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Abstract

Computer vision and more specifically object recognition have demonstrated in

recent years an impressive progress that has led to the emergence of new and use-

ful technologies that facilitate daily activities and improve some industrial processes.

Currently, we can find algorithms for object recognition in computers, video cameras,

mobile phones, tablets or websites, for the accomplishment of specific tasks such as face

detection, gesture and scene recognition, detection of pedestrians, augmented reality,

etc.

However, these applications are still open problems that each year receive more

attention in the computer vision community. This is demonstrated by the fact that

hundreds of articles addressing these problems are published in international confer-

ences and journals annually. In a broader view, recent work attempts to improve the

performance of classifiers, to face new and more challenging problems of detection and

to increase the computational efficiency of the resulting algorithms in order to be im-

plemented commercially in diverse electronic devices. Although nowadays there are

robust and reliable approaches for detecting objects, most of these methods have a

high computational cost that make impossible their application for real-time tasks. In

particular, the computational cost and performance of any recognition system is deter-

mined by the type of features, the method of recognition and the methodology used for

localizing objects within images. The main objective of these methods is to produce

not only effective but also efficient detection systems.

Through this dissertation different approaches are presented for addressing effi-

ciently and discriminatively the detection of objects in diverse and difficult imaging

conditions. Each one of the proposed approaches are especially designed and focus on

different detection problems, such as object categorization, detection under rotations in

the plane or the detection of objects from multiple views. The proposed methods com-

bine several ideas and techniques for obtaining object detectors that are both highly

discriminative and efficient. This is demonstrated experimentally in several state-of-

the-art databases where our results are competitive with other recent and successful

methods. In particular, this dissertation studies and develops fast features, learning

algorithms, methods for reducing the computational cost of the classifiers and integral

image representations for speeding up feature computation.
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Resumen

La visión por computador y más espećıficamente el reconocimiento de objetos han

demostrado en los últimos años un impresionante progreso que ha llevado a la aparición

de nuevas y útiles tecnoloǵıas que facilitan nuestras actividades diarias y mejoran ciertos

procesos industriales. Actualmente, nosotros podemos encontrar algoritmos para el

reconocimiento de objetos en computadores, videocámaras, teléfonos móviles, tablets

o sitios web para la realización de ciertas tareas espećıficas tales como la detección

de caras, el reconocimiento de gestos y escenas, la detección de peatones, la realidad

aumentada, etc.

No obstante, estas aplicaciones siguen siendo problemas abiertos que cada año

reciben más atención por parte de la comunidad de visión por computador. Esto se

demuestra por el hecho de que cientos de art́ıculos abordando estos problemas son pub-

licados en congresos internacionales y revistas anualmente. Desde una perspectiva gen-

eral, los trabajos más recientes intentan mejorar el desempeño de clasificadores, hacer

frente a nuevos y más desafiantes problemas de detección, y a aumentar la eficiencia

computacional de los algoritmos resultantes con el objetivo de ser implementados com-

ercialmente en diversos dispositivos electrónicos. Aunque actualmente, existen enfoques

robustos y confiables para la detección de objetos, la mayoŕıa de estos métodos tienen

un alto coste computacional que hacen imposible su aplicación en tareas en tiempo

real. En particular, el coste computacional y el desempeño de cualquier sistema de re-

conocimiento está determinado por el tipo de caracteŕısticas, método de reconocimiento

y la metodoloǵıa utilizada para localizar los objetos dentro de las imágenes. El princi-

pal objetivo de estos métodos es obtener sistemas de detección eficaces pero también

eficientes.

A través de esta tesis diferentes enfoques son presentados para abordar de man-

era eficiente y discriminante la detección de objetos en condiciones de imagen diversas

y dif́ıciles. Cada uno de los enfoques propuestos ha sido especialmente diseñado y

enfocado para la detección de objetos en circunstancias distintas, tales como la catego-

rización de objetos, la detección bajo rotaciones en el plano o la detección de objetos

a partir de múltiples vistas. Los métodos propuestos combinan varias ideas y técnicas

para la obtención de detectores de objetos que son tanto altamente discriminantes como
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eficientes. Esto se demuestra experimentalmente en varias bases de datos del estado

del arte donde los resultados alcanzados son competitivos al ser contrastados con otros

métodos recientes. En concreto, esta tesis estudia y desarrolla caracteŕısticas rápidas,

algoritmos de aprendizaje, métodos para reducir el coste computacional de los clasi-

ficadores y representaciones de imagen integral que permiten un mejor cálculo de las

caracteŕısticas.
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Resum

La visiò per ordinador, i més espećıficament el reconeixement d’objetes, han de-

mostrat en els últims anys un impresionant progrès que ha portat a l’aparició de noves

i útils tecnologies que faciliten les nostres activitats diàries i que milloren certs proces-

sos industrials. Actualment, nosaltres podem trobar algoritmes per al reconeixement

d’objectes en ordinadors, videocàmeres, telèfons mòbils, tablets o pàgines webs per a la

realització de certes tasques concretes tals com la detecció de cares, el reconeixement

de gestos i escenes, la detecció de vianants, la realitat augmentada, etc.

No obstant, aquestes aplicaciones continuen sent problemes oberts que cada any

reben mès atenció per part de la comunitat de visió per computador. Això ve demostrat

pel fet que centenars d’art́ıcles tractant aquests problemes sòn publicats en congressos

internacionals i revistes anualment. Des d’una perspectiva general, els treballs més

recents intenten millorar el desenvolupament dels classificadors, fer front a nous i més

desafiants problemes desafiants de detecció, i augmentar l’eficiència computacional dels

algoritmes resultants amb l’objectiu de ser implementats comercialment en diferents

dispositius electrònics. Tot i que actualment, existeixen enfocs fiables i robustos per a

la detecció d’objectes, la majoria d’aquests mètodes tenen un alt cost computacional i

fan impossible la seva aplicació en tasques en temps real. En particular, el cost com-

putacional i el desenvolupament de qualsevol sistema de reconeixement està determinat

pel tipus caracteŕıstica, mètode de reconeixement i la metodologia utilitzada per a lo-

calitzar objectes dins de les imatges. El principal objectiu d’aquests mètodes és obtenir

sistemes de detecció eficaç però també eficients.

A través d’aquest tesi, diferents enfocaments sòn presentats per tal de tractar de

manera eficient i discriminant la detecció d’objectes en condicions d’imatge diverses i

dif́ıcils. Cadascun dels enfocaments proposats ha estat especialment dissenyat i enfo-

cat per a la detecció d’objectes en diferents circumstàncies, tals com la categorització

d’objectes, la detecció sota rotacions en el pla o la detecció d’objectes a partir de

múltibles vistes. Els mètodes proposats combinen diferents idees i tècniques per a

l’obtenció de detectors d’objectes que són tant àltament discriminants com eficients.

Això es demostra experimentalment en diferents bases de dades del estat de l’art on

els resultats assolits són competitius al ser contrastats amb altres mètodes recents.
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En concret, aquesta tesi estudia i desenvolupa caracteŕıstiques ràpides, algoritmes

d’aprenentatge, métodes per a reduir el cost computacional dels classificadors i rep-

resentacions d’imatge integral que permeten un millor càlcul de les caracteŕıstiques.
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Chapter 1

Introduction

In the last years, computer vision has matured considerably and has achieved remark-

able results in some fields such as object recognition, medical imaging, object tracking,

scene reconstruction, etc. Nowadays, it is possible to find computer vision algorithms

in diverse electronic devices that simplify our daily activities. For instance, personal

cameras, webcams or cameras incorporated into cell phones have algorithms for face

detection –Fig. 1.1(a)–, gesture recognition or landscape classification that improve the

quality of our photos. These algorithms run in real-time and are robust to diverse

scene conditions and object appearance changes. Other interesting and useful appli-

cation is pedestrian detection in cars, see Fig. 1.1(b). In this case, the algorithms are

incorporated in cars with the aim of informing us about the existence of people on the

streets and to alert the driver about possible dangerous situations. In fact, the range of

computer vision applications is wide. Medical image analysis –Fig. 1.1(c)–, surveillance

in buildings and airports, car and robot navigation, human-machine interaction, image

retrieval from large internet databases are some examples of current trends. Computer

vision is, therefore, a very active research field that produces each year a very large

number of articles published in diverse international conferences, journals and books,

showing the great interest in this topic.

