous information acquisition.

Lemma 7. The group’s decision is given by

x(q,∅) =

1, q > q∗

0, otherwise

where
q∗ =

{
q : λ(q) =

1 − π
π

}
Letγ(q) =

∫
t∈�q

ξ(t)dt be the fraction of group members that prefer that the group
receives public information before making a decision. According to Lemma 6, �q

takes the following form:

�q(F,∅) =

[o, t̂(q)] , q > q∗

(t̂(q), 1] , q ≤ q∗

where t̂(q) =
{
t : λ(t) π

1−π
F1(s̃(q))
F0(s̃(q)) = 1

}
. From this it follows that

γ(q) =

t̂(q) , q > q∗

1 − t̂(q) , q ≤ q∗

It is important to note that given the definition of t̂(q) and the behavior of
s̃(q) with respect to q, the further away from q∗ is q, the higher is the demand for
information by group member’s, captured by γ(q).

Now we assume that whether or not the group receives a public signal depends
on γ(q). In particular we assume that there exists a function µ : [0, 1]→ [0, 1] such
that µ

(
γ(q)

)
= Pr(σ = s). We assume µ is increasing in it’s argument. One

interpretation of this is that a contest ensues between group members: some exert
e�ort to keep the group from deciding before information arrives, while others
exert e�ort to accomplish the opposite. In this case, µ(γ) is the contest success
function.

In such scenario, the aggregate utility of the group is given by:

W(q) = µ
(
γ(q)

)
V(φd,F, π, q) +

[
1 − µ

(
γ(q)

)]
V(φd,∅, π, q)

This is actually a piecewise function and depends on whether the voting rule
q is higher or lower than q∗. We have: For q ≥ q∗:
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W(q) =π

∫
T

u(1, 1, t)dt + (1 − π)
∫

T
u(1, 0, t)dt

+ µ(γ(q))(1 − π)F0(s̃(q))
∫

T
[u(0, 0, t) − u(1, 0, t)]dt

− µ(γ(q))πF1(s̃(q))
∫

T
[u(1, 1, t) − u(0, 1, t)]dt

While for q < q∗:

W(q) =π

∫
T

u(0, 1, t)dt + (1 − π)
∫

T
u(0, 0, t)dt

+ µ(γ(q))π[1 − F1(s̃(q))]
∫

T
[u(1, 1, t) − u(0, 1, t)]dt

− µ(γ(q))(1 − π)[1 − F0(s̃(q))]
∫

T
[u(0, 0, t) − u(1, 0, t)]dt

To find the optimal voting rule one must solve the first order condition.4 Again,
given the piecewise nature of the function, we get two equations.
For q > q∗ we have the following5:

∂µ(γ(q))
∂γ

∂γ(q)
∂q

F1(s̃(q)) + µ(γ(q)) f1(s̃(q))
∂s̃(q)
∂q

=
∂µ(γ(q))
∂γ

∂γ(q)
∂q

F0(s̃(q)) + µ(γ(q)) f0(s̃(q))
∂s̃(q)
∂q

Notice that for q ≥ q∗ we have γ(q) = t̂(q). That gives:

µ(γ(q)) f0(s̃(q))
∂s̃(q)
∂q

+
∂µ(γ(q))
∂γ

∂t̂(q)
∂q

F0(s̃(q)) =µ(γ(q)) f1(s̃(q))
∂s̃(q)
∂q

+
∂µ(γ(q))
∂γ

∂t̂(q)
∂q

F1(s̃(q))

4We do not check the second order condition. Uniqueness depends on particular functional
forms but should in general not be an issue given the various monotonicity assumptions made so
far. In any case, the first order condition characterizes the optimal rule, unless we have a corner
solution which in this case would be unanimity. An interior solution is assumed in what follows.

5For q < q∗ we obtain a similar expression as the one we obtain here. The only di�erence is a
negative sign in the RHS. Which of the two solutions represents the optimal voting rule depends on
the specific functional forms for λ(t) and µ. What interests us more here are the comparative statics
that are of a similar nature in either case. We therefore focus analysis on this expression keeping
in mind that the actual optimal voting rule may be characterized by the symmetric expression.
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2.4 A model with endogenous information acquisition.

By implicit di�erentiation we get:

∂t̂(q)
∂q

= −
λ(t̂(q))
∂λ(t̂(q))
∂t

∂s̃(q)
∂q

(
F1(s̃(q))
F0(s̃(q))

)′
s

F1(s̃(q))
F0(s̃(q))

Plugging this in to the last expression and simplifying we obtain the following:

f0(s̃(q)) − f1(s̃(q))
F0(s̃(q)) − F1(s̃(q))

F1(s̃(q))
F0(s̃(q))(
F1(s̃(q))
F0(s̃(q))

)′
s

=

∂µ(γ(q))
∂γ

µ(γ(q))
λ(t̂(q))
∂λ(t̂(q))
∂t̂

(2.4)

Let

�(q) =F0(s̃(q)) − F1(s̃(q))

=F0(s̃(q)) − [1 − F1(s̃(q))] − 1

∝Pr(x = θ|σ = s) − Pr(x = θ|σ = ∅)

That is, �(q) represents the improvement in the likelihood of making the correct
decision after receiving a public signal, given q. Then 2.4 can be written as:

�′s(q)
�(q)

F1(s̃(q))
F0(s̃(q))(
F1(s̃(q))
F0(s̃(q))

)′
s

=

∂µ(γ(q))
∂γ

µ(γ(q))
λ(t̂(q))
∂λ(t̂(q))
∂t̂

(2.5)

Expression (2.5) characterizes the optimal voting rule in this setup. It captures
the trade-o� we have described between optimal decision making and increased
demand for information. The first is captured by the first term in the LHS which
represents the proportional change of �(q). The other terms capture the change in
demand for information. In particular, the RHS together with the second term of
the LHS can be thought as the elasticity of the likelihood of receiving the public
signal with respect to the the proportion of group members that want the public
signal. This proportion depends on the individuals’ biases, captured by the last
term in the RHS and the form of the available information structure, captured by
the second term in the LHS.

First note that for q = q∗ as defined in lemma 5, �′s(q)
�(q) must be zero,6 since

�(u,T) = 1−π
π . Given that the terms in the RHS are strictly positive by definition,

6Rember the definition of s̃ given in lemma 2.1
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q∗ is not a solution to the equation in (2.5). Remember that s̃ is decreasing in t and
therefore also in q. This implies, the solution in this case must be some q∗∗ > q∗.
This assures that f0(s) > f1(s) which makes the LHS positive.

The optimal rule in this model with endogenous information is more conser-
vative than the optimal rule when information is exogenous. To understand this,
notice that q∗ is such that the decisive voter must have a bias λ(td) = 1−π

π which
is decreasing in π. This means that the decisive voter under q∗ is biased towards
the action that matches the state that is a priori. What we show here is that since
q∗∗ > q∗ it must be that

λ
(
td(q∗∗)

)
> λ

(
td(q∗)

)
Hence, the bias of the decisive voter according to q∗∗ is closer to the state favored
by the prior, compared to the decisive voter under q∗. The case of a uniform prior
(π = 1

2 ) o�ers a good illustration of this. In that case, q∗ = 1
2 , which is simple

majority. Then, the optimal rule in this model with endogenous information is
some kind of super-majority.

2.4.2 Comparative statics with respect to information

How does the optimal voting rule here change for more informative public
signals? It is at this point where Proposition 4 is useful. It allows us to determine
whether a particular information structure is more informative than another for
any voting rule. Thus, if distributions that satisfy the conditions in this proposition
are considered, informativeness remains exogenous to the model and comparative
statics with respect to information make sense.

We do this here using the family of power distributions defined in example
3. As we show, this family satisfies the conditions of Proposition 4. In particular,
F(s;α) becomes more informative for higher values of α. The question is then,
how does q∗∗ change as α increases?

Remember that the family of distributions we consider is such that F0(s;α) =

1 − (1 − s)α and F1(s;α) = sα. Plugging this in to the LHS of 2.5 gives:

sα

1 − (1 − s)α

sα
1−(1−s)α

sα−1α
1−(1−s)α −

sα(1−α)α−1α

(1−(1−s)α)2

This can be shown to be decreasing in α. It follows that q∗∗ must be increasing
in α. In other words, The better the possibly available information, the more
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2.5 Conclusions

conservative should the voting rule be.

When one obtains similar results performing this exercise with other families
of distributions that can be ordered according to Proposition 4. Whether the is
a more general relation between informativeness and the comparative statics on
the voting rule in this model remains as a research question for the future.

2.5 Conclusions

We ask the question of whether an ordering of information structures is pos-
sible for a group of like-minded individuals. We answer by saying that only a
partial, and very limited, order is possible in general. It can be extended if more
restrictions are put on the group’s profile of preferences.

What is important to understand is that the notion of “better information” as
we understand it for individuals, even in its most restrictive form, as formalized
by Blackwell, can not be applied to groups. Even if group members are like-
minded, in that they agree on what should be done in a given state of the world.
The reason is that uncertainty introduces disagreement. More precise information
does not guarantee more agreement. This is why it may be better for the group
to be “less informed”.

There is an aspect of information we ignore throughout the analysis: it usually
comes at some cost. In particular, more precise information is usually more
costly. The omission of the costs from acquiring information in our analysis is
intentional. It aims at emphasizing how the collective decision making process
generates frictions that can reduce the value of information without even when
there are no other costs to pay. Having established that, the question of how
should a group proceed to acquire public information when it is costly, becomes
particularly interesting. Public information has some of the characteristics of
public goods. But as we show here it may also be a public “bad” for a subset of
group members. What mechanism should be used to elicit individuals’ valuations
and choose among di�erent sources of information and finance it’s acquisition?
What is the role of the voting rule in such a mechanism? These questions are left
as future research.
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2.6 APPENDIX: Proofs

Proof of Lemma 1. Agent i chooses x = 1 if:

f1(s)π
f (s;π)

u(1, 1, ti) +
f0(s)(1 − π)

f (s;π)
u(1, 0, ti) >

f1(s)π
f (s;π)

u(0, 1, ti) +
f0(s)(1 − π)

f (s;π)
u(0, 0, ti)

f1(s)
f0(s)

π
1 − π

λ(ti) > 1 (2.6)

Given the MLRP there must either be a threshold value s̃i(ti) such that the inequal-
ity holds for s > s̃i(ti) proving the first part of the lemma, either it always or never
holds, and φ̂i(s, ti) is constant. �

Proof of Lemma 2. This follows directly from inequality 2.6 in the proof of lemma
1 and the monotonicity assumption on λ(t) �

Proof of Lemma 3. It follows from the monotonicity of φ̂(s, t) with respect to t. �

Proof of Proposition 1. From the definition of F >I G we get the following in-
equality:

F0 (s̃F(td)) − G0 (s̃G(td)) ≥
π

1 − π
�(ui, ξ(t)) [F1 (s̃F(td)) − G1 (s̃G(td))] (2.7)

where �(ui, ξ(t)) =

∫
T[ui(1,1,ti)−ui(0,1,ti)]ξ(ti)dt∫
T[ui(0,0,ti)−ui(1,0,ti)]ξ(ti)dt

represents the group’s bias.

Also, from the definition of s̃(t) it follows that:

h1(s̃(t))
h0(s̃(t))

≤
1 − π
π

1
λ(t)

, ∀h ∈ { f , g}

The RHS of this inequality is always positive and decreasing in t. Then, for
t̂(k) = {t : 1−π

π
1
λ(t) = k} it must be that s̃(t̂(k)) = ŝ(k). Thus, if the inequalities stated

in the second part of the proposition hold for any k, they must also hold for any
s̃(t̂(k)). In such case, then the LHS in (2.7) is positive and the RHS is negative. This
proves the su�ciency of these conditions for the informativeness relationship
stated in the proposition.

We prove the “only if” part of the proposition by showing that if the inequal-
ities do not hold, one can always two instances of groups and voting rules such
that the informativeness ranking between F and G is di�erent in each case. Con-
sider a group I = {1, ...,n} and q = 0. Suppose t1 < t2 < ... < tn. Then we have

36



2.6 APPENDIX: Proofs

td(q = 0) = t1. Individuals’ preferences are as follows:

ui(1, 1, ti) = ti

ui(0, 0, ti) = 1

ui(1, 0, ti) = ui(0, 1, ti) = 0

for all i ∈ I. If F >I G, then it must be that:

F0 (s̃F(t1)) − G0 (s̃G(t1)) ≥
π

1 − π

∑
I ti

n
[F1 (s̃F(ti)) − G1 (s̃G(ti))] (2.8)

Suppose F0 (s̃F(t1)) ≥ G0 (s̃G(t1)) and F1 (s̃F(ti)) ≥ G1 (s̃G(ti)). It is clear that in-
equality(2.8) may hold for

∑
i,1 ti low enough, but not for

∑
i,1 ti above a cer-

tain threshold. The same argument can be made for F0 (s̃F(t1)) ≤ G0 (s̃G(t1)) and
F1 (s̃F(ti)) ≤ G1 (s̃G(ti)). This proves the necessity of the inequality conditions stated
in the proposition in order for >I to be valid for any I and any q. �

Proof of Proposition 2. We show the result for point 1. Point 2 follows from a
symmetric argument. We show that given F � G and g1(s)

g0(s) > 0 , ∀s , sG, it must

be f1(s)
f0(s) = 0 for some s , sF. Suppose not. Then inf{ f1(s)

f0(s) } > 0. There are two cases
to consider:
Case 1: inf{ f1(s)

f0(s) } > inf{ g1(s)
g0(s) }.

Then there exists I such that for some q′, π
1−π

1
λ(td(q′)) ∈

(
inf{ g1(s)

g0(s) }, inf{ f1(s)
f0(s) }

)
. From the

definition of s̃(t), this means that:
s̃F(td(q′)) = sF and arg inf{ g1(s)

g0(s) } ≤ s̃G(td(q′)) ≥ σ. This in turn means that F0(s̃F(td(q′))) =

F1(s̃F(td(q′))) = 0 and G0(s̃G(td(q′))) > 0. This inequality holds because given our
assumptions, g0(s̃G(td(q′) must be positive. If sG is discrete in [ arg inf{ g1(s)

g0(s) }, σ] the
inequality follows directly. If it is continuous in some interval then it must be true
as well for the supremum of that interval. Notice then that F0(s̃F(td(q′))) = 0 <
G0(s̃G(td(q′))) > 0 which violates F� G.
Case 2: inf{ f1(s)

f0(s) } < inf{ g1(s)
g0(s) }.

Then there exists I such that for some q′, π
1−π

1
λ(td(q′)) ∈

(
inf{ f1(s)

f0(s) }, inf{ g1(s)
g0(s) }

)
. From the

definition of s̃(t), this means that:
s̃G(td(q′)) = sG and arg inf{ f1(s)

f0(s) } ≤ s̃F(td(q′)) ≥ σ′. This in turn means that G0(s̃G(td(q′))) =

G1(s̃G(td(q′))) = 0 and F1(s̃F(td(q′))) > 0, for the same reason as with G0 in case 1.
Again this violates F � G. Thus for F � G to be true when g1(s)

g0(s) > 0 , ∀s , sG it
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must be f1(s)
f0(s) = 0 for some s , sF. This means that for that s Pr(θ = 0|sF) = 1. �

Proof of Proposition 3. Given the conditions in the proposition, inequality 2.7
must hold for any q, as long as td ∈ [t, t̄]. The restriction on T makes sure of that
and thus the result holds. �

Proof of Proposition 4. The result follows directly by rearranging inequality (2.7).
�

Proof of Lemma 5. Solving the FOC for the aggregate utility we obtain:
f1(s̃(td(q∗)))
f0(s̃(td(q∗))) =

1−π
π

1
�(ui,ξ(t)) .

Combining this with inequality 2.6 in the proof of lemma 1 gives the definition
of q∗. Monotonicity with respect to � follows from monotonicity of td(q) and the
MLRP. �

Proof of Proposition 5. From Lemma 5 we have λ
(
td(q∗)

)
= � (ui, ξ(t)). Plugging

this into inequality (2.7) gives:
F0

(
s̃F(td(q∗))

)
− G0

(
s̃G(td(q∗))

)
≥

π
1−πλ

(
td(q∗)

) [
F1

(
s̃F(td(q∗))

)
− G1

(
s̃G(td(q∗))

)]
.

Since we assume F >i G , ∀ i ∈ I, this inequality must hold, proving the point. �

Proof of Lemma 6. Note that:

EF[u(x(q, sF), θ, t)] ≥ EG[u(x(q, sG), θ, t)]

F0(s̃F(td(q)) − G0(s̃G(td(q)) ≥
π

1 − π
λ(t)[F1(s̃F(td(q)) − G1(s̃G(td(q))]

For t = t̂(q) this expression holds with equality, i.e. the individual of type t̂(q) is
the one that is indi�erent between the two distributions. The definition of �q(F,G)
follows from the monotonicity of λ(t) with respect to t. �

Proof of Lemma 7. Note that td(q) = q. We know that x(q,∅) = 1 if

E[ud(1, θ, q)] > E[ud(0, θ, q)]

πud(1, 1, q) + (1 − π)ud(1, 0, q) > πud(0, 1, q) + (1 − π)ud(0, 0, q)

λ(q) >
1 − π
π

Remember that q∗ is such that λ(q∗) = �(u,T), and by assumption �(u,T) = 1−π
π .