One important research topic inside the computer vision community and the main

topic of this dissertation is object recognition. It consists on localizing and identify-

ing specific objects or categories inside images or video sequences. Despite the great

advances in the recent years, this is still a challenging problem, mainly because the ap-

pearance of an object in an image can vary significantly from one instance to another.
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(a) (b) (c)

Figure 1.1: Computer vision applications. (a) Face detection in digital cameras
[www.gecameras.com.au]. (b) Pedestrian detection in cars [www.volvo.com]. (c) Left
ventricle detection in 2D MRI [www.umiacs.umd.edu].

This variation is caused by various factors such as intra-class variation, camera view-

point change, varying illumination conditions, scaling or deformations. Some example

images illustrating this difficult problem are shown in Fig. 1.2. The images correspond

to some public databases containing some object categories: motorbikes, cars or human

faces. We see in these images different issues that difficult the learning and subsequent

recognition of objects. Intra-class variability, for instance, is observed at the top row

where different motorbike models are shown. At the second row, the object car ap-

pears at multiple scales and locations, whereas at the third row, the objects –frontal

faces– suffer varying illumination conditions. Finally, the bottom row shows an object

category seen from multiple views. In this case, both the size and appearance change

according to the camera viewpoint.

The purpose of this dissertation is to propose new approaches to detect –localizing

and recognizing– objects in different scenarios and varying imaging conditions using

efficient techniques and algorithms for this goal. Through this dissertation, we cope

with different object recognition problems by means of simple, time-saving and robust

methods that achieve competitive detection rates against the state of the art with the

advantage of a more straightforward and efficient computation. More precisely, we

propose efficient methods by combining sinergically diverse techniques and approaches

for speeding up the testing of object classifiers over images.

In the rest of this chapter, we briefly state the main contributions, overview and

the derived publications, which had become the contents of the rest of monograph, set

forth chapter by chapter.
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1.1 Main Contributions

Figure 1.2: Object categories. Sample images containing four different categories:
motorbikes –TUD motorbike dataset [25]–, cars –UIUC car dataset [1]–, faces –Caltech
face dataset [17]– and multi-view car dataset –EPFL car dataset [72]–. The appearance
of objects is affected by lighting, scale, intra-class and viewpoint changes.

1.1 Main Contributions

The main contributions of the dissertation may be summarized as follows:

1. A new approach for computing Haar-like features by means of an approximation

of Steerable Filters is proposed. This yields a fast manner to extract image fea-

tures such as edges or stripes at any given orientation. This approach overcomes

the drawbacks of building additional integral images or more complex oriented

features. Besides, our method is suitable for the description and detection of

objects under rotations in the image plane.
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2. We propose a method called Boosted Random Ferns –BRFs– for the computation

of efficient and effective object classifiers. More precisely, this method combines

fast features –Random Ferns calculated on histograms of oriented gradients– and

AdaBoost in order to extract discriminative features and to obtain robust binary

classifiers that allow to localize and recognize object categories inside images in

a few seconds.

3. An efficient and robust method for detecting objects that may have rotations in

the image plane is proposed. This method uses a two-step approach consisting of

an orientation estimator and an object classifier which are efficiently calculated

using Random Ferns –RFs–. This approach reduces drastically the computational

cost since the object classifier is only evaluated on the reduced set of hypotheses

–image locations and orientations– given by the estimator.

4. A detection method for recognizing multiple object categories in images is pre-

sented. Particularly, we propose to build discriminative object classifiers –BRFs–

independently but sharing the same features –RFs– in order to reduce the inher-

ent and expensive cost of testing several classifiers by separated. The proposed

method is highly efficient since feature computation is common for all detectors

and is done just once.

5. We present a 3D object detection approach that integrates fast features –RFs–,

a pose estimator and a set of pose-specific classifiers which are trained via BRFs.

This approach is very efficient and achieves high detection rates on some state-of-

the-art datasets for detecting cars from multiples views. Besides, the estimator we

propose, called Hough-RFs, is based on Random Ferns and the Hough transform

in order to cope efficiently with size variations across object views. This estimator

determines object candidates in images that are then verified by the set of pose-

specific classifiers.
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1.2 Thesis Overview

1.2 Thesis Overview

This monograph is organized according to the following chapters:

• Chapter 2 reviews some techniques that are used through this thesis as in-

gredients for the computation and evaluation of efficient object classifiers. The

techniques mentioned in this chapter refer mainly to learning algorithms, efficient

features and integral image representations.

• Chapter 3 presents an efficient method to recognize objects under arbitrary

rotations in the image plane. Particularly, the proposed method combines fast

and steerable features with a gradient-based estimator which gives hypotheses

about the object orientation. This estimator allows to rotate the object classifier,

trained discriminatively via AdaBoost [24], and reduces the high computational

cost of evaluating the classifier for a vast range of orientations, or having a large

set of classifiers trained at multiple orientations. This chapter also introduces

Haar-like features which can be steered at any orientation using the principle of

steerable filters [22].

• Chapter 4 use Boosted Random Ferns –BRFs– to compute efficient and discrim-

inative object classifiers. BRFs uses AdaBoost [24] to compute and combine, in

an iterative and supervised process, the most relevant Random Ferns [64] over

local histograms of oriented gradients –HOGs–. The chapter finishes with an ex-

tensive validation on standard object datasets, where the proposed BRFs yield

high detection rates in spite of difficult imaging conditions such as occlusions,

lighting changes and intra-class variations.

• Chapter 5 introduces a robust and efficient approach for object detection and

categorization under in-plane rotations. The proposed method makes use of BRFs

–Chapter 4– and the two-step detection approach presented in Chapter 3. More

concretely, the first step is an estimator that is tested in images to yield poten-

tial hypotheses about the object location and orientation. The second step is a

very discriminative classifier –BRFs– which verifies the hypotheses given by the

estimator. This approach reduces the number of false positives and speeds up

the detection phase since the object classifier is tested only at specific poses. The
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chapter is concluded with an experimental validation over a novel and challenging

dataset including motorbikes having planar rotations.

• Chapter 6 focuses on the detection of multiple object categories in images in

an efficient way. To this end, this chapter describes a new method to compute

multiple object classifiers –BRFs– independently but sharing the same features

–Random Ferns–. The benefit lies on feature computation, the most computa-

tionally expensive process, which is done once and is independent of the number

of object categories. Therefore, this approach speeds up feature computation in

runtime and reduces also the overall number of features. More precisely, the pro-

posed approach learns a specific and discriminative configuration of features for

each object category by means of AdaBoost [24]. Although such configurations

differ, they share the same features.

• Chapter 7 describes a novel 3D object detection approach. The proposed

method integrates fast features –Chapter 4–, sharing features –Chapter 6– and a

two-step approach consisting of a pose estimator and a set of pose-specific classi-

fiers to deal with the localization of 3D objects from multiple views. In contrast to

the estimator introduced in Chapter 5, this chapter proposes a new and efficient

estimator based on the Hough transform. This estimator is used to determine

object/pose hypotheses which are then verified by a set of pose-specific classifiers.

The result is a very efficient and discriminative method for object detection that

achieves high detection rates in public datasets while keeping efficiency.

• Chapter 8 summarizes the dissertation and also provides the future work.

1.3 Derived Publications

The derived publications during the PhD are listed below. They correspond to articles

submitted to relevant international and national journals and conferences.

1. M. Villamizar, A. Garrell, A. Sanfeliu and F. Moreno-Noguer. Online Human-

Assisted Learning Using Random Ferns. International Conference on Pattern

Recognition (ICPR), 2012 [submitted].
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2. M. Villamizar, J. Andrade-Cetto, A. Sanfeliu and F. Moreno-Noguer. Bootstrap-

ping Boosted Random Ferns for Discriminative and Efficient Object Classifica-

tion. Pattern Recognition, 2012.

3. M. Villamizar, H. Grabner,J. Andrade-Cetto, A. Sanfeliu, L. Van Gool and F.

Moreno-Noguer. Efficient 3D Object Detection using Multiple Pose-specific Clas-

sifiers. British Machine Vision Conference (BMVC), 2011 [oral].

4. M. Villamizar, F. Moreno-Noguer, J. Andrade-Cetto, A. Sanfeliu. Detection Per-

formance Evaluation of Boosted Random Ferns. Iberian Conference on Pattern

Recognition and Image Analysis (IBPRIA), 2011.

5. M. Villamizar, F. Moreno-Noguer, J. Andrade-Cetto, A. Sanfeliu. Efficient Ro-

tation Invariant Object Detection using Boosted Random Ferns. Conference in

Computer Vision and Pattern Recognition (CVPR), 2010.

6. J. Scandaliaris, M. Villamizar, A. Sanfeliu. Comparative Analysis for Detect-

ing Objects Under Cast Shadows in Video Images International Conference on

Pattern Recognition (ICPR), 2010.

7. M. Villamizar, F. Moreno-Noguer, J. Andrade-Cetto, A. Sanfeliu. Shared Ran-

dom Ferns for Efficient Detection of Multiple Categories. International Confer-

ence on Pattern Recognition (ICPR), 2010.

8. M. Villamizar, A. Sanfeliu and J. Andrade-Cetto. Local boosted features for

pedestrian detection. Iberian Conference on Pattern Recognition and Image Anal-

ysis (IBPRIA), 2009.

9. M. Villamizar, J. Scandaliaris, A. Sanfeliu and J. Andrade-Cetto. Combining

color-based invariant gradient detector with HoG descriptors for robust image

detection in scenes under cast shadows. International Conference on Robotics

and Automation (ICRA), 2009.

10. J. Scandaliaris, M. Villamizar, J. Andrade-Cetto and A. Sanfeliu. Robust color

contour object detection invariant to shadows. Iberoamerican Congress on Pat-

tern Recognition (CIARP), 2007.
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11. M. Villamizar, A. Sanfeliu and J. Andrade-Cetto. Unidimensional multiscale

local features for object detection under rotation and mild occlusions. Iberian

Conference on Pattern Recognition and Image Analysis (IBPRIA), 2007.

12. J. Andrade-Cetto and M. Villamizar. Object recognition. In Wiley Encyclopedia

of Electrical and Electronics Engineering, 1–28. John Wiley and Sons, 2007.

13. M. Villamizar, A. Sanfeliu and J. Andrade-Cetto. Computation of rotation local

invariant features using the integral image for real time object detection. Inter-

national Conference on Pattern Recognition (ICPR), 2006.

14. M. Villamizar, A. Sanfeliu and J. Andrade-Cetto. Orientation invariant features

for multiclass object recognition. Iberoamerican Congress on Pattern Recognition

(CIARP), 2006.
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Jornadas de Automática, 2006.
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Chapter 2

Background

In this chapter some techniques are described in order to contextualize the contributions

of this dissertation. These techniques have been used in the past years for constructing

successful approaches for the detection of objects in images. In this thesis, we propose

detection approaches that use and extend some of these techniques with the aim of com-

puting effective and efficient methods for recognizing and localizing object categories

in challenging scenes. The addressed techniques are fast and discriminative features

such as Random Ferns [64] and Haar-like features [98]; boosting algorithms [23, 24];

and image representations for speeding up feature computation.

2.1 Random Ferns

Random Ferns (RFs), proposed by Ozuysal et al. [64], were designed for very fast and

effective keypoint matching, where each RF consists of a set of random and simple

binary features that are calculated over pixel intensities in the neighborhood of inter-

est points. By means of RFs, a semi-näıve classifier can be constructed to recognize

keypoints very fast in spite of having image distortions such as rotations in the image

plane.

More specifically, given a set of keypoint classes which are built offline by introduc-

ing image distortions on keypoint patches, the objective is to assign to a test patch,

surrounding a detected keypoint, the most likely keypoint class. This is done, firstly, by

modeling the class conditional probabilities of a set of N binary features in a training

phase, and then by calculating, in run-time, these binary features f in the test patch.

9



2.1 Random Ferns

The class for the test keypoint Ĉ is selected as that class with highest probability given

the feature outputs. This can be formulated as:

Ĉ(x) = argmax
ci

P (C = ci|f1(x), f2(x), ...fN (x)), i = 1, 2, ...Nk , (2.1)

where x is the test keypoint, Nk is the number of keypoint classes, and C is the random

class variable.

Using the Bayes rule and assuming that all classes have the same prior probabilities

P (C), and removing the evidence factor P (f1(x), f2(x), ...fN (x)) since it does not de-

pend on the class, the keypoint classification can be written by means of its likelihood:

Ĉ(x) = argmax
ci

P (f1(x), f2(x), ...fN (x)|C = ci), i = 1, 2, ...Nk . (2.2)

Since computing the complete joint probability for a large feature set (P (f1, f2, ...fN ))

is not feasible, it is split into R subsets (̥r = {f r1 , f
r
2 , .., f

r
M}), with M = N/R and

r = 1, 2, .., R. These feature subsets are known as Ferns, and assuming they are inde-

pendent, this joint probability conditioned to classes is calculated as:

P (f1(x), f2(x), ...fN (x)|C = ci) =

R
∏

r=1

P (̥r(x)|C = ci), (2.3)

and the class of the test keypoint is then selected by

Ĉ(x) = argmax
ci

R
∏

r=1

P (̥r(x)|C = ci), i = 1, 2, .., Nk . (2.4)

We see the last equation is a semi-näıve classifier because it does not compute

neither the complete joint feature probability nor a näıve classifier where independence

among all features is assumed. By contrast, it models only some dependencies among

features.

Random Ferns have proved to be competitive with the SIFT descriptor [49] but

demanding less computation time because the processing steps to achieve insensitivity

to image distortions are removed. Instead, Random Ferns are trained with a synthesized

set of feature images in order to obtain robustness to viewpoint and lighting changes. In

comparison to Randomized Trees [45], the presented approach is simpler, more powerful

and more scalable in terms of the number of classes it can handle. The authors have

10



2.1 Random Ferns

Figure 2.1: Construction of keypoints classes. Given detected keypoints in the input
image, the keypoints classes are constructed by synthesizing a set of new images by
means of applying affine deformations to the keypoints patches.

reported that with M around 10 and R between 30 and 50, good recognition rates are

achieved for keypoint classification. Furthermore, the method is so simple that it can

be implemented in ten lines of code [64]. Because of its efficiency, this method has

been extended to other computer vision tasks such as object detection [91, 92, 93] and

tracking [37].

Training the Random Ferns. To train the RFs, first, the keypoint classes are

constructed given a set of initial keypoints that are extracted from images using an

interest point detector [31, 81, 53, 54]. For each keypoint patch a set of new images are

synthesized by introducing image distortions such as affine deformations to the initial

patches. These collections of images represent the set of possible keypoint appearances

under different view conditions. To illustrate this procedure, Fig. 2.1 shows how two

keypoint classes are generated after adding image deformations to the original keypoint

patches.

The training of RFs is exemplified in Fig. 2.2 where two RFs are trained for clas-

sifying two keypoint classes –image patches–. Training samples are evaluated over the

Random Ferns in order to compute the distributions of Fern observations for each class.

In this example, two binary features per Fern are considered (M = 2). These binary

features are intensity comparisons between two random pixels –frame (b) in the figure–.

11



2.1 Random Ferns

RF1 RF2
f1

f2 f2

f1

f2 f2

0       1       2       3 0       1       2       3 

Samples

(a) Random Ferns

RF1

f1 f2

RF2

f1 f2
(b) FernFeatures

Figure 2.2: Training the Random Ferns. (a) Random Ferns are trained for the classi-
fication of two keypoints classes. Each RF consists of two binary features whose co-
occurrence determines the the distribution of Fern observations for each class. (b) Fea-
tures are basically random pixel comparisons over the keypoint patches.