This prooves the lemma �
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Chapter 3

Standing in Line: Demand for
investment opportunities with
exogenous priorities

A key factor in the organization of the economy is the set of beliefs that
people have about each other. They change those beliefs by searching,
by computing, by analyzing, and when looked at properly, this gives
rise to some considerable anomalies when compared with the standard
theories that I and many others have developed

Prof. K. Arrow, XXIII Barcelona GSE Lecture

3.1 Introduction

Markets for goods or investment opportunities are often characterized by lim-
ited supply: opportunities for micro-investments, initial private o�erings (IPO’s),
o�ers in the housing market, and job o�ers in the labor market are some examples.
When this is the case, interdependencies are created among market participants’
actions and outcomes: some agents can obtain access to these opportunities only
if others choose not to. If furthermore actions are motivated by the available infor-
mation, interesting strategic e�ects are observed. The following “down-to-earth”
example should make the nature of these e�ects clear to the reader.

You come back home after work in the evening and notice an add in the
morning’s paper o�ering 10 “Clean-your-house Robots” at a very low price to the
first 10 persons to send a free sms to a specific number. At first glance this o�er
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seems appealing. But before sending the sms you think again: given that the add
was in the morning’s paper and many hours have passed since it was published,
the only chance of winning a robot for a low price is if less than 10 persons have
sent the sms already. This would happen only if, unlike yourself, the vast majority
of readers that saw the add during the day thought that this robot is probably
useless. Sending the sms will either get you nothing or if you get something it
will most likely be a big piece of junk taking away precious space in your house.
A winner’s curse!

The possibility of su�ering such a winner’s curse (WC) may induce some
agents to ignore their private information and pass on opportunities that come in
limited supply. They do so without actually observing others’ actions. The simple
knowledge that others may have priority over oneself allows for the necessary
inferences. Agents’ behavior in such environments leads to theoretical consider-
ations that we explore in this paper. We o�er insights that are relevant to market
design.

Crowdfunding markets1 present environments such as the one in our model.
For example, profounder.com is one of many wesites that provide a platform
for entrepreneurs to obtain funding from micro-investors. There is a limit to the
total number of individuals that may finally invest.2 The entrepreneur obviously
wants to maximize the number of potential investors. But the existence of the limit
can give rise to the WC reasoning of the “robot” example: a potential investor
may argue that if, in spite of the limit in the number of investors, he becomes
one of them then it is because others choose not to invest. If they do so because,
according to their information, the project is not worth it, then maybe it is better
for him not to invest. If more investors argue the same way, then demand for
investing in the project may turn out to be low, contrary to the entrepreneur’s
desires.

We model this situation as a simultaneous choice game where the WC e�ect
is internalized at the same time by all decision makers. In particular, our model
considers a set of agents that face the opportunity to invest in a project. There
is a limit to the total number of agents that may invest. If the number of agents

1According to the MacMillan Open Dictionary, crowdfunding is the use of the web or another
online tool to get a group of people to finance a particular project. The American Jobs Act, from the
current US administration, includes plans to work with the SEC to review securities regulations
in ways that expand crowdfunding opportunities.

2The limit is imposed by US law. But one can imagine that even without legal limits, and given
an average size of investment, there is a economic limit to the initial funding any entrepreneur
can handle
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that choose to invest exceeds the number of slots in the project, then these are
assigned according to an exogenous priority order. Agents do not observe the
actions of others. Thus when deciding to invest or not they don’t know whether
agents with a higher priority have invested or not and thus whether there is any
available slot for them. Specifically, one can imagine the situation as one in which
agents (investors) stand in a line and decide simultaneously whether or not to
invest. The decision is taken without knowing what other agents choose to do.
After decisions are made, the planner (entrepreneur) goes to the first agent in line
and asks him for his decision. She assigns him a slot in the investment if he chose
to invest and moves on to the next in line. The process continues until all agents
have been asked or no more slots are available. Payo�s depend on whether or
not an agent is assigned an investment slot. They further depend on an unknown
state of nature which determines the returns of the investment. In a “good” state
investing gives a high payo�, while in a “bad” state it is better not to invest. Each
agent also has some private information concerning the state. This comes in the
form of a binary noisy signal which points to a good or a bad state.

The main ingredients for our model are incomplete information, a common
value and the limited supply of investment opportunities. The latter makes
other investors’ decisions relevant for everybody else, or, in particular, for those
that follow in the line. Without limited supply, the problem becomes a sum of
individual decision problems, independent of each other, since inferences about
others’ behavior are unnecessary. Only when supply is limited can one argue
that being able to invest means that others with a higher priority have not done
so. Incompleteness of information and the common value turn this argument
to the WC argument described above. Awareness of the WC drives equilibrium
behavior in our model: individuals in the front of the line decide according to
their private information; the ones that stand further back, ignore their private
information and simply do not invest. This is because for the ones standing in
front, whether they get a slot does not depend on what others do. The ones in
the back can only obtain a slot if the ones in front choose not to invest. This
restriction of the market allows them to make equilibrium inferences about the
private information of the agents that stand in front of them in the line. If several
agents in front choose not to invest it must be that their private information points
to the “bad” state. In that case it might be better not to invest, even if one’s own
private signal points to a good state. Thus individual behavior in equilibrium
depends on one’s position in the line.

Once we understand individual behavior in our model we can see how other
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factors may a�ect the equilibrium in such a market. Anything that can a�ect the
strength of the WC can have an impact. For instance the number of available
slots: the WC argument’s strength is di�erent in the case of only one available slot
compared to the case of 50 slots. For an agent in position 51 obtaining the single
available slot is almost certainly a consequence of the investment opportunity
being bad. In the second case, even when the state is good, it is enough for a
single agent of the 50 preceding in the line to get a wrong signal for a slot to be
available. Another interesting issue is the knowledge an individual has about his
position in the line. This may not always be perfect and it has an impact on the
number of agents that choose to play informatively (follow their signal) or herd
(ignore their signal).

Notice that we assume no complementarities among investors’ actions. Whether
others invest or not does not a�ect the quality of the investment. It may simply re-
veal their private information. Thus, we have that factors such as the knowledge
about the priority order and the size of the supply of investment opportunities,
both unrelated to the quality of the investment and the investor’s payo� from it,
become determinant for the demand for the investment slots.

In the base-line model, we assume that agents know the exogenous priority
order, that is each agent knows exactly his position in line. After a detailed analysis
of this case we consider an alternative scenario where priorities are determined by
a lottery. The realization of this lottery takes place after investment decisions are
made. This scenario represents the other extreme: agents have no knowledge of
where they stand in line. We also consider an intermediate case with a Bernoulli
arrival process that generates a random assignment. In each period an agent
arrives with a given probability. Each agent is aware of this process but does not
know how many other agents have arrived before him. Still,the date of arrival
gives him some idea about the distribution of this number that allows him to
build an expectation of the probability of getting a slot.

We fully characterize equilibrium behavior in our model. When the position
in the line is known, agents in the front choose whether or not to invest according
to their private information. The ones further back ignore their private informa-
tion and choose not to invest. Equilibrium in the Bernoulli arrival process model
shares the same features. When the priority is set by a lottery, all agents choose not
to invest with positive probability even when their private information indicates
they should do so. Increasing the available slots a�ects agents di�erently, de-
pending on their position in line. When an agent’s position in line is greater than
the available slots, but close to that, the increase in the number of slots reduces
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the WC e�ect and makes investing more attractive. The contrary is true for agents
further back in line. With high uncertainty about priority the final direction of the
e�ect depends on the specific parameters.

3.1.1 Literature Review

Rock (1986) (29) studies the market for IPO’s which is an example of a market
with incomplete information and limited supply. He uses a “lemons market”
type of model to explain the underpricing of initial public o�erings (IPO’s). In
his model uninformed investors compete with informed ones. The first face a
winner’s curse since they know they can invest only if informed investors con-
sider the o�ering price too high with respect to the expected market price. The
issuer must therefore underprice in order to attract the uninformed investors. A
significant body of empirical literature has followed, trying to verify this expla-
nation of IPO underpricing (see Ljungvist, 2007 (22), for a survey). In our model
we obtain the winner’s curse is of a di�erent nature. There is no asymmetry
in information between agents. We show that it is the market design features
that determine the strength of the curse. Our model does not share the aim of
explaining IPO underpricing. Still, our results suggest that if such underpricing
is due to a winner’s curse e�ect, any empirical strategy trying to identify such
e�ect must take into account the institutional settings of the market studied and
possibly take advantage of any variation in these.

The paper by Thomas (2011) (32) shares with us the interest in studying markets
with limited availability of di�erent goods and incomplete information. However,
there are several di�erences both in the approach and the kind of results obtained.
Her paper examines the situation in which di�erent agents acquire information
about di�erent alternatives through experimentation. The fact that some of these
are limited in supply gives rise to strategic interactions when agents decide on
the duration of experimentation. Still, agents here do not learn from one another,
whether by observation or in equilibrium. The strategic incentives for choosing
one alternative are of a preemptive nature. In our case it is equilibrium beliefs that
push an agent to choose something contrary to his information. Furthermore, in
Thomas’ paper the priority over choices is endogenous. Agents decide when to
stop experimenting and grabbing an option. We focus on exogenous priorities.

Given that the marketplace we study does not involve prices, the literature
on matching markets is a natural place to look for parallelisms. One approach to
matching markets looks at specific matching games. Perhaps the first attempt of
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such an approach has been the work of Becker (1973) (6). Within this literature
and more recently, some papers have considered, as we do, environments with
incomplete information and a common value. In particular, a paper that is closer to
our work and that is the first to identify the type of winner’s curse that in�uences
behavior in our model is the one by Lee (2009) (20). He looks at the decentralized
college admissions market and finds a rationalization for the “early admissions”
system on the basis of this curse. We focus on a centralized market and see how
the use of a matching mechanism can create the curse. This induces herding on
the part of some participants in order to avoid it. Another example is Chade
(2006) (9). He looks at a decentralized marriage market and detects what he calls
the acceptance curse. A participant can infer information by the event of being
accepted by a partner at a given point in time. This acceptance may mean that
one’s value is higher than what one thought about oneself. This is di�erent from
the curse in our model where the information generating the curse comes from
the equilibrium play of competing agents and concerns the value of the chosen
alternative, and not one’s own value.

Generalized matching markets with incomplete information were first stud-
ied by Roth (1989) (30), and the literature remains active (see for example Ehlers
and Massó, 2007 (13); ,Pais and Pinter, 2008 (28)). Incompleteness in these exam-
ples concerns knowledge about others’ preferences on the part of a participant
in the matching market. This literature is interested in understanding the stabil-
ity and strategy-proofness of matching mechanisms. Chakraborty et al. (2010)
(10), follows this line of research and introduces the additional element of value
interdependency among participants.

We study how in the presence of incomplete information and a common value
agents can make inferences about others’ information in equilibrium and the e�ect
of such strategic considerations on the market’s performance. In our model it is
the assignment mechanism that is used to resolve the problem of limited supply
that allows for such inferences. Milgrom and Weber (1982) (25), McAfee and
McMillan (1987) (24) study similar e�ects that arise in auctions. Outside the realm
of markets, Austen-Smith and Banks (1996) (4) and Feddersen and Pesendorfer
(1997)(15) first studied the implications of such strategic considerations in voting
and collective decision making.

The idea that rational individuals may take decisions ignoring their private
information is not new. We have just mentioned the case of strategic voting, but
probably the most prominent case is the one of social learning and informational
cascades (Banerjee, 1992 (5);, Bikhchandani et al., 1992 (7)). This literature studies

46



3.1 Introduction

the case where individuals with imperfect information and a common value move
sequentially and can observe the actions of some or all predecessors before making
a decision. Gale and Kariv (2003) (16) and Acemoglu et al. (2008) (1), study the
case where agents learn through their social network. An informational cascade
starts when an individual ignores his private information because the information
inferred by observing others’ actions points to the other direction. Since his action
conveys no new information, all individuals following him act in the same way.
Herding behavior does not occur if actions of others were not observed. In
Callander and Hörner (2009)(8), for instance, the exact actions of others’ are not
observed, but only the aggregate choices. Herding in these cases ceases to be
an equilibrium feature. If actions are taken simultaneously agents should follow
their information. But not if there is limited capacity. This is what happens in
our paper and what builds a bridge with the informational cascade model. The
general environment is the same but in our case actions are simultaneous and one
of the two choices has limited capacity. For a general overview of the literature on
social learning in markets the reader should look at the books by Chamley (2004)
(11) and Vives (2010) (33).

Agents in our model are fully rational. It is not clear whether this is the right
assumption in such a model, since di�erent approaches find experimental and
empirical evidence point to di�erent directions. On the one hand, there is evidence
that individuals are sophisticated enough to infer information from others’ actions
triggering informational cascades (Anderson and Holt, 1997 (3); Hung and Plott,
2001 (18); Alevy et al., 2007 (2); Goeree et al., 2007 (17)). On the other hand,
evidence points to the opposite direction with respect to sophistication and its
relation to the winner’s curse. Both in the lab and the real world the majority
of individuals fail to take the WC into account (Kagel and Levin, 1986(19); Lind
and Plott, 1991 (21)). Our simple model provides a framework in which both
situations can be tested. We use it in a related paper ( Louis, 2011(23)) to test
whether the same individuals are sophisticated enough to follow herds, but not
so sophisticated as to avoid the winner’s curse. This type of behavior is not
predicted by the salient theories of play for games with incomplete information
and a common value, such as “level-k reasoning” (Stahl and Wilson, 1995 (31);
Nagel, 1995 (27); Crawford and Irriberi, 2007 (12) or “cursed equilibrium” (Eyster
and Rabin, 2005 (14)).
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3.2 The model

Agents. There are n ≥ 2 agents that must choose whether or not to invest
in an investment opportunity presented to them. Let xi ∈ X = {I,O} denote the
choice of agent i ∈ N = {1, ...,n}. There are only k < n available slots in the
investment. This means, it is not possible for all agents to invest. Whether an
agent is assigned to one of the available slots is determined by a mechanism
f : {I,O}n → {I,O}n. The assignment follows an exogenous priority order. An
agents index denotes the agent’s priority: agent i has priority over agent j if i < j.
Let fi : {I,O} × {I,O}N−1

→ {I,O} denote the outcome of the assignment for agent i
given his and others’ choices. The following holds:

fi(xi = I, x−i) =

I i f
∣∣∣{x j = I , j < i}

∣∣∣ < k

O , otherwise

fi(xi = O, x−i) = O

Information. The state of nature is θ ∈ � = {G,B}. Agents have a uniform common
prior about the state of nature. This means that the a priori probability of θ taking
either value is 1

2 . 3 Before making a choice, each agent receives a noisy private
signal si ∈ S = {g, b} about the state of nature. Private signals are independent
conditional on the state of nature. The following table indicates the probability of
the signal taking either value conditional on the state θ.

θ

G B

si
g qG 1 − qB

b 1 − qG qB

Payoffs: An agent’s utility function has the following form:

ui
(

f (xi, x−i
)
, θ) =


1, f (xi, x−i) = I and θ = G

0, f (xi, x−i) = I and θ = B

γ, f (xi, x−i) = O

with 0 < γ < 1. In other words, the payo� of an agent that obtains a slot in the
investment is normalized to 1 if the state is “good” and 0 if the state is “bad”.

3Considering non-uniform priors is also possible. Since it does not a�ect results in a particularly
interesting way we choose not to do so, in favor of expositional clarity.
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When an agent chooses not to invest or does not obtain a slot, he gets γ ∈ (0, 1).
We can view this parameter as the value of a safe outside option. In the case

of micro-investors it could be the return one gets by keeping the money in the
bank. This being the same for agents that directly choose not to invest and for
the ones not obtaining a slot implies that there is no cost from choosing to invest.
This may not be true in some occasions. For instance, participating in an IPO
may involve non-negligible transaction costs that are independent of whether or
not one obtains shares of the company in the end. Adding cost for investing in
our model is possible and mathematically tractable. Nevertheless, it will become
clear further on that including such costs here would only reinforce our results
about agents behavior in such a market. Hence, not including them makes both
our results stronger and the exposition cleaner.

Coming back to the image of agents standing in a line, one can view the model
we have described in the following way. An agent’s index denotes his position in
the line. Given the limited availability of investment slots, deciding to invest does
not guarantee the agent a slot. The assignment mechanism works in a way that
an agent that chooses to invest obtains a slot only if less than k agents standing in
front of him, to invest. If an agent’s position (index) is less than k than obtaining
a slot only depends on his own decision.

In real markets, one’s position in the line might depend on one’s time of arrival
when a the “first-come, first-served” method is used. Or it might depend on some
priority assigned by the seller or planner. In the micro-investment example for
instance, the entrepreneur might want to give priority to close friends and family
over other investors. In a market for “public protection” housing there might be
social criteria that determine the priority of potential buyers.

For the moment we assume that each agent knows exactly his position in the
line. This assumption can be strong and we later relax it in di�erent ways. Still
is useful to start of this way for two reasons. On one hand it allows for a better
understanding of the forces that determine equilibrium behavior. On the other
hand it is an important building block in the calculation of equilibria in the other
environments we explore later on.

As was mentioned in the introduction, agents decide whether or not to invest
without observing what others choose to do. There is neither communication
among agents nor the possibility for social learning by observing other actions.
In some environments this makes sense. For instance in IPO’s, investors must
decide whether or not to participate in a simultaneous fashion. The stronger
argument for this assumption will be clear once we present our results. As we
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shall see, the equilibrium behavior of agents in our model shares characteristics
with the behavior of agents in models of social learning. In particular the fact
that some agents ignore their private information and choose a particular action.
By obtaining these results with agents acting simultaneously we show how this
behavior can emerge in such an environment and what factors drive it.