Although the features are chosen randomly during training, they remain fixed in the

classification phase. Given that the output of each feature is a binary value, the size of

the Fern distribution is 2M , with M the number of binary features per Fern.

Random Ferns, unlike Randomized Trees, do not have a hierarchical structure and

features at the same level are equal. This means that the Fern distributions only

measure the co-occurrence of features belonging to the Fern in question. Each bin in

the histogram –distribution– represents a specific feature co-occurrence whose value is

the probability of such output.

Keypoint Classification. Keypoint classification proceeds as follows: first, the Ran-

dom Ferns are calculated in the test keypoint –patch– so that feature co-occurrence

can be computed. Then, given the Fern outputs and the Fern distributions, the Fern

probabilities for each class are combined into a final distribution. The class of the test

keypoint is finally selected as that class with highest probability in the resulting class

distribution, refer to Eq. 2.4.
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2.2 Discrete AdaBoost Algorithm

2.2 Discrete AdaBoost Algorithm

Discrete AdaBoost –DAB– is a machine learning algorithm used to improving the

performance of any given learning algorithm [24]. In general, it allows to construct a

robust or strong classifier using a set of weak classifiers. DAB improves the performance

of the strong classifier by the selection and weighted combination of discriminative

features in an iterative process where the weights of training samples are updated

in each iteration. AdaBoost has some interesting properties such as having a good

generalization and proved convergence provided all weak hypotheses have less than

50% classification error.

Formally, given a set of training samples (x1, y1)...(xn, yn)...(xN , yN ), where xn

refers to one sample from the sample space X, and yn is a class label, Y = {+1,−1},

that indicates the positive and negative classes, respectively, DAB extracts at each

iteration t a weak classifier h that best discriminates positive from negative training

samples. The boosted combination of weak classifiers yields an efficient and robust

classifier which is commonly known as the strong classifier H. Each weak classifier

at iteration t maps the samples to a binary space, ht : X → {+1,−1}, and gives

a classification error ǫt that is calculated as the sum of weights of the misclassified

samples under the current weight distribution Dt. This error can be computed by

ǫt =
∑

n:ht(xn)6=yn

Dt(xn), n = 1, 2, .., N. (2.5)

where N is the number of training samples.

For every iteration, the algorithm selects the most discriminative weak classifier and

its contribution αt in classifying the entire training set as a function of the classification

error ǫt,

αt =
1

2
ln

(

1− ǫt
ǫt

)

. (2.6)

The algorithm also updates the distribution of weights over the training samples. Ini-

tially, all weights are set equally, but on each round, the weights of misclassified samples

are increased so that the algorithm is forced to focus on such hard samples in the train-

ing set that were previously missed by the classifier.
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2.3 Real AdaBoost Algorithm

Algorithm 1 Discrete AdaBoost.

1: Given a number T of weak classifiers, a pool containing K weak classifiers, and N
samples (x1, y1)...(xn, yn)...(xN , yN ), where yn ∈ {+1,−1} is the label for positive
and negative classes, respectively.

2: Initialize sample weights D1(xn) =
1
N
, with n = 1, 2, .., N .

3: for t = 1 to T do
4: for k = 1 to K do
5: Compute the weak classifier hk : X → {+1,−1}.
6: Calculate the classification error ǫk.

ǫk =
∑

n:hk(xn)6=yn
Dt(xn)

7: end for
8: Select the weak classifier ht that minimizes e.
9: Calculate the weight of the weak classifier.

αt =
1
2 ln

(

1−ǫt
ǫt

)

10: Update the sample weights.
Dt+1(xn) =

Dt(xn) exp[−ynht(xn)]∑N
n=1

Dt(xn) exp[−ynht(xn)]

11: end for
12: Final strong classifier.

H(x) = sign
(

∑T
t=1 αtht(x)− β

)

Finally, the strong classifier formed by T weak classifiers is defined as:

H(x) = sign

(

T
∑

t=1

αtht(x)− β

)

, (2.7)

where β refers to the classifier threshold. This classifier H is a weighted majority vote

of the T weak hypotheses. Pseudocode for an AdaBoost implementation is described

in Alg. 1.

2.3 Real AdaBoost Algorithm

Real AdaBoost –RAB– proposed by Schapire and Singer [73] is an extension to the

discrete AdaBoost algorithm –DAB–. Unlike its discrete version whose weak classifiers

yield Boolean predictions, RAB deals with confidence-rated weak classifiers. Similarly

to DAB, Real AdaBoost is a machine learning algorithm used for improving the perfor-

mance of any given learning algorithm. It computes a robust classifier as the weighted

combination, in an iterative and supervised procedure, of weak classifiers. The algo-

rithm also updates, in each iteration, a distribution of weights over the training samples

14



2.3 Real AdaBoost Algorithm

Algorithm 2 Real AdaBoost algorithm.

1: Given a number T of weak classifiers, a pool containing K weak classifiers, and a
set of N samples (x1, y1)..(xn, yn)..(xN , yN ), where yn ∈ {+1,−1} is the label for
positive and negative classes, respectively.

2: Initialize sample weights D1(xn) = 1/N , with n = 1, 2, .., N .
3: for t = 1 to T do
4: for k = 1 to K do
5: For the weak classifier hk, the space X is divided into J disjoint blocks.

X = {X1,X2, ..,Xj , ..,XJ}
6: Calculate the probability distributions for positive and negative samples.

W j
±1 = P (xn ∈ Xj , yn = ±1) =

∑

n:xn∈Xj∧yn=±1Dt(xn)
7: Compute the weak classifier hk.

ht(x) =
1
2 log

P (W j
+1

+ǫ)

P (W j
−1

+ǫ)

8: Calculate the Bhattacharyya coefficient.

Q = 2
∑J

j=1

√

W j
+1W

j
−1

9: end for
10: Select the weak classifier ht that minimizes Q.
11: Update the sample weights.

Dt+1(xn) =
Dt(xn) exp[−ynht(xn)]∑N

n=1
Dt(xn) exp[−ynht(xn)]

12: end for
13: Final strong classifier.

H(x) = sign
(

∑T
t=1 ht(x)− β

)

in order to focus the algorithm’s effort into the hard samples, that is, the misclassified

samples at previous iterations.

In contrast to discrete AdaBoost, in RAB each weak classifier maps the sample

space X to real-valued space R, h : X → R. That is, the weak classifier divides the

sample space into J disjoint blocks, where J is the number of partitions,

X =

J
⋃

j=1

Xj. (2.8)

Then, each weak classifier is defined by

ht(x) =
1

2
log

P (W j
+1 + ǫ)

P (W j
−1 + ǫ)

, j = 1, 2, .., J, (2.9)

where ǫ is a smoothing parameter, and W±1 is the probability distribution for positive
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2.4 Gaussian-based Features

and negative samples. They are computed using histograms as follows:

W j
±1 = P (xn ∈ Xj , yn = ±1) =

∑

n:xn∈Xj∧yn=±1

Dt(xn) j = 1, 2, .., J ∀xn ∈ X,

(2.10)

where Dt is the distribution of sample weights at current iteration t.

To select the most discriminative weak classifier for the current iteration, the Bhat-

tacharyya coefficient is used. It measures the classification power of the weak classifier.

The smaller this measure is, the more discriminative the weak classifier is. At each

boosting iteration the weak classifier with the smallest value is chosen. This coeffi-

cient Q is calculated by

Q =

J
∑

j=1

√

W j
+1W

j
−1. (2.11)

After selecting the weak classifier ht, the algorithm also updates the distribution of

weights D over the training samples. Initially, all weights are set equally, but on each

round, the weights of misclassified samples are increased so that the algorithm is forced

to focus on such hard samples in the training set that were previously missed by the

classifier.

Finally, the strong classifier is defined as:

H(x) = sign

(

T
∑

t=1

ht(x)− β

)

, (2.12)

where T is number of weak classifiers, and β is the classifier threshold. Pseudocode for

Real AdaBoost is given in Alg. 2.

2.4 Gaussian-based Features

Gaussian-based functions are widely used in computer vision tasks because of their

properties such as orientability, separability and self-similarity. Furthermore, they can

be used for feature extraction since some of them resemble some image structures such

as edges.

First, we describe Gaussian derivative functions in 1D with the objective of seeing

how image patterns emerge when spatial derivatives of the Gaussian function are taken.
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2.4 Gaussian-based Features

(a) G(x) (b) G′

x(x) (c) G′′

x(x)

Figure 2.3: 1D Gaussian-based functions. (a) Gaussian function. (b) First order Gaus-
sian derivative. (c) Second order Gaussian derivative.

The Gaussian function G for a 1D signal x is defined by,

G(x) = e−
x2

2σ2 , (2.13)

where σ is the standard deviation that also refers to size of the Gaussian function.

Differentiating, the first and second order Gaussian derivatives G′
x(x), G

′′

x(x) be-

come

G′
x(x) =

−x

σ2
e−

x2

2σ2 = −
x

σ2
G(x), (2.14)

G′′
x(x) =

x2 − σ2

σ4
e−

x2

2σ2 =
x2 − σ2

σ4
G(x). (2.15)

These functions are shown in Fig. 2.3. We can see that they would respond to step and

peak changes.

One important fact when we work with Gaussian derivatives is that their responses

depend on the size of the filter, that is, the parameter σ. For instance, the maximum

values of the functions G′
x(x) and G

′′
x(x) are determined by ± 1

σ
e−

1

2 and −1
σ2

, respectively.

Clearly, they rely upon the parameter σ. If the goal is to extract features in a multi-scale

approach, Gaussian derivatives must be normalized to scale. This is done by adding

an auxiliary normalization factor. To this aim, suppose we have a function f composed

by one coordinate variable x and one scale variable σ, and that theses variables in the

function f are related by x
σ
. Then, it is possible to create a dimensionless variablem = x

σ

with which to obtain a scale invariant derivative. Using this new parametrization, we

can write function derivatives of order n as:

∂nf

∂mn
= σn

∂nf

∂xn
, (2.16)
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Figure 2.4: 2D Normalized Gaussian derivatives. First spatial order Gaussian deriva-
tives resemble horizontal and vertical edges (a-d), while second order derivatives re-
semble lines (e-h). The second order Gaussian derivative in both axes G′′

xy is useful
for detecting diagonal edges and corners (i-j). The 2D Gaussian function is at bottom
right.

where σn is the normalization factor and ∂nf
∂mn is the scale normalized derivative. The

proof of this scale normalization was explained in [74, 86].

Adding this normalization factor to the previous Gaussian derivatives, the first and

second order normalized Gaussian derivatives become

G′
x(x) = σ

−x

σ2
e−

x2

2σ2 = −
x

σ
G(x), (2.17)

G′′
x(x) = σ2

x2 − σ2

σ4
e−

x2

2σ2 =
x2 − σ2

σ2
G(x). (2.18)

The maximum values for these normalized functions are ±e−
1

2 and −1, which are of

course independent of the filter’s scale.
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2.5 The Steerable Filters

For the 2D case, the Gaussian derivatives are normalized in the same way as com-

mented previously, that is, by using a scale normalization factor. 2D spatial Gaussian

derivatives are useful for the extraction of image structures given that they resem-

ble edges, lines and some special contours –see Fig. 2.4–. For example, the first order

Gaussian derivatives capture information about changes of the surface normal and then

measure the intensity of edges. On the other hand, the second Gaussian derivatives

can be used to extract image features such as bars, blobs and corners.

To illustrate the computation of 2D normalized Gaussian derivatives, the first and

second order Gaussian derivatives in the axis x are calculated from the definition of 2D

Gaussian function,

G(x, y) = e−
x2+y2

2σ2 . (2.19)

Hence, the first and second order normalized derivatives can be formulated as:

G′
x(x, y) = σ

−x

σ2
e−

x2+y2

2σ2 =
−x

σ
G(x, y), (2.20)

G′′
x(x, y) = σ2

x2 − σ2

σ4
e−

x2+y2

2σ2 =
x2 − σ2

σ2
G(x, y). (2.21)

2.5 The Steerable Filters

In numerous applications it is necessary to convolve a filter to any given orientation.

The simplest strategy would be to have a large set of filters, where each one is specialized

to one particular orientation. However, this approach is a brute force implementation

that has a high computational cost because each filter should be convolved with the

image if the goal is to test the filter for many orientations.

Freeman and Adelson proposed the steerable filters for the rotation case [22]. They

state that if a filter is steerable, it can be expressed as a linear combination of a fixed

set of oriented filters. The best known steerable filters are the Gaussian derivatives,

whose rotated versions can be computed from a filter basis consisting of n+1 oriented

filters, where n is the derivative order.

For instance, the first order Gaussian derivative G′
θ(x, y) in an arbitrary orienta-

tion θ is given by

G′
θ(x, y) = cos(θ)G′

x(x, y) + sin(θ)G′
y(x, y), (2.22)
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Figure 2.5: Steerable Filters. First order Gaussian derivative (a) to any orientation
(i.e 7π

4 ) can be synthesized by a linear combination of filter basis (b-c). In the same
way, the second order Gaussian derivative to the same orientation (d) is calculated
using a fixed set of basis filters (e-g).

where cos(θ) and sin(θ) are the basis coefficients, whereas G′
x(x, y) and G′

y(x, y) are

the filter basis. Since convolution is a linear operation, the response of convolving the

steered filter G′
θ(x, y) with an input image I can be expressed as:

G′
θ(x, y) ∗ I = cos(θ)G′

x(x, y) ∗ I + sin(θ)G′
y(x, y) ∗ I. (2.23)

We see that the basis filters G′
x(x, y) and G

′
y(x, y) correspond to Gaussian filters com-

puted at orientations 0 and π
2 . That is, to rotated versions of the steered filter, and

that only two basis filters are necessary to compute the filter to any orientation, and

thus to avoid a large number of specialized filters for every orientation. This shows the

great benefit of steerability, a derivative filter can be computed in any given orientation

with minimal computational costs.

Similarly, the second order Gaussian derivative can be calculated as follows:

G′′
θ(x, y) = cos2(θ)G′′

x(x, y) + 2 cos(θ) sin(θ)G′′
xy(x, y) + sin2(θ)G′′

y(x, y). (2.24)

where basis filters G′′
x(x, y), G

′′
xy(x, y) and G

′′
y(x, y) are the spatial Gaussian derivatives.

Fig. 2.5 shows the first and second order Gaussian derivatives steered to 7π
4 . They are

computed as the linear combination of the responses of their basis filters.
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2.6 Haar-like Features and the Integral Image

(a) (b) (c) (d) (e)

Figure 2.6: Haar-like features. (a,b) Features that respond to horizontal and vertical
edges, respectively. (c) Haar-like feature used to extract horizontal stripe features.
(d) Center-surround feature. It responds to image blobs and edges. (e) Special diagonal
stripe feature.

There is a large number of applications for steerable filters where edge detection,

texture and motion analysis are just some examples. Extensions to this idea allow to

approximate and design orientation-selective features [67, 52, 79, 85, 80, 36]. Steer-

able filters are also used to compute rotationally-invariant descriptors which are calcu-

lated over interest points in order to describe locally object components. Ballard and

Wixson [5], for instance, addressed object recognition using steerable filters as local

descriptors. In this work, the descriptors achieve rotational invariance by steering all

filters according to the local image orientation that is calculated from the first Gaussian

derivatives. A similar work was presented by Yukono and Poggio [102] for building local

descriptors consisting of oriented Gaussian filters up to the third order and evaluated

for several scales. These descriptors are localized over corner points using the Harris

corner detector [31].

2.6 Haar-like Features and the Integral Image

Rapid feature computation is an important issue when we attempt to perform object

detection in real-time. Therefore, a detection system that uses simple features, with a

low computational cost, is essential for achieving high detection rates.