We will further assume that the following condition holds:

Condition 1.
1 − qG

qB
<

γ

1 − γ
<

qG

1 − qB
. (3.1)

This condition makes the problem interesting. It makes sure that when an
agent has no further information than his own private signal, his best response
depends on the signal’s content. A signal si = g indicates that investing is a
“good” choice. A signal si = b indicates it is better not to invest. As will become
clear further on, were this not true, all agents would choose to invest (for low γ)
or not to invest (for high γ) independently of their signal.

Up to now we have defined a set of agents that can take actions out of a par-
ticular set and have a particular type which is given by their private information.
Their actions lead to payo�s that depend on the state of nature and on the actions
of other agents. The environment is further defined by the available slots, the
value of the outside option and the precision of the private information. All these
define a bayesian game G = 〈N,�, {X,S,ui, }i∈N, k, γ, qG, qB〉. The relevant concept
that we use to solve such a game is the one of Bayesian Nash equilibrium. In our
specific context this equilibrium refers to a strategy for each agent that describes
the action the agent takes depending on his private information: x∗i : S→ X. The
strategy must be such that and that it maximizes his expected payo� from the
game given all other players’ strategies: E[ui(x∗i , x

∗

−i)] ≥ E[ui(x
′

i , x
∗

−i)],∀i ∈ N, and
given his beliefs about others’ private information.

3.3 Equilibrium behavior

As was mentioned, agents in our model can neither communicate or observe
each others’ actions. If there was no limit in the number of available slots, or
simply k ≥ n, then each agent would obtain a slot if he chose to invest. Our model
would reduce to a sum of n individual decision problems in which each agent
would choose according to his signal. Restricting the supply of slots forces agents
to make strategic considerations when making their decision. In particular, agents

50



3.3 Equilibrium behavior

standing at positions beyond k realize that they can obtain a slot only if less than
k of the preceding agents choose not to invest.

We now use the simplest possible example to demonstrate how such strategic
considerations a�ect agents’ behavior in such a game.

Example 1. In this example we consider only two agents: i ∈ N = {1, 2}. The
capacity limit is the lowest possible: k = 1. Let us also assume that qG = 1.
Condition 3.1 then reduces to qB > 1 − 1−γ

γ and we assume this holds. Notice that
with this choice of parameters for the signal accuracy, if a player observes a signal
si = b he knows that the state of nature is θ = B with probability 1. This is because
there is zero probability of obtaining such a signal when the state is θ = G. Agent
1 stands in line in front of agent 2, or in other words, he has got priority over
agent 2. This means that agent 2 can obtain the slot only if agent 1 chooses not to
invest. For agent 1 the outcome depends only on his own choices.

First consider agent 1. He is the first in line. Whether he obtains a slot depends
only on his choice. Since Condition 3.1 holds, his decision depends on his private
signal. If s1 = g he chooses to invest: x1(g)∗ = I. If s1 = b, then he chooses not to
invest: x∗1(b) = O.

Agent 2 is second in line. He chooses simultaneously with agent 1. Therefore,
even if he chooses to invest he does not know whether or not he will obtain the
single slot. This depends on agent 1’s choice. If agent 1 chooses not to invest then
agent 2 can obtain the slot if he chooses to invest. If agent 1 chooses to invest,
then there is no slot available for agent 2 and he gets the outside option. Still, he
knows that agent 1’s decision depends on the private signal s1. He also knows
that his own decision only matters when agent 1 chooses not to invest. He must
therefore decide conditioning on this event. But agent 1 chooses not to invest
only when he observes s1 = b and this is only possible when θ = B. Thus agent
2 knows that his decision matters only when the state is “bad” and in that case
he should not invest. Notice that this does not depend on s2, the signal observed
by agent 2. Therefore, agent 2 decides not to invest, independently of his private
signal: x∗2(s2) = O.

The two agents in this example end up playing very distinct strategies in equi-
librium. The first agent follows his signal, while the second agent ignores it and
chooses not to invest. From now on we shall refer to the strategy of agent 1 as
informative play and to to the strategy of agent 2 as herding.
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Informative play: The strategy in which an agent i chooses according to his signal:

xi(g) = I , xi(b) = O

Herding: The strategy in which an agent ignores his private signal and does not invest:

xi(g) = xi(b) = O

First of all one should note that the reasoning that leads agent 2 to choose such
a strategy is based entirely on the fact that the number of slots is limited. Were
this not the case it would not be possible to make any inferences about agent 1’s
actions and information.

The second point to notice is that the behavior of both agents would be the
same in equilibrium if there were more agents standing behind them in the line.
What is more, it is easy to see that any agent standing behind agent 2 would also
herd in equilibrium. This is because, since agent 2 is herding he does not a�ect
any other agents. Thus the hypothetical agent 3 faces the exact same situation as
agent 2 and also chooses to herd. The same would be true for any other agent
standing in line after them.

This simple example demonstrates the main feature of equilibrium in such
games. Agents standing in the first positions of the line play informatively. After
some point in the line agents switch their equilibrium strategy to herding. The
point where the switch takes place lies at a position grater than the number of
available slots. The following proposition formalizes this result.

The result of the example is generalized in the following proposition.
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Proposition 1. Consider a game G = 〈N,�, {Xi,Si,ui, }i∈N, k, γ, qG, qB〉 and assume
Condition 3.1 holds. There is a unique Bayesian Nash equilibrium in this game. In
equilibrium, all agents with index i < m̂(k, γ, qG, qB) play informatively. All others herd
and choose xi = O, independently of their signal. Furthermore, m̂(k, qA, qB) > k.

Proof. All proofs can be found in the appendix. �

What drives this result is the same as in the two-agent example. Agents with
an index higher than k know that they can obtain a payo� higher than their outside
option only if the state is “good” and less than k agents of the ones in front of them
choose to invest. But given that agents in the front of the line play informatively,
conditioning on the event that less than k agents choose to invest (which means
that less than k agents received a signal si = g) reduces the probability of the state
being good. There is an increased probability of obtaining a slot in the “bad” state.
This is the winner’s curse e�ect. This e�ect becomes stronger the further back one
stands in the line. Therefore, eventually agents switch away from informative
play as we move towards the back, in order to avoid the winner’s curse.

One important feature of this result is that a significant number of agents
never choose to invest. This means that with positive probability less than k
agents invest and obtain a slot, even when the state of nature is “good”. This ex-
post ine�ciency is reminiscent of the same ine�ciency encountered in the social
learning model. We study that further on when we make a comparison between
the two di�erent models: our own and a social learning model, where agents
decide sequentially, with a limited availability of investment slots.

For now we must point out that the equilibrium is e�cient. The number of
agents playing informatively maximizes the sum expected payo�s. This is stated
in the following proposition.

Proposition 2. Given k, γ, qG, qB that satisfy condition 3.1, the unique equilibrium strat-
egy profile of a gameG = 〈N,�, {Xi,Si,ui, }i∈N, k, γ, qG, qB〉with known priorities, for any
N, is ex ante efficient. Another pure strategy profile of the game is ex ante efficient if and
only if the same number of agents play informatively as in the equilibrium profile.

The reason why this holds is simple. The number of agents playing infor-
matively is such that any agent that plays informatively has an expected payo�

higher than what he obtains by herding, which is the outside option. If less agents
play informatively, then they are forgoing to possibility of a higher expected pay-
o�. If more agents play informatively, then some have an expected payo� smaller
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that their outside option. Both these cases result in a smaller sum of expected
utilities and are therefore ine�cient.

Another feature of the equilibrium to note is the sorting of agents and strate-
gies. Low index agents play informatively while high index agents herd. This
means that what to an external observer might seem as some sort of correlation
between priorities and preferences or information is simply rational equilibrium
behavior of agents with identical preferences.

3.3.1 Comparative statics.

To get a better grasp of how equilibrium behavior depends on the various
parameters of the model we perform comparative statics. It is important to
understand what exactly is “moving” when we change one of the parameters.
For that one has to understand the mechanism that underlies proposition 1.

As long as Condition 3.1 holds, agents that receive a signal si = b never
choose to invest. The ones that receive si = g calculate their expected payo�

from investing, taking into account the fact that to obtain a slot it must be that
less than k agents in front of them invest. They compare this to the payo� from
the outside option γ. Whether an agent plays informatively or herds depends
on this comparison. Thus any e�ect of a change in parameters on equilibrium
behavior must come through the e�ect the change has on the expected payo�

from investing after observing si = g. This is given by the following function in
which we assume all agent in front of i play informatively:

E[ui(I, g)] =Pr(G|g)


payo f f . when a slot is f ree︷                               ︸︸                               ︷

Pr
(∣∣∣{s j = g, j ≤ k}

∣∣∣ < k |G
)
· 1 +

payo f f when no f ree slot︷                              ︸︸                              ︷
Pr

(∣∣∣{s j = g, j ≤ k}
∣∣∣ ≥ k |G

)
γ

︸                                                                           ︷︷                                                                           ︸
payo f f when state is “good′′

+ Pr(B|g)


payo f f . when a slot is f ree: WC︷                               ︸︸                               ︷

Pr
(∣∣∣{s j = g, j ≤ k}

∣∣∣ < k |B
)
· 0 +

payo f f when no f ree slot︷                              ︸︸                              ︷
Pr

(∣∣∣{s j = g, j ≤ k}
∣∣∣ ≥ k |B

)
γ

︸                                                                          ︷︷                                                                          ︸
payo f f when state is “bad′′

(3.2)
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The first term of the second bracket in the RHS represents the winner’s curse. It
is the payo� an agent receives when investing and obtaining a slot when the state
is “bad”. The number of agents that receive a particular signal given the state
follows a binomial distribution. Hence the probability of less than k agents to
have received a signal s j = g given the state, is given from the cumulative density
function (cdf) of the binomial distribution with the appropriate parameters. Let
F(m,G)(k) represent the cdf of Bin(m, qg) and F(m,B)(k) represent the cdf of Bin(m, 1−qB).
Thus we have:

E[ui(I, g)] =
qG

qG + 1 − qB

[
F(i−1,G)(k − 1) +

(
1 − F(i−1,G)(k − 1)

)
γ
]

+
1 − qB

qG + 1 − qB

(
1 − F(i−1,B)(k − 1)

)
γ (3.3)

The equilibrium behavior of a particular agent is determined by whether this
expression is above or below γ, the value of the outside option. When it is above,
the agent invests. When it is below he herds.

The value of the outside option.

The value of expression 3.3 is increasing in γ. Still, the sum of the factors of γ
is lower than 1. This means that as we increase γ 3.3 also increases but at a slower
rate. So let us consider the last agent in line that plays informatively for some low
γ. This means that for him E[ui(I, g)] > γ. Now suppose we increase the value
of the outside option. While both sides of the inequality increase, the RHS does
so faster, so eventually it will switch. This agent will change his strategy from
informative play to herding.

Here the value of the outside option is given relative to the possible payo�s
of the investment that are normalized. These values would normally depend
on whoever tries to attract the investors. We do not model such an agent in
any form here. Still, what we learn here is that an entrepreneur trying to attract
investors, can do so by making the investment more attractive relative to the
outside option. This is assuming she has no other information that can be inferred
by her choices. This result is similar to the one obtained in Rock (1986) (29), where
he concludes that the seller in an IPO might want to underprice in order to attract
the uninformed investors. We get a similar conclusion, but here we do not assume
any asymmetry in information among investors.
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The number of available slots.

The number of available slots is a parameter which a market designer can
control to a significant extent in many markets. For instance an entrepreneur
might decide the maximum number of investors she wants to take on board her
project, or a department may decide within limits on the number of available
openings.

The e�ect on equilibrium from increasing the number of slots is clear cut: more
agents play informatively.

Proposition 3. Consider a game G = 〈N,�, {Xi,Si,ui, }i∈N, k, γ, qG, qB〉 and assume
Condition 3.1 holds. Then m̂(k, qA, qB) is increasing in k.

To understand why this happens one must understand that it is the limited
supply of slots that gives rise to the winner’s curse. Obtaining a slot when the
supply is limited happens only when “enough” preceding agents choose not to
invest. When k is low, “enough” represents a large number of agents. When k is
high, “enough” represents a small number of agents and thus a weaker winner’s
curse e�ect.

We must notice here that we obtain this clear-cut result for the case where
priorities are known. For the cases we study further on with priority uncertainty
this result may not hold, depending on the other parameters.

Although the number of agents choosing to invest increases with k it is inter-
esting to see the rate of this increase. The following graphs in figure 3.1 show for
two di�erent levels of signal accuracy the ratio of the expected number of agents
that choose to invest in equilibrium, over the number of available slots. When this
ratio is above one, we expect excess demand. When the ratio is below 1 we expect
excess supply. We observe that excess demand only occurs for low levels of k. The
ratio drops o� fast. This happens because of the e�ect of increasing k on the win-
ner’s curse. How it evolves further depends on the the other parameters. Here
we see that for low levels of signal accuracy the ratio show a tendency to increase
again, while for low levels of accuracy it continues decreasing. An explanation
for that is that when accuracy is high the winner’s curse e�ect remains persistent.
More agents play informatively because more agents have an index below k but
for agents with a higher index the e�ect is still there. When accuracy is low, the
increase in k has a strong attenuating e�ect on the winner’s curse. Therefore, not
only agents with am index below k switch, but also a significant number of agents
with a higher index. In both graphs there is a drop of the ratio in the end. This is
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(b) high accuracy

Figure 3.1: Examples of how the demand for investment evolves with k

due to the fact that already all agents are playing informatively after that point.
Hence, increasing k has no further e�ect on equilibrium.

The accuracy of information.

The accuracy of information in our model is represented by the parameters
qG and qB. The higher these parameters are, the stronger is the signal the agents
receive. As we explained, when an agent decides in equilibrium he also takes into
account the signals of others that stand in front of him in the line. So suppose an
agent receives a “good” signal. The higher the accuracy of the signal, the stronger
the indication that the state is actually “good”. But in equilibrium this agent may
obtain a slot only if enough of the preceding agents choose not to invest. These
agents must have received a “bad” signal. The higher the accuracy of the signals
the stronger an indication it is that the state is actually “bad”. Thus, the increase
in accuracy has a positive e�ect through one’s own signal but a negative e�ect
through the signals of preceding agents.

Which e�ect dominates? This depends on where an agent stands in line. For
equilibrium what matters is agent m̂. If a change in the accuracy has a positive
e�ect in his expected payo�, he (and maybe more agents) may switch from herding
to informative play. If the e�ect is negative, then it is possible that some agents
that played informatively, switch to herding. This would give a new m̂ with a
lower index.

Changes in qG. An increase in qG means that it is more likely to receive a signal
si = g when the state is “good”. By bayesian logic it also means that having
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received a such a signal it is more likely that the state is “good” . Looking at
expression 3.3 we can see how this creates the two opposite e�ects described.
On one hand, the factor qG

qG+1−qB
increases while the complementary factor 1−qB

qG+1−qB

decreases. This represents the positive e�ect from one’s own private signal si = g
becoming stronger. At the same time though, the term in the brackets decreases,
since F(i−1,G)(k−1) is decreasing in qG. This represents the e�ect of the “bad” signals
of preceding agents becoming stronger.

The graph in figure 3.2 shows an example of how changing qG a�ects the
shape of the function in expression 3.3. The points in the rectangle are the ones
corresponding to the threshold agent m̂.
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Figure 3.2: Comparative static with respect to qG.

Changes in qB. An increase in qB means that it is more likely to receive a signal
si = b when the state is “bad”. Again, by Bayesian logic it follows that having
received a signal si = g it is more likely that the state is “good”. In expression 3.3
we can see the two opposite e�ects. The two fractions move in the same direction
as before. Now it is in the term in the last parenthesis where we observe the
opposite negative e�ect. This term decreases.

The graph in figure 3.3 shows an example of how changing qB a�ects the
shape of the function in expression 3.3. The points in the rectangle are the ones
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corresponding to the threshold agent m̂. Note here that m̂ moves to the opposite
direction than when we were changing qG.
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Figure 3.3: Comparative static with respect to qB.

3.4 Simultaneous play vs. Social learning.

In our model agents do not learn from each other. There is no communication
between them, nor is it possible to observe each others’ actions. Yet, the behavior
we observe in equilibrium resembles the one found in models with social learning
in which agents take actions sequentially and can observe what others do (Baner-
jee, 1992 (5);, Bikhchandani et al., 1992 (7)). In this section we compare behavior
in our model with the one in such a model. The social learning we consider fol-
lows the exact same setup as our model with one di�erence: agents take actions
sequentially and observe the actions of the agents standing in front of them in
the line. This is equivalent to adding a limited number of slots for one of the
alternatives in the binary model in Bikhchandani et al. (1992). In the sequential
model, the limited number of slots does not a�ect strategic behavior. Since agents
observe the actions of others they can accurately their private information when
making their own decision. If the slots are filled the game ends and remaining
agents obtain their outside option. The interesting equilibrium feature in such a
model is the possibility of an informational cascade emerging. After observing a

59



Standing in Line

particular sequence of actions an agent’s beliefs about the state may be such that
his private signal does not make a di�erence about the optimal action. In this case
the agent herds (ignores his private information) and so do all agents after him in
the line. Informational cascades can go either way with agents herding choosing
to invest or not to do so. There is also the possibility of agents herding on the
wrong decision.

The equilibrium outcome in the two models can be very similar. For instance,
in the two gent model described in example 1, allowing the second agent to
observe the action of the first agent, makes no di�erence in the outcome observed
in equilibrium. The first agent may invest or not, depending on his signal, while
the second agent always obtains his outside option. This happens because the
equilibrium inferences made by the second agent in the simultaneous game mirror
exactly the inferences he makes in the sequential game.

Such similarities persist in games with more players and di�erent levels of k
when the value of the outside option is low. Outcomes change when this value
is high. We explain the intuition behind this phenomenon and use numerical
simulations to demonstrate the result.