For instance, Papageorgiou et al. proposed in [66] simple yet powerful features in

order to capture contour-based features for detecting humans within images. These

rectangular features are reminiscent to Haar basis functions and defined by the differ-

ence between adjacent image regions, being each rectangular region the sum of pixel

intensities within that region. Some Haar-like features are depicted at Fig. 2.6. These

21



2.6 Haar-like Features and the Integral Image

Figure 2.7: Integral Image. The value at coordinates (x, y) corresponds to the sum of
pixel intensities from all pixel locations above and to the left of (x, y).

features are sensitive to the presence of edges, stripes and points.

With the aim of evaluating Haar-like features in an efficient way, the integral image

was introduced by Crow in [12] and popularized by Viola and Jones in [98]. This image

is useful for computing the response to rectangular features, such as Haar-like features,

because it is an image representation that once it is computed it enables to calculate

this type of features in a few pixel operations. In this image representation, the value

at coordinates (x, y) contains the sum of pixel intensities above and to left of (x, y),

inclusive,

II(x, y) =

y
∑

v=1

x
∑

u=1

I(u, v), (2.25)

where I is the input image. This computation is illustrated in Fig. 2.7. Furthermore,

the integral image can be computed recursively using its previous calculated values,

II(x, y) = II(x− 1, y) + II(x, y − 1)− II(x− 1, y − 1) + I(x, y). (2.26)

Once the integral image is computed, a rectangular region –sum of pixel intensities–

can be calculated only from its corner values in the new image representation. For
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2.6 Haar-like Features and the Integral Image

Figure 2.8: Rectangular feature computation. The sum of pixel intensities within a
rectangular image region can be calculated by means of its corner values at the integral
image.

example, if we wish to compute the sum of intensity values inside the rectangular

region defined by corners a, b, c, d –Fig. 2.8– it can be obtained easily by

xd
∑

u=xa

yd
∑

v=ya

I(u, v) = II(xa, ya)− II(xb, yb)− II(xc, yc) + II(xd, yd). (2.27)

Näıvely the left-hand side of equation implies n1 × n2 operations. Contrary, the right-

hand side of the same equation only takes four operations using the integral image.

This is the advantage of using rectangular features in combination with an integral

image. Features can be calculated at any location and scale in constant time provided

the integral image is available from an initial processing step. The end result is that

Haar-like features can be evaluated using few pixel operations.

With the objective of improving the detection results of the method presented by

Viola and Jones [98], new types of Haar-like features were proposed by Lienhart in [47].

These features enrich the simple feature pool commented above –Fig. 2.6– by adding

rotated Haar-like features. In Fig. 2.9 some of these new features are shown. With these

extended features, any detection system is able to extract more meaningful features with

which to describe objects. This is particularly convenient when the objects exhibit
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2.7 Histogram of Oriented Gradients

(a) (b) (c) (d)

Figure 2.9: Extended Haar-like features. (a,b) Rotated edge features. (c,d) Rotated
stripe features. These features are calculated by means of an auxiliary integral image
that increases their computational cost.

diagonal structures. However, such features are only oriented to 45 degrees and for

their computation an additional rotated integral image is needed. This is an important

disadvantage because the computational cost is increased by computing two integral

images, and because it partially solves the problem of extracting features for multiple

orientations.

Some extensions to the integral image and Haar-like features have been proposed

and used in the last years with the goal of performing fast feature computation and to

obtain efficient detection methods. For example, methods based on Gaussian deriva-

tives have replaced these functions by Haar-like features to speed up their computa-

tion [7, 95]. On the other hand, the integral image has been extended for computing

image moments or integral histograms of image features [76, 68, 90].

2.7 Histogram of Oriented Gradients

Histogram of Oriented Gradients –HOG– is a very popular technique in the computer

vision community that has been used to describe the appearance of image regions. Its

popularity lies in its robustness to small geometric distortions thanks to the quantiza-

tion of the gradient location and orientation. The overall idea is to capture the spatial

and orientation distribution of gradients, computed in a local image region, in order to

form a robust descriptor with which to encode the appearance of image regions.

Several types of HOG-based descriptors have been proposed in the past [49, 13, 10,

40]. They differ in how and where these descriptors are computed. Basically, they can
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2.7 Histogram of Oriented Gradients

Figure 2.10: HOG computation. The HOG is a histogram where each gradient in the
region R casts a vote for one spatial and orientation bin according to its location (x, y)
and its orientation ψ(x, y). Each vote is weighted using the gradient magnitude. For
this example, the HOG consists of 2× 2 cells and 4 orientation bins.

be calculated using different spatial and orientation configurations, or calculated in a

sparse or dense manner over images.

The SIFT descriptor proposed by Lowe [49], for example, is calculated in a sparse

manner by means of an interest point detector –DoG detector [49, 89]– that yields image

locations where the descriptors are computed subsequently. The descriptor rotationally

invariance is obtained by determining the orientation of the interest point and rotating

the gradients according to this orientation. This type of HOG-based descriptor has a

fixed configuration of 4× 4 spatial bins and eight gradient orientation bins. This yields

a feature vector with 128 elements. The SIFT descriptor is similar to the shape context

descriptor proposed by Belongie et al. [8]. However, the latter is a histogram of edge

point locations that is computed using a log-polar configuration.

Because of the successful results given by the SIFT descriptor, some extensions have

been proposed in order to improve its performance. For example, the RIFT descriptor,

created by Lazebnik et al. [40], is a rotationally invariant descriptor that generalizes the

SIFT. In contrast to this descriptor, the RIFT avoids to find the dominant orientation of

interest points for its construction. Basically, this descriptor is a histogram of oriented

gradients that is constructed using concentric rings of equal width, where in each one

of them a local gradient orientation histogram is computed. For its construction, four
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2.7 Histogram of Oriented Gradients

rings and eight gradient orientations are used. It yields a feature vector of 32 elements.

To achieve rotationally invariance the orientation of each gradient –inside the support

region– is measured relative to the direction from the region center.

Another similar descriptor is the GLoH –Gradient Location and Orientation Histogram–

proposed by Mikolajczyk and Schmid [57]. This descriptor can be seen as a combina-

tion between the shape context descriptor and the SIFT, given that it computes a

HOG using a log-polar configuration. This log-polar configuration captures the layout

of gradients that are spatially quantized into three radial bins and eight angular ones.

For each spatial bin a local histogram of gradient orientations is calculated. For this

descriptor 16 orientation bins have been chosen. The result is a feature histogram with

272 elements that is reduced via PCA to 128 elements, equal to the SIFT.

Inspired from the work of Lazebnik et al. [41] for image pyramid representations

of scenes, Bosch et al. [10] introduced a Pyramidal Histogram of Oriented Gradients

–PHOG– where histograms are computed for multiple resolutions. This allows to have

a compact representation where the pyramidal descriptor encodes features and their

spatial layout at several resolution levels and gives robustness to small feature shifts. In

this representation, finer histogram levels are weighted more than coarser ones because

finer levels have more detailed feature shape information.

Unlike previous works in which the descriptors are computed over interest points,

Dalal and Triggs [13] proposed to compute HOGs densely over the whole image with

the aim of detecting pedestrians. For their computation, the image is first divided into

cells consisting of image regions of 8×8 pixels, to then build overlapping blocks formed

by the concatenation of 2× 2 cells. For every cell a histogram of gradient orientations

with 9 elements –orientations– is calculated. Given these blocks, the object classifier is

trained via SVM. To gain certain invariance to illumination changes and shadows the

authors utilize an overlapping local contrast normalization in this work.

In order to show the construction of a HOG-based descriptor, we proceed to build

one simple descriptor consisting of 2×2 spatial bins or cells and four gradient orientation

bins in an image region R, see Fig 2.10. For this example, each gradient’s vote is only

weighted by its magnitude.