There are two types of mistakes agents can make: not investing when the state
is “good” or investing when the state is “bad”. The first type is costly when γ
is low. That is when the outside option give a low payo� compared to that of a
good investment. The second type is costly when γ is high.

In the simultaneous model, informational cascades serve as a mechanism to
protect agents from these mistakes. By observing others, agents are able to make
decisions based on more information than only their private signal. The “cost” of
such a defense mechanism is that sometimes it produces “bad cascades”, in which
agents all herd on the wrong decision. Still, the probability of such a cascade is
relatively low.

In the sequential model, there is again a low risk of committing the first
mistake. In equilibrium a large number of agents plays informatively. For the
ones that herd, choosing not to invest makes a di�erence only if the agents playing
informatively leave free slots. But this rarely happens when the state is “good”.
Concerning the second type of mistake, investing in a “bad” state, the agents in
the back of the line that herd are protected. Still, agents in the front of the line
must rely solely on their private information and it is possible for them to make
such a mistake. More so than agents in the sequential model that decide based
not only on a single private signal.

So it turns out that what cause a di�erence in the outcome of the two models
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3.4 Simultaneous play vs. Social learning.

is the degree to which agents commit the mistake of investing in a “bad” project.
When γ is low, such a mistake is not very costly and furthermore, “bad cascades”
in that direction are not very likely in the sequential model. Therefore the out-
comes of the models do not vary significantly. When γ is high, such a mistake
becomes costly. “Good cascades” protect agents in the sequential model. In the
simultaneous model agents commit this mistake more often.

From an e�ciency point of view, when γ is high, the sequential game produces
better outcomes. For a low γ outcomes do not di�er much. In the simulations we
perform, e�ciency is slightly better in the simultaneous game for low a low k and
slightly worst for higher k. Still, di�erences are of a very small magnitude.

From the point of view of demand, when γ is high there is a higher demand
for investment in the simultaneous game, except for very low levels of k. For low
γ again demand is higher in the sequential game, but only for very low levels of
k is the di�erence significant.

The following graphs show the results of Monte-Carlo simulations performed
in order to compare the outcomes of the two models. For these simulations we
produce a vector of private signals. We calculate the equilibrium corresponding
to this vector for each model for di�erent levels of k. We repeat the process 10,000
times and take averages of our results. The parameters used in the simulations
presented here are n = 100 and qG = qB = q = 0.85. We do the calculations for
three di�erent levels of the value of the outside option: γ ∈ {.4, .5, .6}. The first
graph shows the di�erence in the total welfare (normalized to lie between zero
and one) between the two models. Positive values indicate a higher welfare in
the simultaneous model. The second graph shows the di�erence in demand for
investment between the two models. Demand here is calculated as the fraction
of slots filled in equilibrium. Positive values indicate a higher demand in the
simultaneous model.

One can see in the graphs how the di�erences between the two models become
pronounced when γ is high. The kind on the right side of both graphs is due to
the fact that once k is high enough all agents play informatively in our model.
Therefore increasing k further does not change the equilibrium behavior of agents.
Still, it a�ects the normalized values of welfare and demand.
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Figure 3.4: Di�erence in welfare in the two models.
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3.5 Priorities assigned by a lottery.

Up to this point we considered that each agent knew exactly his position in
line. We now relax this assumption. In this section we consider the case where a
lottery is used to determine the position in line of each agent. The lottery takes
place after each agent makes his decision about whether or not to invest.

It makes sense to consider such a variation to our model for two reasons. First,
it comes closer to some real life situations where such a mechanism is used, like
some IPO’s. In general, one could consider this as the other end of the spectrum
of possibilities about what agents know about their priority. In reality, di�erent
cases might lie anywhere between the two extremes.

The second reason to consider this variation is a theoretical motivation. Notice
that now all agents are ex-ante identical. Once they receive their private signal they
are di�erentiated, but even at that point, all agents who observe the same private
signal have exactly the same information and available choices. As we shall
see, for some range of parameters there exists a symmetric equilibrium in which
agents herd with a positive probability. This result highlights the fact that it is the
institutional design of the market and not the heterogeneity of agents that give
rise to the winner’s curse e�ect. This is important for anybody looking at market
data trying to identify such an e�ect. For instance in the “IPO underpricing”
literature in finance the WC e�ect was described by Rock (1986) (29) but attributed
to the existence of di�erentially informed agents. Empirical strategies trying to
verify the theory relied on the existence of such heterogeneous groups. Our
result suggests that the WC e�ect should be present even without di�erences in
information between groups of agents.

From a technical point of view, the introduction of a lottery gives rise to multi-
ple equilibria. Given that now agents are symmetric, we find it reasonable to focus
on symmetric equilibria. It turns out there is a unique symmetric equilibrium in
mixed strategies. We will denote the game with a lottery as L. Let L = {1, ...,n}
denote the set of positions in line to which agents are assigned by the lottery.

Proposition 4. Consider the gameL = 〈N,L,�, {Xi,Si,ui, }i∈N, k, γ, qG, qB〉 There exists
a unique symmetric equilibrium in mixed strategies in the game with lottery determined
priorities. For k sufficiently low and γ sufficiently high agents decide to herd with a
positive probability.

To understand where this result comes from one can think the following. If
everybody else herds, then an agent knows that he can obtain a slot by choosing
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to invest. As long as he observes a “good” signal, this is a best response indepen-
dently of the outcome of the lottery. Now as the probability of all other agents
playing informatively increases, it becomes more and more likely to be placed in
a position in the back of the line with a high probability of more than m̂ agents in
the positions in front playing informatively. In such a position the expected payo�

is less than the outside option. If this probability is too high, then it is best for
an agent to switch his strategy to herding. There is some level of this probability
where an agent becomes indi�erent between informative play and herding. It is
easy to see that as the value of the outside option γ increases, this level becomes
lower, since herding becomes more attractive. The opposite happens with the
number of available slots k. This is because for a higher k there is a higher chance
to be positioned through the lottery to one of the front spots in the line where one
is immune to the winner’s curse.

A natural question that rises is how the introduction of the lottery a�ect the
characteristics of equilibrium. In particular, what e�ect does it have on herding
behavior? While the symmetric equilibrium allowed us to highlight the existence
of the winner’s curse e�ect even with homogeneous agents, it does not lend it
self for easy comparison to the equilibrium of the case where agents know their
position in line. In the following proposition we have a comparison between pure
strategy equilibria.

Proposition 5. In the lottery game there exist pure strategy equilibria in which
m̃(k, qA, qB,N) ≤ N agents play informatively. Furthermore, more agents play informa-
tively in such an equilibrium than in the unique equilibrium of the game with known
priorities: m̃(k, qA, qB ≥ m̂(k, qA, qB) − 1.

In the game with no lottery any agent after m̂ knows that his expected payo�

from investing is less than his outside option and therefore herds. In the game
with a lottery as long as there are at least m̂ other agents playing informatively
an agent can be unlucky and be assigned a position in the line after all these m̂ or
more agents and also get an expected payo� that is lower than his outside option.
Still, this is only of the possible outcomes he faces. It is therefore not necessary
that he prefers to switch to herding. Thus it is possible for such a profile with
more than m̂ agents playing informatively to be sustained as an equilibrium.

Combining this result with the one in proposition 2 it is easy to see that such an
equilibrium is not e�cient. Thus the uncertainty about priorities introduced with
the lottery allows for ine�ciencies to be introduced due to the fact that equilibria
are possible in which the number of agents playing e�ciently is higher than the
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e�cient level.

3.6 A Bernoulli arrival process

In the Previous sections we have looked at two extreme cases concerning
agents’ knowledge of their position in line. In the first, they are perfectly informed
about it while in the second they have no information whatsoever, since it is a
lottery that determines it. Given the results obtained for these two cases, a natural
question follows. What happens for “intermediate” cases of uncertainty about
priority? By an “intermediate” case we mean one in which agents do not know
their position with certainty, but still there is some heterogeneity among agents.
Some know it is more likely for them to be in the front while others find it more
likely to be in the back. How does such uncertainty and heterogeneity a�ect
equilibrium behavior?

Modeling such a situation for a finite number of agents is not a trivial task. For
agents’ beliefs to be consistent it would require that the n×n matrix, representing
each agents probability distribution for each position in the line, to be a doubly
stochastic matrix4.

We choose here a di�erent approach. We use a Bernoulli arrival process to
model an “intermediate” uncertainty case. In particular, we consider that time is
divided in discrete intervals. In each time period t an agent arrives with positive
probability p, the arrival rate. While the individual agent knows his time of
arrival and the arrival rate at the time of making his decision he does not know
the realized number of arrivals in the preceding periods. Coming back to the
image of the line, one can think that the line exists inside a room. Agents arrive
at the room’s door and must make a decision before entering. They can not see
how many agents have already entered the room before them. Once they make
their decision and enter, they stand in line behind the one’s that are there already,
but cannot change their decision.

It is of course convenient to take time in this model at face value and consider
it as a model of cases where “first come, first served” is used to allocate slots. This
would of course fit the “robot example” in the introduction as well as many other
cases of markets where such a rule is used. An alternative view would be think
of time in the model as an metaphor for the information agents have about their

4Each row and each column add up to 1. This should be so because both the probabilities over
positions for an agent must add up to 1 as the probabilities for any position to be filled by one of
the agents
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priority. The arrival time t could simply represent a private signal for the agent
about his priority. The higher this signal, the more likely it is that the agent is
actually in the back of the line. In applications this signal together with the arrival
rate contains all the (noisy) information agents have about the total number of
agents participating in the market and their individual priority.

Note that now the set of agents is not fixed. There is uncertainty about the total
number of players in the game. This makes it a game with population uncertainty
(Myerson, 1998 (26)). Still it is not a poisson game, which is the population
uncertainty game usually studied, but which is not relevant in this context. To our
knowledge it is the first instance of such a game in which population uncertainty
is modeled by a Bernoulli process. Let us call it a Bernoulli game.

In such a game the set of agents is replaced by the set of types and a distribution
over that set. An agent’s type is determined by his time of arrival t ∈ N = {1, ...}
and his private signal st ∈ {g, b}. The set of types is T =N×{g, b}. The distribution
over the set of types is given by the arrival rate p and the accuracy of the signals
qG and qB.

It turns out that this game has a unique equilibrium with similar characteristics
to the equilibrium of the game with no uncertainty. The following proposition
describes this result.

Proposition 6. Consider the Bernoulli gameB = 〈T, {p, qG, qB},�, {X(t,s),u(t,s), }(t,s)∈T, k, γ〉
and assume Condition 3.1 holds. There exists a unique Bayesian Nash equilibrium of this
game. In equilibrium, all agents that arrive at t < t̂(k, qA, qB, p) choose according to
their private signal. All others choose O, independently of their signal. Furthermore,
t̂(k, qA, qB, p) ∈ (m̂(k, qA, qB),∞).

This result has a similar �avor to the one in proposition 1. There it was agents
standing after a specific point in line that choose to herd. Here it is agents arriving
after a specific point in time. The intuition that drives it is similar. Suppose
everybody plays informatively. Agents arriving early see it as highly likely to be in
the front of the line and therefore are happy playing informatively. Furthermore,
their payo� does not depend on what others that arrive later do. The later an
agent arrives, the more likely it is for him to be placed further back in the line.
This depends on how many agents have arrived before him. Since all these agents
will be playing informatively, we know from our previous results, that when the
probability of being placed towards the back becomes high, eventually it is better
to switch one’s strategy to herding. The same is then true for all agents arriving
after that point in time.
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Concerning e�ciency, we do not provide a formal result, but it is easy to
see that this equilibrium is ex ante (before population uncertainty is resolved)
e�cient. This is for the same reasons as in the game with known priorities. Of
course, once population uncertainty gets resolved but before the revelation of
the state of nature, the equilibrium will generally not be e�cient. It can only
be e�cient if the realized arrivals before time t̂ equal exactly m̂ − 1. This will
generally not be true.

Now that we have characterized behavior in this model of “intermediate”
uncertainty about priorities we can look at one final issue. The relationship
between this uncertainty and the behavior of agents. Looking at the equilibrium
results for the two extreme cases (known priorities, lottery) one might think
that there is a monotonic relationship between uncertainty and the incentives to
herd. In particular it looks as if higher uncertainty about one’s priority attenuates
the winner’s curse e�ect and makes informative play more attractive. In what
follows we demonstrate by a counterexample that this is not always the case. The
uncertainty about one’s priority can have an e�ect on behavior, but the direction
is not always the same. It depends on the whole parameter set.

In the following exercise we calculate the expected payo� of agents arriving at
di�erent time periods. For each agent we adjust the arrival rate in such a way that
the expected number of earlier arrivals remains the same. For instance there can be
two agents, one arriving at time t and the other at t′ > t. Suppose the respective
arrival rates are p and p′ such that both agents the expected number of earlier
arrivals is p(t − 1) = p′(t′ − 1) = λ. Still, the variance of the distribution of earlier
arrivals is di�erent in each case. It must be p(1−p)(t−1) < p′(1−p′)(t′−1). One can
therefore argue that in the second case the agent faces a higher uncertainty about
his position in line. If the conjecture about the monotonic relationship between
priority uncertainty and behavior was true, then we should expect that if the
second agent plays informatively in the equilibrium of his game then so would
the first agent in his respective game. And if the first herds in the equilibrium of
his game, then so does the second in the equilibrium of the respective game. We
use a numerical example to show this is not the case.

Example 2. The graph in Figure 3.6 shows an example for a particular choice of
parameters k = 4, qG = qB = .733, and γ = .5. Also, In this example we have
fixed the expected number of earlier arrivals for each agent to λ = 6.226. From
the properties of the Bernoulli distribution we have λ = tp. So given the time
of arrival of an agent and in order to keep λ constant, we calculate a different
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arrival rate for each agent t: p = λ
t . This means that each agent we consider plays

a different game. The horizontal axis shows the time of arrival of an agent. The
vertical axis shows his expected payoff from deciding to invest after observing a
signal s = g. That is: E[u(I; (t, g)]. An agent arriving at t plays informatively when
this is higher than the value of the outside option, γ. The horizontal line in the
graphs indicates the value γ. Thus, points above this line correspond to agents
that play informatively in the equilibrium of their respective game. Notice that
p is decreasing in t. The variance for each agent t is tp(1 − p) = λ(1 − p) which
is decreasing in p. This means that the later an agent arrives in this exercise, the
higher the variance he faces.

As can be seen in the graph, the monotonicity one might expect given our
previous results is not there. Take an agent arriving at t = 8 and one arriving at
t = 14. They both play in games where all parameters are the same except for the
arrival rate. Still, this is such that they both expect the same number of agents
to have arrived before them. The number of these previous arrivals is a random
variable and has the same mean for both agents, but a different variance. This is
larger for the agent arriving at t = 14. Assuming the agents both observe a private
signal s = g, their expected payoff from choosing to invest is shown in the vertical
axis. It is clear that fro the agent arriving at t = 8 it is best not to invest since he
obtains a higher payoff from the outside option. The opposite is true for the agent
arriving at t = 14.

The graph in Figure 3.7 can help explain this fact. The bell-shaped curves
represent the distributions of previous arrivals that agents arriving at t and t′ face.
These have both the same mean λ. Thus the one for t′ is a mean-preserving spread
of the one for t. Once this uncertainty is resolved, agents find theme selves in a
certain position m in the line. The quasi-U-shaped curve that spans horizontally
represents the expected payo� from choosing to invest for an agent in position m
that has observed a signal s = g. The straight horizontal line indicates the value
of the outside option γ. The expected payo� from investing when observing
s = g for an agent arriving at t is calculated by taking the sum of the area below
E[um(I, g)] weighted by the corresponding binomial distribution. For an agent
to decide whether or not to invest, this must be compared to the payo� from
the outside option. The mean preserving spread for the agent that arrives later,
at t′, puts less weight close to the mean λ and more weight on the sides of the
distribution. While this has a positive e�ect on the left side where the expected
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Figure 3.6: An example of non-monotonicity in the relationship between uncertainty and
behavior.

payo� from investing is higher that γ it can have a negative e�ect on the right side
where the expected payo� is less than γ. Which of the e�ects is stronger depends
on the whole parameter set considered.

3.7 Conclusions

We presented a simple model of a market for limited investment opportunities.
Incomplete information and a common value, combined with the limited o�er of
investment opportunities generate a winner’s curse e�ect. Agents’ equilibrium
behavior depends on their priority, which is exogenous. We discuss how changes
in the availability of investment slots, the accuracy of information and knowledge
concerning the priority order can have an impact of the demand for the investment
opportunities and the performance of the market in general.

In our model, agents face no budget constraint. Furthermore, the supply
of investment opportunities is not connected to their payo�. This allows for a
more tractable analysis. It is reasonable to think that in reality any change in
the supply of investment slots should be connected to a change in the price of
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Figure 3.7: What happens when the variance increases.

investment and its attractiveness. For instance, an entrepreneur seeking up to
30,000 euros of capital for a new project can o�er 15 slots for 2,000 euros each,
or 20 slots of 1,500 euros each. Increasing the number of slots and maintaining
the total capital constant makes each slot more a�ordable. On the other hand,
the returns for each slot will also be lower. In our analysis abstract away from
these issues. Nevertheless, our analysis suggests that such a change in the model
would not a�ect the results concerning the existence of the winner’s curse and its
consequences.

In the literature on IPO underpricing5, a winner’s curse e�ect is identified as a
theoretical possibility but is attributed to a problem of assymetry of information
between perfectly informed and completely uninformed agents. Rock (1986)
concludes that “...the institutional mechanism for delivering the shares to the
public is irrelevant as far as the o�er price discount is concerned.”. In our paper,
we show that institutions matter because a winner’s curse can arise even when
agents are symmetrically informed. It is the design of the market institutions
that determines what the e�ects of the curse will be. An interesting extension
to our model would be to allow for agents to decide whether or not to acquire
information before deciding to invest. Given the winner’s curse e�ect, even if the
cost of information is low, some agents may decide not to acquire information

5See the survey by Ljungqvist (2004).
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in equilibrium, giving rise to endogenous information asymmetry. Such a result
would form a bridge between our model and the one by Rock. We are currently
working on such an extension.

In this paper we find that social learning is not necessary for agents to make
inferences about others’ information and adapt their behavior accordingly. In
environments with incomplete information and a common value, limited supply
gives rise to herding behavior. Then, the particular mechanism used to assign
priorities determines agents’ demand. A natural next step is to think about
implications for mechanism design in general. For example, our model can be
viewed as a fixed price auction. How does it perform compared to a regular
auction? How much information should participants have about others’ actions
or about their own priority? Building on the basis that we set here, we plan to
further explore these issues both theoretically and experimentally.

We primarily focused our analysis on the buyers’ side of the market. Even
so our analysis shows how a seller can in�uence demand by determining the
relative payo�s and the available supply. These conclusions are based on the
implicit assumption that the seller is uninformed about the state. If this is not the
case, the situation becomes an interesting signaling game in which the seller can
reveal information about the state through the choices of available supply and
price. Another possible signaling vehicle that is worth exploring is a practice that
is observed in some emerging crowdfunding platforms and other markets. The
seller there sets a minimum demand threshold that must be covered to make the
o�er e�ective. In other words, if the minimum threshold is not reached no money
changes hands. It can be interesting to study how a seller would optimally set
such a threshold given its signaling content and the presence of the winner’s curse.
A model in which entrepreneurs use such a threshold to compete for investors is
something we view as a potential route for future research.

Our results depend critically on the assumption of fully rational agents, sophis-
ticated enough to be aware of the winner’s curse and act accordingly. Whether
actual individuals have this level of sophistication is a matter of debate. Ex-
perimental and empirical data on common value auctions are not conclusive.
Nevertheless, besides contributing to this debate with another open question, our
model also provides a useful tool: it represents a simple binary choice model in
which the winner’s curse appears. Therefore It can easily be used in experiments
to test individuals’ awareness of the curse or other related issues. Louis (2011)
uses the two-agent version of the model from example 1 in such a way. Subjects
play the game in the example both sequentially and simultaneously. The question
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is whether the same individual may be sophisticated enough to detect the course
in the sequential game, but not in the simultaneous. It turns out that a significant
portion of subjects fall in to this category, something that it not predicted neither
by Bayesian-Nash equilibrium, nor by other alternative theories.

3.8 APPENDIX: Proofs

Proof. (Proposition 1) The fist k agents in the line face a simple decision problem.
Whether they are assigned a slot or not does not depend on what others do.
Therefore, given Condition 3.1 their dominant strategy is to play informatively.
This means to follow their signal: xi = I when si = g and xi = O when si = b.
Any agent standing in position m′ > k gets a slot assigned only if less than k of
the m = m′ − 1 agents standing in front of him choose to invest. If this is not the
case he obtains γ independently of his decision. He takes this into account when
calculating his expected payo� from choosing whether or not to invest.

First let us consider agent m′ = k + 1. and suppose he receives a private signal
sm′ = b. All k agents standing on front of him play informatively and therefore
their actions reveal their private signals. In other words, if for example k agents
invest, it means that these k agents have received a private signal si = g. His
expected payo� from choosing to invest is:

E[uk+1(I)|b] =Pr(G|b)
[
Pr

(∣∣∣{s j = g, j ≤ k}
∣∣∣ < k |G

)
+

(
1 − Pr

(∣∣∣{s j = g, j ≤ k
∣∣∣ < k |G

))
γ
]

+ Pr(B|b)
[(

1 − Pr
(∣∣∣{s j = a, j ≤ k}

∣∣∣ < k |B
))
γ
]

His expected payo� from choosing not to invest is :

E[uk+1(O)|b] = γ

Note that:

Pr{G|b} =
1 − qG

1 − qG + qB

Pr{B|b} =
qB

1 − qG + qB

Pr
{
#{s j = g, j ≤ k} < k |G

}
= 1 − qk

G

Pr
{
#{s j = a, j ≤ k} < k |B

}
= (1 − qB)k

We now show that when Condition 3.1 holds, the expected payo� from investing
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in this case is always lower than the one from not investing. Suppose not:

E[uk+1(I)|b] > E[uk+1(O)|b]
1 − qG

1 − qG + qB

[
1 − qk

G + qk
Gγ

]
+

qB

1 − qG + qB
(1 − qB)kγ > γ

1 − qG

1 − qG + qB

(
1 − qk

G

)
+

(1 − qG)qk
G + qB(1 − qB)k

1 − qG + qB
γ > γ

1 − qG

qB
>

1 − qG

qB
+

1 − (1 − qB)k

1 − qk
G

γ
1 − qG

qB
>

1 − (1 − qB)k

1 − qk
G

γ

1 − γ(
qG > 1 − qB , f rom Condition 3.1

)
1 − qG

qB
>

1 − qk
G

1 − qk
G

γ

1 − γ
1 − qG

qB
>

γ

1 − γ

The last inequality contradicts Condition 3.1. This proves that for agent m′ = k + 1
it is a best response not to invest when observing sm′ = b. Note that this result does
not depend on k. We can therefore extend it by saying that any agent m′ = m+1 > k
that observes sm′ = b and where all m preceding agents play informatively, best
responds by not investing.

Now consider agent m′ = m + 1 > k which receives signal sm′ = g and suppose
all m preceding agents play informatively. Let FnX(l) be the cumulative distribution
of g signals for n players when the state of nature is X. Then l follows a binomial
distribution and in particular FnG is the cumulative distribution of B(n, qG), while
Fn,B is the one for B(n, 1 − qB).

E[um′(I)|g] > E[um′(O)|g]

Pr(G|g)
[
Pr

(∣∣∣{s j = g, j ≤ k}
∣∣∣ < k |G

)
+

(
1 − Pr

(∣∣∣{s j = g, j ≤ k}
∣∣∣ < k |G

))
γ
]

+Pr(B|g)
[(

1 − Pr
(∣∣∣{s j = a, j ≤ k}

∣∣∣ < k |B
))
γ
]
> γ

qG
[
FmG(k − 1) + (1 − FmG(k − 1))γ

]
+(1 − qB) (1 − FmB(k − 1))γ > γ(qG + 1 − qB)

qG(1 − γ)FmG(k − 1) − (1 − qB)γFmB(k − 1) > 0 (3.4)
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As long as 3.4 holds, player m′ plays informatively. Next we show that the LHS
of 3.4 is either increasing or quasi-convex with respect to m.

E[um′(I)|g] ≷E[um′+1(I)|g]
qG(1 − γ)Fm,G(k − 1)
−(1 − qB)γFm,B(k − 1) ≷ qG(1 − γ)Fm+1,G(k − 1)

− (1 − qB)γFm+1,B(k − 1)
qG(1 − γ)[Fm,G(k − 1) − Fm+1,G(k − 1)] ≷(1 − qB)γ[Fm,B(k − 1) − Fm+1,B(k − 1)]

qG(1 − γ)
(1 − qB)γ

≷
Fm,B(k − 1) − Fm+1,B(k − 1)
Fm,G(k − 1) − Fm+1,G(k − 1)

(3.5)

Let Ix(α, β) denote the regularized incomplete beta function. Since FmG and FmB

are binomial distributions we have:

FmG − Fm+1G = I1−qG(m − k + 1, k) − I1−qG(m − k + 2, k)

= I1−qG(m − k + 1, k) − I1−qG(m − k + 1, k) +
qk

G(1 − qG)m−k+1

(m − k + 1)B(m − k + 1, k)

=
qk

G(1 − qG)m−k+1

(m − k + 1)B(m − k + 1, k)
(3.6)

Here B(m − k + 1, k) represents the beta function. Similarly we get:

FmB − Fm+1B = IqB(m − k + 1, k) − IqB(m − k + 2, k)

=
(1 − qB)kqm−k+1

B

(m − k + 1)B(m − k + 1, k)
(3.7)

Thus from 3.5,3.6 and 3.7 we obtain:

qG(1 − γ)
(1 − qB)γ

≷
(1 − qB)kqm−k+1

B

qk
G(1 − qG)m−k+1

1 − γ
γ
≷

(
1 − qB

qG

)k−1 ( qB

1 − qG

)m−k+1

When the RHS is smaller then E[um′(I)|g] > E[um′+1(I)|g]. It is easy to see that the
RHS is increasing in m, since qB > 1− qG (from Condition 3.1). It is easy to see that
for m = k which is the smallest possible value for m the RHS can be smaller than
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the LHS. We have:

1 − γ
γ
≷

(
1 − qB

qG

)k−1 qB

1 − qG

1 − qG
qB
≷

(
1 − qB

qG

)k−1 γ

1 − γ

Which for su�ciently high k gives LHS > RHS. Still, as m grows the inequality
must eventually switch and remain switched. This shows that E[um′(I)|g] may be
initially decreasing in m and then becomes increasing. This makes it either an
increasing or a quasi-concave function of m.

We now show that it can not be that it is increasing and 3.4 holds. We do so
by contradiction. Suppose it is. Then we have:

γ

1 − γ

(
1 − qB

qG

)k−1 ( qB

1 − qG

)m−k+1

> 1 (3.8)

and from 3.4
1 − γ
γ

qG

1 − qB
>

FmB(k − 1)
FmG(k − 1)

(3.9)

But then:

γ

1 − γ

(
1 − qB

qG

)k−1 ( qB

1 − qG

)m−k+1

<
γ

1 − γ
1 − qB

qG

(
qB

1 − qG

)m−k+1

{since qG > 1 − qb}

<
FmG(k − 1)
FmB(k − 1)

(
qB

1 − qG

)m−k+1

{from 3.9}

<

∑k−1
i=0

(m
i

)
qi

G(1 − qG)m−i∑k−1
i=0

(m
i

)
(1 − qB)iqm−i

B

(
qB

1 − qG

)m−k+1

<

∑k−1
i=0

(m
i

)
qi

G(1 − qG)k−1−i∑k−1
i=0

(m
i

)
(1 − qB)iqk−1−i

B

= 1

Which contradicts 3.8! This shows that when E[um′(I)|g] is increasing, 3.4 does
not hold. Since we already showed that E[um′(I)|g] becomes increasing in m as m
grows, this shows that eventually as it does so an agent will not play informatively
and so will all agents after him. Notice that the LHS of 3.4 goes to zero as m grows.
This means the inequality never switches back. After one agent switches away
from informative play, so do all agents after him.
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�

Proof. (Proposition 2) Let W(m) denote the sum of expected utilities from a pure
strategy profile in which m agents play informatively. For the equilibrium profile
we have:

W
(
m̂(k, qA, qB)

)
=

m̂(k,qA,qB)∑
m=1

E[um(x)] + (N − m̂(k, qA, qB))γ

From the proof of proposition one we know that for an agent m playing informa-
tively: E[um(x)] > γ for m < m̂(k, qA, qB) and E[um(x)] < γ for m < −m̂(k, qA, qB). It is
therefore immediate to see that:

m′∑
m=1

E[um(x)] + (N −m′)γ <
m̂(k,qA,qB)∑

m=1

E[um(x)] + (N − m̂(k, qA, qB))γ

<
m′′∑

m=1

E[um(x)] + (N −m′′)γ

Which summarizes to:

W(m′) < W
(
m̂(k, qA, qB)

)
< W(m′′)

for m′ < m̂(k, qA, qB) < m′′. Also note that this is independent of N, which proves
the proposition. �

Proof. (Proposition 3)

Ek+1[um(A)|a] > Ek[um(A)|a]
qAFmA(k + 1) + (1 − qB) (1 − FmB(k + 1)) > qAFmA(k) + (1 − qB) (1 − FmB(k))

qA

1 − qB
>

FmB(k + 1) − FmB(k)
FmA(k + 1) − FmA(k)

>
fmB(k + 1)
fmA(k + 1)

>

( m
k+1

)
(1 − qB)k+1qm−k−1

b( m
k+1

)
qk+1

A (1 − qA)m−k−1

1 >
(

1 − qB

qA

)k ( qB

1 − qA

)m−k

(3.10)
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From the proof of proposition 1 we know that 3.10 must hold for m̂. This player is
the first (in order of priority) that herds. We show that increasing k increases m̂’s
expected payo� from playing informatively and therefore he eventually switches
to that strategy. This makes m̂ + 1 the first player to herd. �

Proof. (Proposition 4) We know from proposition 1 that given Condition 3.1 any
agent that receives signal si = b best replies by not investing. Let σ denote the
probability with which an agent decides to play informatively. For an agent that
receives signal si = g the expected payo� from investing given that all other agents
play strategy σ ∈ [0, 1] is:

Eσ[u(I)|g] =
qG

qG + 1 − qB

 k
N

+
1
N

n−1∑
m=k+1

k−1∑
i=0

(
m
i

)
σi(1 − σ)m−i


+

1
N

n−1∑
m=k+1

m∑
i=k

(
m
i

)
σi(1 − σ)m−iE[um+1(I)|g]

It is easy to sea that given the properties of the binomial distribution and the fact
that as was shown in the proof of proposition 1 E[um+1(I)|g] ≤ qG

qG+1−qB
, the above

expression is decreasing in σ. The symmetric equilibrium strategy σ∗ is the one
that solves the following equation:

Eσ∗[u(I)|g] = γ (3.11)

Note that for σ = 0 we have:

Eσ[u(I)|g] =
qG

qG + 1 − qB
> γ

And for σ = 1 we obtain:

Eσ[u(I)|g] =
qG

qG + 1 − qB

k
N

+
1
N

n−1∑
m=k+1

E[um+1(I)|g]

The RHS in the last expression can be less than γ if k is low enough or γ is high
enough. When this is the case, 3.11 has a unique solution σ∗ ∈ (0, 1). Otherwise,
the unique symmetric equilibrium obtains for σ∗ = 1. �

Proof. (Proposition 5) Consider a strategy profile in which m̃ agents play in-
formatively and all others herd. It is easy to see that m̃ < k can not be an
equilibrium profile. Suppose it were. Then an agent i that herds and observes
si = g is better of investing since he can obtain a slot and his payo� will be
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E[ui(I)|g] =
qG

qG+1−qB
> γ = E[ui(O)|g]. Thus it is not an equilibrium.

Consider m̃ ≥ k. Suppose i is in the set of agents that play informatively and
receives signal si = g. His expected payo� from investing is:

Em̃[u(I)|g] =
qG

qG + 1 − qB

k
m̃

+
1
m̃

m̃−1∑
m=k+1

E[um(I)|g] (3.12)

For m̃ to characterize an equilibrium profile it must be that:

Em̃[u(I)|g] ≥ γ
Em̃+1[u(I)|g] < γ

The first of these two conditions guarantees that no agent playing informatively
has an incentive to deviate. The second does the same for the agents herding.
We know that these conditions are necessary and su�cient from the properties
of E[um(I)|g] derived in the proof of proposition 1. It is immediate to see that
m̃ < m̂(k, qA, qB) − 1 cannot be an equilibrium. By definition, E[ui(I)|g] > γ , ∀ i <
m̂(k, qA, qB). Thus, such a profile would violate the second of the equilibrium
conditions above. �

Proof. (Proposition 6) Let:

gA(m, k) =

1 , m ≤ k
FmA(k) , m > k

and

gB(m, k) =

1 , m ≤ k
FmB(k) , m > k
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3.8 APPENDIX: Proofs

Then, given k:

Et[um+1(A)|a] =

=
qA

qA + 1 − qB

 t∑
m=0

(
t
m

)
pm(1 − p)t−m

· gA(m, k)


+

1 − qB

qA + 1 − qB

1 − t∑
m=0

(
t
m

)
pm(1 − p)t−m

· gB(m, k)


=

1
qA + 1 − qB

 t+1∑
m=0

(
t
m

)
pm(1 − p)t−m (

qAgA − (1 − qB)gB
)

+ (1 − qB)


=

1
qA + 1 − qB

 t+1∑
m=0

(
t
m

)
pm(1 − p)t−mE[um+1(A)|a] + (1 − qB)


Notice that for m < m̂(k, qA, qB), Et[um+1(A|a] > 0, thus the above expression is
positive. This means that all agents arriving at t < m̂(k, qA, qB) play informatively.
This proves the minimum bound on m̂(k, qA, qB). From now on consider t ≥
m̂(k, qA, qB).

Remember that E[um+1(A)|a] is a quasi-concave function. Let m̃ be such that
this function is decreasing for m ≤ m̃ and increasing for m > m̃. From the proof of
proposition 1 we have that m̃ > m̂. Then we have:

(qA + 1 − qB)Et[um+1(A)|a] =

+

m̃∑
m=0

(
t
m

)
pm(1 − p)t−mE[um+1(B)|a] +

t∑
m=m̃

(
t
m

)
pm(1 − p)t−mE[um+1(B)|a] + (1 − qB)

From stochastic dominance for the Bernoulli distribution we have that the first
summation is decreasing in t. The second summation is always negative. The last
term is constant with respect to t. Thus, as t increases, the expected payo� crosses
zero at most once. t̂(k, qA, qB, p) is such that the expected payo� is negative for
this value and positive for all smaller t. The agent arriving at t̂(k, qA, qB, p) ignores
his private information and herds. All agents arriving after t̂(k, qA, qB, p) have the
same expected payo� and herd as well. �
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Chapter 4

Seeing is Believing? An Experiment
on Strategic Thinking.