First, image gradients are computed using differential operators, namely Prewitt
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2.8 Integral Histogram

operators, over the input image I(x, y) by

λy(x, y) = I(x, y) ∗ Py, λx(x, y) = I(x, y) ∗ Px, (2.28)

where λy and λx are the gradient image maps, Py and Px are the Prewitt operators

for axes y and x, respectively, and ∗ denotes convolution. From the gradient maps, the

orientation ψ is calculated for each image gradient at coordinates (x, y) according to:

ψ(x, y) = arctan
λy(x, y)

λx(x, y)
, ∀(x, y) ∈ R. (2.29)

Subsequently, each gradient casts a vote for one spatial and orientation bin according

to its location (x, y) inside the region R and its orientation ψ(x, y). For the orientation

case, the orientation ψ(x, y) is discretized into m orientations bins –in this example

m = 4–, while for the spatial case the image region is divide into 2 × 2 adjacent cells

or bins. Therefore, each gradient casts a vote for its spatial and orientation bin using

its magnitude mag(x, y) as weight. This procedure is computed by

mag(x, y) = ‖(λy(x, y), λx(x, y))‖2, (2.30)

and

HOGR(s, b) =
∑

mag(x, y) ∀(x, y) ∈ R, (2.31)

where HOGR is the histogram of oriented gradients computed in the image region R,

and, b and s are the orientation and spatial bins for the gradient at coordinates (x, y).

The result is a histogram of 16 elements that contains the layout of gradients. This final

histogram can also be seen as a concatenation of local histograms of oriented gradients

computed in each spatial cell.

2.8 Integral Histogram

Following the same idea of the integral image and its great computational benefits for

computing fast features, a new representation called integral histogram was proposed

by Porikli [68]. It shares the same idea but with the difference of computing histograms

instead of accumulative pixel intensities. Once the integral histogram is constructed in

a previous step, histograms over arbitrary rectangular image regions can be calculated

in constant time.
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2.8 Integral Histogram

Thanks to this histogram representation, descriptors based on histograms of pixel

intensities, HOGs [13], or multidimensional histograms built of any type of features [74],

can be computed efficiently. For instance, in [104] the authors used this representation

to speed up the computation of HOG-based descriptors. This work reported results for

human detection comparable with the Dalal’s work [13], but with improved efficiency.

The construction of this image is carried out as follows. Suppose we have an input

image I from where a set of features is extracted for every pixel location (x, y). These

features, namely gradient orientation, intensity, Gaussian derivatives, etc, form a new

image consisting of C channels that correspond to the specific feature outputs. From

this new image, the integral histogram is built as:

IH(x, y, fc) =

y
∑

v=1

x
∑

u=1

I(x, y, fc), c = 1, 2, .., C, (2.32)

where fc denotes the feature channel from the image I. We see that this equation is

pretty similar to the computation of the integral image but adding an extra dimension.

It means that computing an integral histogram can be seen as computing C consecutive

integral images.

Similar to the integral image case, the integral histogram can be constructed itera-

tively using its previous values or histograms,

IH(x, y, fc) = IH(x−1, y, fc)+IH(x, y−1, fc)−IH(x−1, y−1, fc)+I(x, y, fc). (2.33)

Then, the computation of histograms over rectangular image regions is done using

its corner values, that in this case, are accumulative vectors or histograms. Suppose

we wish to calculate the feature histogram for an image region R defined by its corners

a, b, c, d, the histogram is obtained by

HistR = IH(xd, yd, fc)− IH(xa, ya, fc)− IH(xb, yb, fc) + IH(xc, yc, fc), c = 1, .., C.

(2.34)

where a is the top-left corner, b the top-right, c the bottom-left and d the bottom-right

one.

As a consequence, the integral histogram allows to compute any rectangular his-

togram in 4×C operations, independently of its size and location. This fact shows its

great computational benefit in contrast to computing a histogram without the integral

representation which requires n1 × n2 ×C operations, being n1 × n2 the region size.
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Chapter 3

Efficient Detection of Specific

Objects Under In-plane

Rotations

In this chapter we present an object detection method for the case of in-plane rotated

objects. The efficiency of the proposed method lies in the use of Haar-like features in

combination with an orientation estimator with the aim of reducing the computational

cost of evaluating the object classifier for multiple orientations. In addition, a boosting

algorithm is used to carry out feature selection and to build a robust and discriminative

object classifier. This classifier can be rotated to any given orientation by a simple

procedure based on steering the Haar-like features via steerable filters. The work in

this chapter has been presented in [95].

3.1 Introduction

For object detection, most methods commonly scan the image using a sliding window

where at each image location an object classifier is evaluated to determine whether the

current location contains an object instance or not. This approach can also be seen

as a binary classification problem that is carried out over the entire image. It allows

detecting and localizing spatially the objects within the input image and copes with

scale changes if this procedure is repeated for multiple image scales. However, this

method is computationally costly requiring thousands or even millions of evaluations.
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Object 

Classification

Input Image

Object

Orientation

Orientation

Estimation

(u.v)

Output Image

Object

Classifier

Figure 3.1: The proposed approach. Given an input image, an estimator of local
orientation is tested for every image location (u, v). Then, a trained object classifier
is steered according to such predictions of local orientation and tested. This step is
carried out by steering the set of local features using approximated steerable filters.

To reduce the computational cost, some ideas have been introduced like using low-cost

features or using cascades of classifiers to speed up the detection process.

A well-known and seminal method including the aforementioned ideas is the work

proposed by Viola and Jones [98] for detecting frontal faces in real-time. More precisely,

this method makes use of Haar-like features, AdaBoost and a cascade of classifiers. Be-

cause of the successful results and the computational efficiency of this method, recent

methods have done extensions to focus on more challenging applications such as de-

tection of faces from several views [34, 99], detection of pedestrian [104] or hand and

gesture recognition [11, 58].

In this chapter, we follow the previous work for a fast detection of objects. However,

we incorporate new ideas in order to consider objects having orientation changes in the

image plane. To this end, we propose a local orientation estimator and fast oriented

features, see Fig. 3.1. They allow having an efficient strategy for detecting rotated
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3.2 Efficient Oriented Features

objects which is based on two consecutive steps: orientation estimation and object

classification. The estimation step determines locally the object orientation using the

distribution of image gradients, whereas the second step steers and tests the object clas-

sifier according to the estimations of orientation given by the estimator. The proposed

method, therefore, avoids the testing of the object classifier for many orientations.

On the other hand, the proposed features can be computed and steered to any given

orientation in a fast way. This is done by steering the Haar-like features via steerable

filters. Although Lienhart and Maydt [47] proposed oriented Haar-like features, these

features require a more complex procedure for their computation including an auxiliary

integral image.

3.2 Efficient Oriented Features

We propose first to compute efficient features for extracting contours in images by

approximating Gaussian derivatives with Haar basis, and orienting the filter using

steerable filters.

Haar features have demonstrated to be a good choice for fast feature computation

when they are used in combination with an integral image representation, see Sec. 2.6.

However, they cannot be computed apart from canonical horizontal and vertical forms;

and to use an auxiliary integral image for oriented features would increase the compu-

tational cost and only diagonal features could be computed –i.e, 45 degrees–. This is

a great disadvantage because the object description would rely entirely on vertical and

horizontal features –edges and lines–, and disregard other rotated edges that might be

discriminative for classification.

Nevertheless, we have seen that oriented Gaussian derivatives can be synthesized

to any orientation using a combination of a fixed set of filters, see Sec. 2.5. From this

point of view, we propose to approximate Gaussian derivative filters using Haar basis

given their strong similarity. With this approximation, a more efficient and simpler way

to evaluate Haar-like features to a given orientation is obtained without having to com-

pute auxiliary integral images or having to construct a large set of features for several

orientations. That is, we approximate the first and second order Gaussian derivatives

with the goal of extracting edges and stripes over images. These approximations are
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(a) G′

x(x, y) (b) G′

y(x, y) (c) G′

θ(x, y)

(d) H ′

x(x, y) (e) H ′

y(x, y) (f) H ′

θ(x, y)

Figure 3.2: First order filter approximation. The filter is steered to an orientation of
π
9 by interpolating two basis filters. (a,b) Gaussian basis filters. (c) Steered Gaussian
derivative. (d,e) Haar basis filters. (f) Steered Haar filter.

visualized in Fig. 3.2 and Fig. 3.3. In these figures, we can see the strong similarity

between Gaussian and Haar features.