The chain of information is based on inferences and information choices
made by others. Can we really make a forecast if all forecasts depend
on others’ forecasts, and so on?

Prof. K. Arrow, XXIII Barcelona GSE Lecture

4.1 Introduction

According to a known anecdote, the comedian Groucho Marx (GM) once sent a
message to the Friar’s Club of Beverly Hills to which he belonged, saying: “Please
accept my resignation. I don’t want to belong to any club that will accept people
as me as their member”. 1 Is the behavior of the comedian in accordance with the
prescriptions of classical game theory, embodied in the notions of the Bayesian
Nash and Perfect Bayesian equilibria? Well, GM observed the club’s action -
accepting him as a member, inferred that such action conveyed the information
that the club is not of his liking and therefore resigned. Learning from the actions
of other agents is exactly what classical game theory prescribes. Still, were GM
“perfectly bayesian” he would never have applied for the club in the first place!
By applying he either gets rejected and stays out of the club, or accepted and
becomes member of a club that reveals itself to be unacceptable to him, leading
him to resign. Not applying keeps him out of the club saving him all the trouble
from the start.

1This incident inspired M. Harris to name a theorem of Migrom and Stockey (1982) the “Grou-
cho Marx theorem”. That result is only tangentially related to this paper.
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While one can only speculate why the comedian chose to apply to the club
in the first place, let us assume he lacked the strategic sophistication needed
for performing the above reasoning. In contrast to classic game theory, recent
theories, such as “cursed equilibrium” or level-k reasoning try to explain why
some agents may be less sophisticated than others. Nevertheless, no theory
explains how GM can be sophisticated enough to resign from the club after being
accepted, but not so in order to never apply in the first place. Can we observe
such a behavior outside the realm of anecdotes? We o�er experimental evidence
that suggest we can. We develop and implement a novel experimental design that
allows us to classify subjects according to their level of strategic sophistication
and to identify individuals that behave like GM. A significant portion of our
subjects fits this class. Based on some additional experimental evidence and the
subjects’ own interpretations of their behavior we conjecture upon the drivers of
such behavior.

It must be made clear right from the start that what we are concerned with are
players’ initial responses to games. We do not consider the case where a game is
played more times, allowing players to learn and develop better strategies.

To fix the ideas, let us analyze our example a bit further. We must note that
reaching GM’s conclusion as stated in the letter is not trivial in itself. One has to
realize that others’ actions are driven by their private information (in this case,
the quality of the club) and infer this information by observing their actions.
Let us call this Information Inference from Observed Actions (IIOA). The reasoning
prescribed by classical game theory and that should prevent GM from applying,
adds an additional layer of sophistication. A player should form expectations
about the outcomes of the game, given his actions, that are conditional on the
possible actions of others and the information that drives them. Let us call this
Information Inference from Future Actions (IIFA).2 IIOA is embedded in IIFA in the
sense that an individual should be able to perform the latter only if she is able to
perform the former. On the other hand, there is no obvious reason why ability
to perform IIOA should imply an ability to perform IIFA. This subtle, although
substantial point has escaped the attention of most analysis of strategic thinking.

A lack of strategic sophistication on part of some agents has recently been ad-
vanced as a possible explanation for the failure of the Bayesian Nash equilibrium
notions to predict phenomena such as the winner’s curse (WC) or the existence of
trade in markets with adverse-selection problems. Eyster and Rabin (2005) (14)
propose the notion of “Cursed equilibrium”. A “cursed” player correctly predicts
the distribution of other players’ actions, but fails to recognize their informational

2Here use the term “future actions” for actions that have not been observed. This does not
mean that these actions necessarily take place after one’s decision. It means that the individual
may only find out what these actions are after taking her own decision.
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content. In our terms, they allow for players that are not able to perform IIOA,
something that automatically excludes IIFA as well. The lack of sophistication of
“cursed” players is directly connected to the existence of private information. In
complete information environments such a player would not behave any di�er-
ently than a “Nash type” player.

The theory of level-k reasoning on the other hand was advanced to explain
behavior in complete information environments (Stahl and Wilson, 1995 (20);
Nagel, 1995 (18)) and has recently been applied to games with private informa-
tion(Crawford and Irriberi, 2007 (10)). It posits that players reason at di�erent
levels. Level-0 players pick an action randomly with a probability uniformly
distributed over their action space. A level-k player believes all others to be of
level k − 1 and plays a best response to their strategy. In a game with private
information, given the definition of level-0 players, a level-1 player’s best re-
sponse must depend on his private information alone. He fails to realize that
other players may not be level-0 players and their actions may have and infor-
mational content.3 Level-2 players consider everybody else to be a level-1 player
and best reply to that. They recognize that others’ actions reveal their private in-
formation. Although a level-2’s behavior may still not coincide with a “Bayesian
Nash” player’s behavior, he is performing IIOA and IIFA (if necessary) in order
to calculate his best response. Here, in contrast to “cursed equilibrium” theory,
players are not considered unable to perform either IIOA or IIFA. Still, given the
way players form their beliefs about others, level-1 players do not use neither of
the two to calculate their best response.

While these theories allow for a lack of strategic sophistication that causes a
failure to perform IIOA or IIFA, this is introduced in a way that does not capture
the di�erence between the two. Actually, for most applications of such theories
to date this failure is irrelevant. These theories have been applied to games with
private information in order to explain empirical observations (field or lab data)
that conventional game theory failed to predict. In each of these cases standard
game theory expects players to either perform IIOA or the more complex IIFA.
As long as a significant portion of players fails to perform either of the two, the
alternative theories that allow for di�erent levels of sophistication will generally
perform better in terms of prediction. Whether these players fail only in IIFA or
both is not an issue, since only one of the two is required in these applications. But
if one needs a theory not only to fit existing data but to also make predictions of
how di�erent designs of markets or institutions a�ect the behavior of participants,
this distinction becomes important. Consider an agent with the sophistication of
GM: able to perform IIOA but not IIFA. Participating in a sealed bid common

3In the strict version of this theory, level-0 players exist only in the minds of level-1 players
and one should not expect to observe any level-0 behavior.
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value auction he is likely to be a victim of the WC. If on the other hand the design
changes to that of an ascending price auction, the WC is less likely to be a problem
for this agent. Similarly, his behavior as a juror should be di�erent if the jury votes
simultaneously or sequentially, observing what others vote.

We use an experimental design based on the model in Louis (2011) (17). It
allows us to observe subjects’ behavior in a game played both simultaneously
and sequentially. We can therefore classify them based on that behavior in to
di�erent types. One of these matches the behavior of a GM type individual and
it is distinct from the behavior predicted by any other theory.

4.1.1 Literature Review

The literature related to this paper can be divided in two broad and related
themes. On the one hand there is research that looks at di�erent games and tries
to verify through experiments or empirical observations whether individuals’
behavior is the one predicted by the appropriate game theoretic solution concepts.
On the other hand, and more recently, scholars have developed and adapted new
theories of strategic thinking that give predictions closer to the behavior observed
in the lab and field. Our work moves to a new direction. Although this paper does
not provide a new theory for strategic behavior, it points out some blank spots
in existing theories. Furthermore, using an appropriate experimental design it
demonstrates how because of these blank spots, existing theories fail to accurately
describe individuals’ strategic thinking in ways that can be relevant in economic
applications.

It was a group of engineers that noticed for the first time a systematic and
significant deviations of economic agents from the prescriptions of the classic
game theoretic notions of Bayesian-Nash equilibrium. Capen, Clapp and Camp-
bell (1971) (8) noticed how petroleum companies’ returns from leases acquired
through competitive bidding were lower than expected. Their explanation in-
volved the failure of companies to take in to account the fact than winning the
auction is an indication of overbidding, and adjust their bids accordingly. They
termed this phenomenon a winner’s curse. Thaler (1988) (21) provides a survey
of the early empirical and experimental evidence supporting the existence of such
curse. In our context, the winner’s curse could be attributed to a failure to perform
IIFA.

Moving from an environment of simultaneous actions to one of sequential
actions, we find the literature on informational cascades. Banerjee (1992) (5) and
Bikhchandani et at. (1992) (6) showed that in environments with a common
value and social learning, agents can infer the information of others’ by observing
their behavior. This can give rise to rational herding behavior were a significant
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proportion of individuals end up taking the same action and ignoring their private
information. Anderson and Holt (1997) (3) were the first to use a lab experiment
to test for the existence of informational cascades. For more recent experimental
studies in to the matter the reader can can look at Goeree et al. (2007) (15) and
the references therein. Although the length and robustness of cascades is a�ected
by the specific test environment, cascades do appear in the lab. Bikhchandani
and Sharma (2001) (7) provide a survey of the related empirical literature while
Drehmann et. al. (2005) (13) and Alevy et al. (2007) (1) use field experiments to
detect the existence of cascades outside the lab. Putting informational cascades
in to our context, it requires agents being able to perform IIOA.

The literature on voting touches on both IIOA and IIFA. Austen-Smith and
Banks (1996) (4) were the first to notice that the ability of agents to perform IIFA
may prevent a committee voting simultaneously to aggregate information e�-
ciently. On the other hand, Dekel and Piccione (2000) (12) compare this situation
with one in which agents vote sequentially, and assuming they fully rational
(able to perform both IIOA and IIFA). Ottaviani and Sørensen (2001) (19) look at
the possibility of informational cascades when voting is sequential. The idea of
strategic voting as proposed by Austen-Smith and Banks has found support in
experimental evidence in Guarnaschelli et al. (2000) (16) and Nageeb et al (2008)
(2).

As was mentioned above, alternative theories that abandon perfect rationality
in the strategic thinking of agents have been put forward, especially as a response
to the failure of classic game theory to explain the persistence of the winner’s
curse in various applications. Eyster and Rabin (2005) (14) proposed the concept
of “cursed equilibrium”. Cursed agents fail to take in to account the informational
content of others’ actions. Translated to our context, a “cursed” individual is not
able to perform IIOA and therefore, neither IIFA. Crawford and Iriberri (2007) (10)
apply the “level-k” thinking model to environments with incomplete information.
In such a model, level-1 individuals lack the sophistication to perform both IIOA
and IIFA. Individuals of level-2 and higher can perform both. Neither “cursed
equilibrium” nor “level-k” thinking allow for individuals of the GM type: able to
perform IIOA but not IIFA.

Charness and Levin (2009) (9) also take a critical approach to these alternative
theories, especially as far as the winner’s curse is concerned. They use an exper-
imental design that allows for the winner’s curse to be detected, but precludes
“cursed” behavior or “level-k” thinking as explanations. They find that simple
bounded rationality, as opposed to unsophisticated strategic thinking, can go a
long way in explaining the curse. Although our paper shares the critical nature of
their approach, it uses a di�erent strategy. We look at a situation where existing
theories make predictions about individual behavior. We show that they fail to a
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significant extent.
Crawford, Costa-Gomes and Iriberri (2010) (11) o�er a very complete survey

of the literature in strategic thinking.

4.2 Experimental Design

The aim of our experiment is to verify the existence of individuals that seem
able to perform IIOA but fail to perform IIFA. For brevity we shall call such an
individual a GM type. To achieve that, we have subjects playing a game both
simultaneously and sequentially. The game is such that a GM type individual is
expected to play di�erently in each case and in a way not predicted by any of the
relevant theories.

The game is based on an n-player matching market game with limited supply,
found in Louis (2011) . Here we use the 2-player version. Players are o�ered a
single object which they can accept or reject. Only one player can keep the object
even if both accept it. Player 1 has priority. In the sequential version of the game,
player 1 decides whether to accept or reject. If he accepts, he keeps the object and
the game ends. If he rejects, player 2 is allowed to choose. If he accepts he keeps
the object, and if he rejects then no player keeps the object. In the simultaneous
version, both players must choose simultaneously. The object is assigned to any
player that has accepted, respecting priority: if both accept player 1 keeps the
object.

Payo�s depend on the state of nature which can be “good” or “bad” with a
priori equal probability. If the state is “good”, a player with the object gets a
payo� of 1 and a player without the object gets zero payo�. If the state is “bad”,
a player with the object gets zero while a player without the object gets 1. Players
have private information about the state of nature. This takes the form of a binary
signal si ∈ {g, b}. If the state is “good”, the probability of the signal being si = g is
Pr(si = g|“good′′) = 1. If the state of nature is “bad”, Pr(si = b|“bad′′) = q. Given
this information structure, if the signal is b, it perfectly reveals the state of nature
to be “bad”. The signal g means the state of nature is more likely to be “good”.

In this game there is a possibility for player 2 to su�er from a type of winner’s
curse. The idea is the following: player 1 is not a�ected in any way by the actions
of player 2. This means he faces a simple decision problem and therefore the
most natural thing for him to do is to follow his private signal. This means to
accept the object when observing s1 = g and rejecting it when s1 = b. Notice
that in this last case player 1 actualy knows that the state of nature is “bad”. If
player 1 plays like this, then player 2 can only keep the object when the state is
“bad”, and thus accepting it can only make him a victim of the winner’s curse.
Notice that whether the action of player 1 is observable or not (sequential or
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simultaneous play) is irrelevant for the existence of the WC. It is relevant as to
what type of reasoning is required for player 2 to recognize the WC in order to
avoid it. In the sequential game IIOA is enough. In the simultaneous game, the
more sophisticated IIFA is required.

Before entering the details of how the design was implemented in the actual
experiment, we brie�y explain the di�erent theoretical predictions about the play-
ers’ behavior. It must be made clear from the start that our focus lies on player 2.
It is this player that could use IIOA or IIFA and hence his ability to perform either
a�ects his behavior. Player 1 is simply instrumental. Although part of the game,
he faces a simple decision problem with no need or possibility to perform either
reasoning process (IIOA or IIFA) and his behavior is not predicted to vary by any
theory.

4.2.1 Theoretical predicitons

First let us fix notation. The subscript i ∈ {1, 2} denotes the player. Players
makes a choice xi ∈ X = {A,R}. The state of nature is θ ∈ � = {G,B}. Let
fi : X2

→ X be the assignment function. In particular,

f1(x1, x2) = x1

and

f2(x2, x1) =

x2, f or x1 = R
R, f or x1 = A

. For notational economy we use the set of choices to also denote the set of
outcomes. The outcome A means the player keeps the object, while the outcome
R means he does not keep it. Payo�s are given by

ui
(

f (xi, x−i
)
, θ) =


1, f (xi, x−i) = A & θ = G
1, f (xi, x−i) = R & θ = B
0, otherwise

We say that a player plays informatively if his choice corresponds to his signal.
That is if xi = A when si = g and xi = R when si = b. On the other hand we say a
player herds if he chooses to reject the object independently of his private signal.
The case of always accepting does not come up in any situation so we have no
name for it. Also, for the economy of the analysis we must note that if a player has
private signal si = b, he knows for sure that the state of nature is “bad”. Since we
assume players to be individually rational, it is always optimal for them to reject
after observing this private signal, independently of the other’s choices. Thus the
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analysis below focuses on what players when observing private signal si = g.

Bayesian Nash equilibrium

Player 1
Player 1 faces a simple decision problem. The choice of player 2 does not a�ect
his outcomes. If his private signal is s1 = b he knows the state of nature is θ = B
and thus the optimal choice is to reject. If s1 = g then his expected payo� from
accepting is:

E[u1(x1 = A, θ)|s1 = g] = Pr(θ = G|s1 = g)

=
1

1 + 1 − q

=
1

2 − q

His expected payo� from rejecting is:

E[u1(x1 = R, θ)|s1 = g] = Pr(θ = B|s1 = a)

=
1 − q

1 + 1 − q

=
1 − q
2 − q

It is easy to see that E[u1(x1 = A, θ)|s1 = g] > E[u1(x1 = R, θ)|s1 = g] and therefore
it is optimal to accept. Hence, player 1 plays informatively. Notice that this is
true independently of whether the game is played simultaneously or sequentially.
This is because player 1 knows he has priority over player 2.

Player 2 - Simultaneous play.
Now consider player 2. He calculates expected payo�s taking in to account player
1’s strategy. Since player 1 plays informatively, player 2’s expected payo� from
accepting when s2 = a is:

E[u2( f2(A, x1), θ)|s2 = g] = Pr(θ=G|s2=g) [Pr(s1=g|θ=G) · 0 + Pr(s1=b|θ=G) · 1]
+ Pr(θ=B|s2=g) [Pr(s1=g|θ=B) · 1 + Pr(s1=b|θ=B) · 0]

=Pr(θ=B|s2=g)Pr(s1=g|θ=B)

=
(1 − q)2

2 − q
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His expected payo� from choosing B when s2 = g is:

E[u2( f2(R, x1), θ)|s2 = g] =Pr(θ = B|s2 = g)

=
1 − q
2 − q

We see that E[u2( f2(A, x1), θ)|s2 = g] < E[u2( f2(R, x1), θ)|s2 = g] and thus player 2
rejects. Since he does the same when his signal is s2 = b, we say player 2 herds.
Notice that these calculations assume that player 2 is able to perform IIFA.

Player 2 - Sequential play.
Now player 2 observes player 1’s choice before making his own. If player 1
accepts, then there is no choice to be made by player 2, since player 1 keeps the
object, given his priority. If player 1 rejects, then player 2 must choose. But player
2 knows that player 1 rejects only after observing s1 = b which means that the
state of nature must be “bad”. Thus he also rejects independently of his signal.
Notice here that this reasoning requires IIOA (but not IIFA).

Cursed equilibrium

A cursed equilibrium is the predicted outcome of a game played by cursed
players. A fully cursed player can correctly predict the distribution of the others’
actions but does not recognize the informational content of these4. According to
the cursed equilibrium theory players’ “cursedness’ ’ is measured by a parameter
χ. With probability χ a players beliefs are the ones of a fully cursed player and
with probability 1 − χ they coincide with the ones of a rational player.

Player 1.
Here again player 1 faces a decision problem and his payo� is not a�ected by
player 2’s actions. Therefore it does not matter whether he is cursed or not. His
optimal play is the same as in the case of bayesian-nash players for any degree of
“cursedness” χ. Player 1 plays informatively.

Player 2 - Simultaneous play.
A fully cursed player 2 correctly predicts the distribution of player 1’s actions.

4Such behavior gives rise to the winner’s curse in auctions and other common-value environ-
ments, hence the term “cursed”

91



Seeing is Believing?

This means he believes that player 1 accepts with probability:

Pr(x1 = A|s2 = g) = Pr(s1 = g|s2 = g) =
∑
θ∈�

Pr(s1 = g, θ|s2 = g)

=
∑
θ∈�

[
Pr(s1 = g|θ) · Pr(θ|s2 = g)

]
=

1
2 − q

+ (1 − q)
1 − q
2 − q

= 1 −
q(1 − q)

2 − q

and rejects with the complementary probability:

Pr(x1 = R|s2 = g) =
q(1 − q)

2 − q

Therefore, his expected payo� with these cursed beliefs from accepting after
observing s2 = g is:

Ec[u2( f2(A, x1), θ)|s2 = g] = Pr(θ=G|s2=g)
[
Pr(x1=A) · 0 + Pr(x1=R) · γ

]
+ Pr(θ=B|s2=g) [Pr(x1=A) · 1 + Pr(x1=R) · 0]

=Pr(θ=G|s2=g) · Pr(x1=R) · γ + Pr(θ=B|s2=g) · Pr(x1=A)

=
1

2 − q
q(1 − q)

2 − q
+

1 − q
2 − q

(1 −
q(1 − q)

2 − q
)

=
1 − q
2 − q

+
q2(1 − q)
(2 − q)2

His (cursed) expected payo� from rejecting after observing s2 = g is:

Ec[u2( f2(R, x1), θ)|s2 = g] =Pr(θ = B|s2 = g)

=
1 − q
2 − q

Since Ec[u2( f2(A, x1), θ)|s2 = g] > Ec[u2( f2(R, x1), θ)|s2 = g], player 2 accepts. This
means a fully cursed player 2 plays informatively.

Now consider the case where player 2 is not fully cursed, rather his degree of
“cursedness” depends on the parameter χ. His expected payo� based on these
partially cursed beliefs is a convex combination between the expected payo�
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calculated by a rational player and the one of a fully cursed player:

Eχ[u2( f2(A, x1), θ)|s2 = g] = χ · [
1 − q
2 − q

+
q2(1 − q)
(2 − q)2 ]

+ (1 − χ) · [
(1 − q)2

2 − q
]

and

Eχ[u2( f2(R, x1), θ)|s2 = a] =Pr(θ = R|s2 = g)

=
1 − q
2 − q

In order to play informatively the following condition must hold:

Eχ[u2( f2(A, x1), θ)|s2 = g] >Eχ[u2( f2(R, x1), θ)|s2 = g]
⇔

χ · [
1 − q
2 − q

+
q2(1 − q)
(2 − q)2 ] + (1 − χ) · [

(1 − q)2

2 − q
] >

1 − q
2 − q

2 − q
2

< χ

Thus there is a threshold level for χ. For values above the threshold player 2 plays
informatively. For values of χ below the threshold he herds.

Player 2 - Sequential play.
Now player 2 observes the choice of player 1 so there is no question about whether
he correctly predicts the distribution of player 1’s actions. Still, a fully cursed
player 2 does not realize that when player 1 rejects he does so because he observed
s1 = b. When player 1 accepts the game stops, therefore we focus on the case where
player 1 rejects. Player 2’s expected payo� from accepting when observing s2 = g
is:

Ec[u2( f2(A,R), θ)|s2 = g] =Pr(θ = G|s1 = g)

=
1

2 − q
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The expected payo� from rejecting is:

Ec[u2( f2(R,R), θ)|s2 = g] =Pr(θ = B|s2 = g)

=
1 − q
2 − q

Again we see that a fully cursed player 2 has a higher expected payo� by accepting,
so he does so.

Now we consider a partially cursed player 2. Given a value for χ his expected
payo� from accepting is:

Eχ[u2( f2(A,R), θ)|s2 = g] =χ ·
1

2 − q
+ (1 − χ) ·

(1 − q)2

2 − q

and from rejecting:

Eχ[u2( f2(R,R), θ)|s2 = g] =Pr(θ = B|s2 = g)

=
1 − q
2 − q

In order to play informatively the following condition must hold:

Eχ[u2( f2(A,R), θ)|s2 = g] >Eχ[u2( f2(R,R), θ)|s2 = g]
⇔

χ ·
1

2 − q
+ (1 − χ) ·

(1 − q)2

2 − q
>

1 − q
2 − q

1 − q
2 − q

< χ

Again there is a threshold as in the case of simultaneous play. For values above
the threshold player 2 plays informatively. For values of χ below the threshold
he herds.

It is important to notice that χseq =
1−q
2−q <

2−q
2 = χsim. This means that for

χ ∈ (χseq, χsim] a partially cursed player 2 herds in the simultaneous game but
plays informatively in the sequential game.
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Level-k reasoning

According to the theory of level-k reasoning, each player is of a type k > 0.
A player of type k best responds to the strategy of players of type k − 1. For the
theory to have a content one must define how level 0 players play. In this context
it is reasonable to assume that level-0 players randomize uniformly over the two
alternatives. Then, the best response of a level-1 player is to follow his own signal.
This coincides with the optimal play of player 1 for both the simultaneous and the
sequential game and both for rational and fully cursed players. For player 2 this
coincides with the behavior of a fully cursed player 2. A level-2 player 2 should
then best respond in the same way as a fully rational player and herd. This is true
both for the simultaneous and the sequential game.

Notice that level-1 players here do not perform IIOA in the sequential game
and similarly they do not perform IIFA in the simultaneous game. While the
observed behavior is the same as in the case of cursed equilibrium, the reason
such players play naively is not because they are assumed unable to recognize the
informational content of other’s actions and use it to calculate their best response.
They dot not perform either of these processes because they wrongly believe that
other’s play in a very naive way and there is no informational content in their
actions.

Prediction summary

If players follow the Bayes-Nash prototype, they are expected to herd inde-
pendently of whether the game is played simultaneously or sequentially. Cursed
equilibrium and level-k reasoning allow for players to be of a less sophisticated
type. These are fully cursed and level-1 players respectively. Such less sophisti-
cated players are expected to play informatively in both types of games. These
theories also allow for more sophisticated players whose behavior is the same as
that of Bayes-Nash type players. Cursed equilibrium leaves a window for a type
of player that plays di�erently depending on whether the game is simultaneous or
sequential. This would be a player that is “partially cursed”. The theoretical basis
for such a type of player is not very clear and in any case the predicted behavior
is quite counterintuitive. Such a player is expected to play informatively in the
sequential game and herd in the simultaneous version. In any case, none of the
theories predicts a behavior such as the one described for the GM type, that is to
play informatively in the simultaneous game and herd in the sequential one. The
following table summarizes these results.
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Game Bayes Nash

Cursed equilibrium Level-k reasoning

GM typeFully cursed
or low !

Medium ! High ! level-1 level-2

Simultaneous Herd Informative Herd Herd Informative Herd Informative

Sequential Herd Informative Informative Herd Informative Herd Herd

4.2.2 Implementation

The experiment took place in the Pompeu Fabra University in Barcelona.
Subjects were first and second year students from the Faculty of Economics and
Business and the Faculty of Political and Social Sciences that participated in the
experiment during the last 15 minutes of a lecture, using pen and paper. A
preliminary experiment took place two weeks earlier with a small number of
3rd and 4th year students that acted as player 1 in the game. Subjects in the
main experiment were randomly matched to one of the preliminary experiment’s
subjects and acted as player 2. Experiments with groups 1 to 5 took place in the
Spring of 2011 with students of economics, while the remaining experiments were
run in the Spring of 2012 with political science students.

Each subject received a document containing instructions and answer sheets
for the experiment. Instructions were read out loud at the start and subjects
had to complete a five question multiple choice comprehension test to show they
understood the instructions. Not completing the test successfully, excluded them
from any payment.

After that, each subject played two versions of the game. The di�erent versions
are described below. Subjects in the same group played the games in the same
order. The information structure was reproduced by a method of urns. In the
“good” state the urn only contained 10 white balls. In the “bad” state the urn
contained 1 white ball and 9 black balls. This means that the parameter q in the
experiment took the value 0, 9.

The strategy method was used to elicit subjects’ strategies. They were asked to
indicate whether to accept or reject conditional on observing a white or black ball.
This was done both for practical reasons as well of “experimental economy”. First
it shortened the duration of the experiment, since no actual draws had to be made
during the 15 minutes of the class5. Most importantly though, the strategy method
allows us to collect a much greater number of useful observations. To understand
why, one has to think that our interest is to see whether subjects play informatively
or herd. Has the strategy method not been used, any observation coming from a

5in each group a subject volunteered to stay a few minutes after class and make a single draw
which counted for all the subjects in the group
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subject drawing a black ball (equivalent to si = b) would be practically useless.
After playing the game, subjects were asked to give an explanation for why

they played the way they did in each game. They were also asked to report the
grade with which they entered the university.

To determine payments one of the two games was chosen randomly and
subjects were payed according to their outcome in that game. Subjects that
kept the object in the “good” state or didn’t do so in the “bad” state received a
payment of 2 euros. These payments took place the next day in the premisses of
the university.

Treatments

Each treatment consists in playing di�erent versions of the game. While the
game is always the same for player 1, we allow for 5 di�erent versions to be
played by player 2.

Version 1: Player 2 is asked to submit his strategy without observing the action
of player 1. This is the straightorward simultaneous version of the game.

Version 2: Like in version 1, player 2 is asked to submit his strategy without
observing the action of player 1. Still, his attention is called upon the fact that his
actions only matter when player 1 rejects.

Version 2+: Player 2 is told he will have to make a choice after observing the
action of player 1. Since there will be no need for a choice if player 1 accepts,
player 2 is asked to submit a strategy for the case player 1 rejects.

Version 3: Player 2 observes the action of player 1. If player 1 accepts he does
nothing. If player 1 rejects he submits his strategy.

Versions 1 and 3 represent the two versions of the game, simultaneous and
sequential. 2 and 2+ represent a di�erent framing of these two versions.

4.3 Experimental Results

The experiment was conducted with 5 di�erent groups. Two versions were
used in each group in di�erent order. The following combinations were used: 13,
31, 12, 12+, 22+, 2+2. The table in figure 4.1 summarizes the composition of the
di�erent groups and their performance in the comprehension test.

Unfortunately, a large number of students that should normally attend the class
of groups 4 and 5 showed up in the class of group 3. This led to an unbalanced
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Group 1 2 3 4 5 6 7

Treatment

# Subjects

Year

Correct 
Tests

Avg. grade

13 31 12 12+ 22+ 22+ 2+2

74 72 69 20 20 54 34

1st 2nd 2nd 2nd 2nd 2nd 1st

91% 

(67)

83% 

(60)

80% 

(55)

75% 

(15)

40% 

(8)

70%

(38)

68%

(23)

7.75 6.8 7.7 7.63 6.54 7.16 7.36

Figure 4.1: Descriptive statistics for the diff erent groups

number of observations for these treatments. Furthermore, In group 5, more than
half of the subjects failed the comprehension test. For these reasons we exclude
results from this group from any further analysis.

The treatments used in groups 1 and 2 are the ones that give us some answers
concerning the existence of GM types. We therefore focus our analysis on these
groups. The results from groups 3 and 4 are relevant to understand the reasons
behind a GM type’s behavior. We refer to these results when discussing such
explanations and the possibility for further experiments.

In each game a subject could submit one of four possible strategies: (“accept
when drawing white”, “accept when drawing black”), (“reject”, “accept” ), (“ac-
cept”, “reject”), (“reject”, “reject”). Notice that the first two are not individually
rational. Drawing a black ball perfectly reveals the state to be “bad” and hence
rejecting is optimal. Only 3 subjects submitted such strategy and of them only
one had successfully completed the comprehension test. We choose to ignore
these subjects for the rest of the analysis. The other two strategies correspond to
informative play and herding.

Games with incomplete information are generally known to be complex for
subjects. In our case, the fact that the game is played only twice and with no
feedback about payoff s gives limited chances for subjects to get familiarized with
the game. This is the reason for having subjects take the comprehension test.
It is positive that the vast majority of subjects answered this test perfectly. We
therefore choose to ignore from the rest of the analysis the subjects that have not
answered correctly to one or more questions in the test. Including these subjects
would not change any of our results.

The above exclusions leave us with 66 subjects in group 1 and 60 subjects in
group 2. Note that while for version 1 (simultaneous) we have observations from
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all non-excluded subjects, for version 3 (sequential) we have observations only
for subjects that were matched with players 1’s that rejected in the preliminary
session. This means that for version 3 we have 32 observations in group 1 and 24
observations in group 2.

First we look at subjects behavior in each version. The following graphs show
the proportion of subjects that played informatively or chose to herd in each
version for each group.

Group 1

0% 20% 40% 60% 80% 100%

Simultaneous

Sequential
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r
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Informative Herding

Group 2

0% 20% 40% 60% 80% 100%

Simultaneous

Sequential

V
e
r
s
io

n

Informative Herding

Figure 4.2: Proportion of play in groups 1 and 2

The reason for having subjects in di�erent games play the same games in
di�erent order is to control for the possibility of “contamination”. That is, playing
one type of game first could have a an e�ect on the play of the second game. It
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turns out there are no statistically significant di�erences between the distribution
of play in each game in the two groups (p-value of 0.6 and 1 for the simultaneous
and sequential game respectively under the two-tailed Fisher’s exact test). We
shall therefore from now on group all observations together in a single sample.

We now compare play across versions. We have 126 observations for the
simultaneous version and 55 for the sequential. The following graph shows the
proportion of subjects that play informatively and the ones that herd in each
version. 40% of subjects herd in the sequential version, while only 17% does so
in the simultaneous one. This di�erence is statistically highly significant (p-value
0f 0.0025 under the one-tailed Fisher’s exact test). Herding is the optimal play in
both versions. Still recognizing this in the simultaneous game requires subjects
to perform the more sophisticated IIFA. On the other hand, the simpler IIOA
is needed to recognize herding as an optimal play in the sequential game. The
higher proportion of subjects herding in the sequential game could re�ect this
di�erence in complexity among the two games.

Aggregate play accross groups
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Figure 4.3: Aggregate play.

Still, this analysis simply identifies di�erences in aggregate behavior in each
game. Our design allows us to do more than that and address the question of
interest: do players behave as GM? To answer this question we look at every
subjects behavior in both games. We then classify each subject according to this
behavior. There are four classes of behavior. Behavior in three of these can be
explained by existing theories. Behavior in the fourth class is the one of a GM
type. More than one third of subjects are classified as GM types.

First we must note that for classification we can only use subjects that sub-
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mited a strategy in both versions. This excludes subjects that were matched with a
player 1 that accepted. Pooling subjects from both groups, this gives us 55 subjects
to classify. There are four possible patterns of behavior: {“Informative”, “Infor-
mative”}, {“Herd”, “Herd”}, {“Informative”, “Herd”}, {“Herd”, “Informative”},
where the first element in the brackets denotes the behavior in the sequential
version, and the second denotes behavior in the simultaneous version. The first
pattern, playing informatively in both versions is the naive behavior. It corre-
sponds to the behavior predicted for fully cursed types and level-1 types by the
respective theories. The second pattern, herding in both versions is the sophis-
ticated behavior. It is predicted as the behavior of Bayesian-Nash type players
and level-2 players in the level-k reasoning model. The third pattern, informative
in the simultaneous and herding in the sequential version, is predicted only by
the cursed equilibrium theory for partially cursed players with an intermediate
value of χ, the models parameter. The theoretical basis for such a behavior is
not clear. The last pattern, herding in the sequential and informative play in the
simultaneous version is the GM type’s behavior.

The graph in Figure 4.4 shows the number of subjects that can be classified
in each of the four classes. As one can see, the majority of subjects are classified
as naive. 29 subjects (53%) enter this class. Only one subject is classified as
sophisticated. 5 subjects are classified as partially cursed. Finally, 20 subjects
(36%) are classified as GM types. This makes GM types the second largest class
in our sample.

Types of behavior

sophisticated GM types

partially cursed naïve

1

5

29
20

Figure 4.4: Types of behavior.
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4.4 What drives behavior?

The results so far suggest that a behavior as the one we suggest could be
empirically relevant. More than a third of the subjects in our sample behave
in a way that can not be explained by any of the relevant theories of strategic
thinking. While this finding indicates that the institutional setup, and in particular
the observability of others’ actions, is important in shaping agents beliefs and
behavior, a question still remains: what drives such behavior?

Two general explanations seem plausible. One is related to the existence of a
cognitive cost of reasoning that may di�er between the di�erent setups. The other
explanation is related to the possibility that individuals use a di�erent model of
strategic thinking depending on whether or not they observe others’ actions. The
first seems more obvious and we present evidence that suggest that at least part
of the observed behavior can be explained in this way. The second is more subtle
and while we did not manage to produce conclusive evidence yet, we believe it
plays a role in explaining the di�erences in behavior.

4.4.1 Cognitive cost of reasoning

The cognitive cost of reasoning (CCR) refers to the di�culty that an individual
may face in making all necessary calculations that are required in order to compute
one’s best response in the game. In both versions of the game in the experiment,
subjects’ actions only matter once they are in the game node that follows a rejection
by player 1. In the sequential game this is so because subjects know for a fact
that they are at this node, while in the simultaneous game they have to reach this
conclusion by calculating the possible outcomes from their actions in the other
nodes of the game and realizing that in these other nodes, their actions do not
matter. If for some players the CCR of these additional calculations is high, they
may -consciously or not - choose not to perform them. The resulting behavior
would be the one of a GM type.

If CCR drives behavior, then anything that can reduce this cost should push
behavior more in line to sophisticated behavior. In group 3 versions 1 and 2 were
used. Version 1 is the same as that of the simultaneous game used in groups 1
and 2. Version 2 is the version of the simultaneous game in which subjects are
reminded that their actions only matter when player 1 rejects. There were 69
subjects in the group, out of which 55 answered the comprehension test correctly.
In version 1, 44 played informatively while 11 chose to herd. In version 2, these
numbers were 35 and 20 respectively. The increase in the number of players that
herd in version 2 is statistically significant (p-value=0.004).

This finding suggests that for at least some of the subjects playing informa-
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tively, a behavior that is naive, the reason is a failure to realize that given the
structure of the game their action only matters when player 1 rejects. This is the
first step necessary in the IIFA reasoning process. Once they are reminded of
this, as is done in version 2, they manage to perform the remaining steps of the
reasoning by themselves. If this is so, then failure to perform IIFA is because of
the complexity of the game and the associated higher CCR. It is not because of the
inability to infer the information that drives other’s actions. Note that it is this
last part that is the basis for the notion of a “cursed equilibrium”.

4.4.2 Different models of strategic thinking.

Another way of explaining the GM type behavior is that individuals may use
di�erent types (or models) of strategic thinking in di�erent strategic situations.
An example of di�erent models of strategic thinking would be the di�erent levels
of reasoning in level-k thinking. But it could be something more varied and not
necessarily a model already formalized by game theorists. What we assume is
that the same individual may switch di�erent models depending on the institu-
tional setting. In particular, that individuals of the GM type use di�erent models
according to whether or not they observe the actions of other players. Note that
this is di�erent than a cognitive hierarchy model such as level-k thinking. Such
models allow for di�erent types of reasoning to be used by di�erent individuals.
What we suggest is that di�erent types of reasoning may “co-exist” within the
same individual.

In order to test this explanation we run treatments combining variation 2 with
variation 2+ in both possible orders. Variation 2+ is similar to version 3 (the
sequential game) but with an additional layer of the strategy method: subjects
are told they will take their action after observing what player 1 does. Still, they
are not told what this action is. Instead they are asked to submit their strategy
for the case player 1 rejects, which is the case where they will have to take an
action. Notice that these two versions of the game are equivalent. When subjects
are submitting their strategy they do not know whether player 1 has accepted
or rejected. Also, in both cases it is sugested to the subjects that their action
only matters when player 1 rejects. Thus the CCR should be the same in both
cases. The only di�erence is one of framing: in version 2 the game is framed as a
simultaneous action game, while in version 2+ it is framed as a sequential game.

Results from these treatments (groups 6 and 7) are mixed. The following ta-
ble summarizes the di�erent types of behavior encountered in each treatment .6

6We avoid using the same terms as before to describe behavior of subjects that switch their
strategy across the two versions of the game in these treatments. The reason is that unlike
treatments 13 and 31, here subjects face the same game. Only in the case that our explanation of
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22+ 2+2

Naive

Sophisticated

Other

Naive to Soph. 
(GM)

Soph. to Naive

Other switch

42% (16) 48% (11)

13% (5) 4% (1)

3% (1) 4% (1)

26% (10) 13% (3)

11% (4) 26% (6)

5% (2) 4% (1)

Figure 4.5: Types of behavior in treatments 22+ and 2+2.

’Naive’ are the subjects that play informatively in both versions of the game. ’So-
phisticated’ are subjects that herd in both versions. ’Not rational’ refers to subjects
that always accept. ’Naive to Sophisticated’ are subjects that play informatively
in the the simultaneous framing and herd in the sequential framing (similar to
GM types). ’Sophisticated to Naive do the opposite (similar to partially cursed).
’Not rational switch’ always accept in one version and play informatively in the
other.

As can be seen from these results, over 40% of subjects play diff erently in each
version of the game. Given that both versions are equivalent, this could suggest
that our explanation of diff erent models of strategic thinking has some bite. The
problem is that the direction of the switch seems to be related to the order in
which the versions are played. This suggests that the switches may occur because
of some “experimenter demand” eff ect.7 To disentangle such an eff ect from our
explanation of diff erent models of strategic thinking we recur to subjects’ self
reported rationale for their decisions. A thorough analysis of these answers is still
work in progress. Still, casual reading of the answers from subjects that switch
their behavior from naive in version 2 to sophisticated in version 2+, suggest that
our explanation of GM behavior can not be ruled out.

diff erent models of strategic thinking is valid would it make sense to use the same terms. But this
can not be established here and definitely not a priori

7 See Zizzo (2010) (22). In treatments 13 and 31 there does not seem to be such an issue, since
the majority of subjects that switch their behavior do so in the same direction irrespectively of the
order of the game’s versions.
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4.5 Conclusions

Incomplete information characterizes a significant number of economic and
social situations. It is therefore important to have a model of individuals’ behav-
ior in such situations. Bayesian Nash equilibrium concepts from classical game
theory have provided a useful starting point. Nevertheless, situations like the
appearance of the winner’s curse in common value auctions demonstrate their
possible limitations. Alternative theories have been advanced to explain these
phenomena, including “cursed equilibrium” and “level-k” thinking. These the-
ories o�er interesting insights on the possible drivers of individual behavior in
such environments. Still, the results in this paper show that they fail to capture
an otherwise quite intuitive point that is crucial in games with incomplete infor-
mation: observing others’ actions is not the same as predicting they will happen.
And therefore, inferring their informational content is “easier” in the first case
than in the second.

Although we identify a type of behavior that is not predicted by any existing
theory, we do not provide a complete theory to explain it. Still, we do o�er two
possible explanations each of which could explain part of the observed behavior.
Di�erences in the cognitive cost of reasoning in di�erent strategic situations is
one of the possible drivers of this behavior and the experimental data seems to
support it. The other explanation is the possibility of some individuals applying
di�erent models of strategic thinking in di�erent institutional settings. We could
not verify experimentally this explanation, but it still remains a possibility. The
insights gained here can be the first step in developing a more complete theory of
strategic thinking for situations of incomplete information with a common value.

The experimental designs used to study the winner’s curse are commonly
based on variations of auctions and the “company acquisition” game. Here we
introduce a third alternative. We take advantage of the possibility to directly
contrast behavior in a simultaneous action game with that in a sequential action
game. But the fact that agents in this model only face a binary choice, allows
to better control for complexity as a determinant factor. Given the continuing
interest in studying the winner’s curse we think that the design we introduce can
serve as an additional alternative to be used in related experiments.

4.6 APPENDIX: Instructions

The next pages contain a sample of the original instructions used in the ex-
periment. A translated version follows. During the experiment instructions were
read out loud and subjects were asked not to turn pages unless instructed to do
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so.
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Nombre:__________________________
DNI:_____________________________


 Vas a participar en un experimento económico sobre la toma de decisiones. 
Dependiendo de tus decisiones podrás ganar dinero. 

 Primero tienes que leer y entender bien las instrucciones. Tienes que demostrar 
que has entendido bien contestando a unas preguntas tipo test. Si contestas mal a las 
preguntas no puedes ganar dinero. 

 El experimento tiene 2 partes. En cada una te enfrentarás a una oferta y tendrás 
que tomar alguna decisión. Al final tienes que contestar unas preguntas adicionales.

  Para determinar si ganas dinero, se escogerá aleatoriamente una de las dos 
ofertas y podrás ganar dinero en base de tus decisiones en esta oferta. Para saber si has 
ganado podrás consultar una lista con los ganadores que será colgada en el “Aula Global” 
de esta asignatura. Para ser pagado puedes pasar por el despacho 20.134 el Viernes 
10/6 entre las 10.30-13.30 y 15.00-17.00. Es importante que lleves tu DNI y que los datos 
correspondan con los que has apuntado en esta hoja.

OFERTAS: 

 Tu y otro participante seleccionado al azar os encontráis con la siguiente oferta. Se 
os ofrece una bolsa que contiene 10 bolas. Podéis aceptar o no la bolsa. La bolsa puede 
ser “buena” (contiene solo bolas blancas) o “mala” (contiene algunas bolas negras). Hay 
un 50% de probabilidad que la bolsa sea buena o mala.

 El otro participante tiene prioridad: dado que solo hay una bolsa si el la acepta, 
tu te quedas sin bolsa. Si el la rechaza y tu la aceptas te la quedas tu. Si los dos 
rechazáis la bolsa no la tendrá ninguno de los dos.

 Los pagos dependen de si uno tiene la bolsa y si esta es “buena” o “mala”. Si 
tienes la bolsa y es “buena”, ganas 2 euros y si es "mala” no ganas nada. Si no tienes la 
bolsa y esta resulta ser “buena”, no ganas nada. Si no la tienes pero resulta ser “mala”, 
ganas 2 euros. 

Si la bolsa es...: ...buena ...mala

si la tienes 2 0

si no la tienes 0 2


 Antes de decidir, podrás sacar una bola de la bolsa y comprobar si es blanca o 
negra.  Lo mismo hará el otro participante. Recuerda que si la bolsa es “buena”, solo 
contiene bolas blancas. Por eso, si uno saca una bola negra, la bolsa tiene que ser 
“mala”.

107



Seeing is Believing?

Preguntas de entendimiento:
Cada pregunta tiene una solo respuesta correcta. Marca tu respuesta poniendo en circulo 
la letra correspondiente.

1. Si los dos aceptáis la bolsa:
a.Te la quedas tu y ganas 2 euros si es “buena”.
b.Se la queda el otro y ganas 2 euros si es “buena”.
c.Te la quedas tu y ganas 2 euros si es “mala”.
d.Se la queda el otro y ganas 2 euros si es “mala”.

2. Si tu aceptas y el otro participante rechaza:
a.Te la quedas tu y ganas 2 euros si es “buena”.
b.Se la queda el otro y ganas 2 euros si es “buena”.
c.Te la quedas tu y ganas 2 euros si es “mala”.
d.Se la queda el otro y ganas 2 euros si es “mala”.

3. Si rechazáis los dos:
a.No se la queda nadie y ganáis 2 euros si es “mala”. 
b.Te la quedas tu y ganas 2 euros si es “buena”.
c.No se la queda nadie y ganáis 2 euros si es “buena”
d.Se la queda el otro y ganas 2 euros si es “mala”.

4. Si uno saca una bola de la bolsa y esa es negra:
a.Sabe que la bolsa tiene que ser “mala”. 
b.Sabe que la bolsa tiene que ser  “buena”.
c.No sabe con certidumbre si la bolsa es “buena” o “mala”.
d.Sabe que hay más probabilidad que la bolsa sea “mala”.

5. Si uno saca una bola de la bolsa y esa es blanca:
a.Sabe que la bolsa tiene que ser “mala”. 
b.Sabe que la bolsa tiene que ser  “buena”.
c.Sabe que hay más probabilidad que la bolsa sea “buena”.
d.Sabe que hay más probabilidad que la bolsa sea “mala”.
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El siguiente dibujo muestra el posible contenido de la bolsa si es buena o si 
es mala. 

Buena

Todas las bolas son blancas

Mala

9 bolas son negras

Hay la misma probabilidad que la bolsa sea buena o mala. Sacarás una bola 
de la bolsa para comprobar si e blanca o negra. Lo mismo hará el otro 

participante.

OFERTA 1

En esta oferta participas junto al participante ## del otro grupo que ha sido 

escogido al azar. El tiene prioridad, pero tu tienes que tomar tu decisión sin 
observar la suya.

¿Que decisión tomarás? Aceptarás o rechazarás la bolsa?

(pon en circulo tu respuesta)

Si la bola que sacas tu es blanca:

 Acepto 
 Rechazo 


Si la bola que sacas tu es negra:
 
 Acepto 
 Rechazo
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OFERTA 2

En esta oferta participas junto al participante ## del otro grupo que ha sido 

escogido al azar. El tiene prioridad, y observas que decide RECHAZAR la 

bolsa.

¿Que decisión tomarás? Aceptarás o rechazarás la bolsa?

(pon en circulo tu respuesta)

Si la bola que sacas tu es blanca:

 Acepto 
 Rechazo 


Si la bola que sacas tu es negra:
 
 Acepto 
 Rechazo
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PREGUNTAS

1. ¿Porque has tomado la decisión que has tomado en la oferta 1?
_____________________________________________________________

_____________________________________________________________
_____________________________________________________________

_____________________________________________________________
_____________________________________________________________

2. Si has cambiado de decisión en la oferta 2 ¿Porque lo hiciste?

_____________________________________________________________
_____________________________________________________________

_____________________________________________________________
_____________________________________________________________

_____________________________________________________________

3. ¿Cuál ha sido tu nota de selectividad?____________________
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Name:__________________________
ID:_____________________________


 You will participate on an experiment on decision making. Depending on your 
decisions, you may win cash.

 First you must read well the instructions. You must prove that you understand them 
by answering a set of multiple choice questions. If you do not answer correctly you can not 
win any money.

 The experiment has two parts. In each one you will face an offer and you will have 
to make a decision. In the end you must answer some aditional questions

 In order to determine whether you have won cash, one of the two offers will be 
chosen randomly and you may win depending on your decision in that offer. To find out 
whether you have won you can check a li st with the winners that will be posted on the 
classeʼs intranet. In order to get payed you must come by office 20.134 on Friday 10th of 
June between 10.30-13.30 and 15.30-17.00. It is important to bring with you your ID 
containing the details that you have used on this sheet.

OFFERS:

 You and another participant that has been selected randomly, face the following 
offer. You are offered a bag containing 10 balls. You may accept o reject the bag. The bag 
may be “good” contains only white balls) or “bad” (contains some black balls). There is a 
50% chance that the bag is either “god” or “bad”.

 The other participant has priority: given that there is only one bag, if he accepts it 
you are left without the bag. If he rejects it and you accept, you get it. If you both reject the 
bag, neither one gets it in the end.

 Payoffs depend on whether one has the bag and whether it is “good” or “bad”. If 
you have the bag and it is “good”, you win 2 euros and if it is “bad” you win nothing. If you 
do not have the bag and it turns out to be “good”, you do not win anything. If you do not 
have it and it turns out to be “bad”, you win 2 euros. 

If the bag is... ...good ...bad

if you have it 2 0

if you do not have it 0 2


 Before deciding, you will draw a ball from the bag and check whether it is black or 
white. The other participant will do the same. Remember that if the bag is “good”, it only 
contains white balls. Therefore, if one draws a black ball, then the bag must be “bad”.
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Test of understanding:
There is a single correct answer to each question. Mark you answer by putting a circle 
around the corresponding letter.

1. If you both accept the bag:
a.You keep it and you win 2 euros if it is “good”.
b.The other one keeps it and you win 2 euros if it is “good”.
c.You keep it and you win 2 euros if it is “bad”.
d.The other one keeps it and you win 2 euros if it is “bad”.

2. If you accept and the other one rejects:
a.You keep it and you win 2 euros if it is “good”.
b.The other one keeps it and you win 2 euros if it is “good”.
c.You keep it and you win 2 euros if it is “bad”.
d.The other one keeps it and you win 2 euros if it is “bad”.

3. If you both reject:
a.Nobody keeps it and you win 2 euros if it is “bad”.
b.You keep it and you win 2 euros if it is “good”.
c.Nobody keeps it and you win 2 euros if it is “good”.
d.The other one keeps it and you win 2 euros if it is “bad”.

4. If one draws a ball and it is black:
a.He knows  that the bag is “bad".
b.He knows  that the bag is “good".
c.He does not know for sure whether the bag is “good” or “bad”.
d.He knows it is more likely for the bag to be “bad”.

5. Si uno saca una bola de la bolsa y esa es blanca:
a.He knows  that the bag is “bad".
b.He knows  that the bag is “good".
c.He knows it is more likely for the bag to be “good”.
d.He knows it is more likely for the bag to be “bad”.
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The following drawing depicts the possible content of the bag in case it is 
“good” and in case it is “bad”. 

Buena

Todas las bolas son blancas

Mala

9 bolas son negras

It is equally likely that the bag is “good” or “bad”. You will draw a ball from the 
bag and ckeck whether it is black or white. The other participant will do the 

same.

OFFER 1

In this offer you participate together with participant no. ## from the other 
group which has been selected randomly. He/she has got priority, but you 

must take your decision without observing what he decides to do.
What will you do? Do you accept or reject the bag?

(put a circle around your answer)

If the ball I draw is white:
 
 I accept
 
 I reject


If the ball I draw is black:
 
 I accept
 
 I reject
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OFFER 2

In this offer you participate together with participant  no, ## from the other 

group that has been selected randomly. He/she has got priority and you 
observe that he/she decided to REJECT.

What will you do? Do you accept or reject the bag?

(put a circle around your answer)

If the ball I draw is white:
 
 I accept
 
 I reject


If the ball I draw is black:
 
 I accept
 
 I reject
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QUESTIONS

1. Why did you take the decision above in offer 1?
_____________________________________________________________

_____________________________________________________________
_____________________________________________________________

_____________________________________________________________
_____________________________________________________________

2. If you changed your decision in offer 2, why did you do it?

_____________________________________________________________
_____________________________________________________________

_____________________________________________________________
_____________________________________________________________

_____________________________________________________________

3. What has been you university entry grade?____________________
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