Approximating Gaussian-based filters by Haar-like filters has been used in the past

to speed up feature extraction. Bay et al. [7], for instance, used this approximation

with the aim of extracting interest points. This method, coined as SURF –Speeded Up

Robust Features–, extracts interest points using the determinant of the Hessian matrix,

which consists of Gaussian derivatives that are replaced by their equivalent Haar filters.

Then, a fast interest point detector is built whose performance is comparable with the

discretized Gaussian-based filters.

Here, the Haar approximations of the first and second order Gaussian derivatives,

calculated at any orientation θ, are computed with

H ′
θ(x, y) = cos(θ)H ′

x(x, y) + sin(θ)H ′
y(x, y), (3.1)

H ′′
θ (x, y) = cos2(θ)H ′′

x(x, y) + 2 cos(θ) sin(θ)H ′′
xy(x, y) + sin2(θ)H ′′

y (x, y), (3.2)
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(a) G′′

x(x, y) (b) G′′

xy(x, y) (c) G′′

y (x, y) (d) G′′

θ (x, y)

(e) H ′′

x (x, y) (f) H ′′

xy(x, y) (g) H ′′

y (x, y) (h) H ′′

θ (x, y)

Figure 3.3: Second order filter approximation. The filter is steered to an orientation
of π

9 by using three basis filters. (a-c) Gaussian basis filters. (d) Steered Gaussian
derivative. (e-g) Haar basis filters. (h) Steered Haar filter.

being H ′
x, H

′
y, H

′′
x , H

′′
y and H ′′

xy the oriented basis filters. The main difference with

steerable filters is the replacement of the Gaussian basis by their corresponding Haar

versions. Fig. 3.2 illustrates one example where both the Gaussian derivative and the

Haar features are steered to an orientation of π
9 . Similarly, the second order Gaussian

derivative and its efficient approximation are steered to the same orientation in Fig. 3.3.

To show how Haar-like features can be used for some computer vision tasks instead

of Gaussian derivatives, two evaluations are carried out in this section. The first one

consists on evaluating the accuracy of the steered filters. This is done by calculating

the orientation of image features –edges and stripes– that are artificially rotated inside

images, see Fig. 3.4. The objective is to compare the orientation estimation that both

methods provide. This comparison offers a measure of similarity between the two ad-

dressed methods. The second evaluation refers to extracting relevant oriented features

within images. To this end, the filters are steered to a given orientation and the num-

ber of most significant features are compared. This offers an idea to what extent both

methods can extract the same image structures.

Feature Orientation. From the steerable filter equations –refer to Sec. 2.5–, we can

derive equations to compute the local orientation of oriented edge and stripe features.
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Figure 3.4: Artificial features computed for diverse orientations. (a-d) Edge features.
(e-h) Stripe features.

Differentiating and equating to zero Eq. 2.22, the orientation with maximum response

is achieved.

dG′
θ(x, y)

dθ
= − sin(θ)G′

x(x, y) + cos(θ)G′
y(x, y) = 0 (3.3)

tan(θ) =
G′
y(x, y)

G′
x(x, y)

(3.4)

Hence, the maximum response orientation can be computed with:

θ = arctan

(

G′
y(x, y)

G′
x(x, y)

)

. (3.5)

The orientation of an edge within an input image I is the result of convolving the

operator with I:

θedge = arctan

(

G′
y(x, y) ∗ I

G′
x(x, y) ∗ I

)

. (3.6)

It is important to point out that if the scale –σ– of the Gaussian derivative is small,

the Sobel operators emerge and the last equation becomes the standard equation for

computing the gradient orientation by means of the Sobel operators.
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3.2 Efficient Oriented Features

If the previous procedure is repeated for the second order Gaussian derivative, the

orientation of a stripe feature can be computed. Differentiating Eq. 2.24,

dG′′

θ (x, y)

dθ
= −2 cos(θ) sin(θ)G′′

x(x, y) + 2G′′

xy(x, y)(cos
2(θ)− sin2(θ)) + 2 sin(θ) cos(θ)G′′

y (x, y),

(3.7)

arctan(2θ) =
2G′′

xy(x, y)

G′′
x(x, y)−G

′′
y(x, y)

, (3.8)

the orientation of a stripe feature within an input image I is

θstripe =
1

2
arctan

(

2G′′
xy(x, y) ∗ I

G′′
x(x, y) ∗ I −G

′′
y(x, y) ∗ I

)

. (3.9)

Using Eq. 3.6 and Eq. 3.9, we can estimate the orientation of edge and stripe features

present in images. For this evaluation, we have created a set of images containing

artificial edges and stripes at different orientations, varying from 0 to 2π. Some sample

images are shown in Fig. 3.4. These features represent ideal contours which might

appear locally in images.

As our aim is to compare Gaussian to Haar-based filters, the aforementioned proce-

dure is repeated substituting the Gaussian basis functions by their Haar counterparts.

The comparison of both approaches is made by computing the absolute difference, in

degrees, between the orientation of the artificial feature and the estimated orientation

–see Fig. 3.5–. For the case of Gaussian filters, the orientation error is negligible to

quantization. In contrast, Haar-based filters introduce an orientation error that varies

periodically with respect to the input angle. This is because Haar-based filters are not

polar separable. This fact is an essential requirement to obtain an error free steerable

filter [22].

The experiment reported maximum orientation errors of eight degrees for edges and

six degrees for stripe features. The maximum errors for Haar-based filters occur when

features are oriented to π
8 (1 + 2n), being n = 0, 1, 2, ..16. However, for features with

horizontal, vertical and diagonal orientations the error is negligible. This result shows

that Haar-based filters are not suitable for an accurate orientation estimation of edge

and stripe features. In spite of this, we show next how they can be used for fast feature

evaluation to any given orientation with low orientation error.

Feature Extraction. We are interested in determining relevant image features in

images such as strong oriented edges or stripes. In this test, we apply the filter for an
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(a) Edge Feature.
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(b) Stripe Feature.

Figure 3.5: Feature orientation errors using Gaussian and Haar-based filters. (a) Ori-
entation errors for oriented edge features. (b) Orientation errors for oriented stripe
features. Note that the Gaussian-based approach retrieves correctly the feature orien-
tation, while the approach based on Haar-based features is more efficient at the expense
of a small periodic orientation estimation error.

orientation θ and consider its strongest responses as important image features. This

is illustrated in the Fig. 3.6 where the input image I is convolved with a steered fil-

ter. We see the strong similarity between the responses of Gaussian-based filters and

Haar-based filters. Fig. 3.6(f,k,p) shows the difference between both filter responses.

These differences are relatively small and do not jeopardize the extraction of meaningful

features. This comparison allows us the use of Haar-based filters instead of Gaussian
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Figure 3.6: Oriented feature detection. Oriented features are extracted over an in-
put image I using Gaussian derivatives and their Haar-based filter approximations.
(a) Input image. (b-f) Filters computed at π

4 . (g-p) Filters computed at 11π
18 .

ones for fast feature as well as for object description. This is motivated because Haar-

based features, contrary to Gaussian filter response, can be calculated very fast at any

location, orientation and scale in constant time.
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3.3 The Object Classifier

H Object (strong) classifier
h Weak classifier
α Weak classifier weight
f Haar-like feature
θ Feature orientation
s Feature scale
ρ Parity value
δ Feature threshold
φ Estimated object orientation
φ0 Reference orientation
ϕ Steering orientation
I Image
x Image sample
T Number of weak classifiers
β Classifier threshold
yn Class label of image sample n
D Distribution of sample weights
λ Gradient map

Table 3.1: Notation for the computation of the object classifier.

3.3 The Object Classifier

The classifier used for detecting specific objects in images is described in this section.

The computation of this classifier makes use of both, the discrete AdaBoost algorithm

–see Sec. 2.2– and the efficient oriented features described in the previous section. The

aim is to seek out the most relevant and discriminative features for classifying an object

class against another class formed by background images. The selected features via the

boosting algorithm represent the most informative features for describing the object,

and the resulting classifier is a combination of weak classifiers. Given the nature of

filters used, informative classifiers tend to clutter around object contours. Notation for

this section is shown in Table 3.1.

Pool of Features. The first step for building an object classifier with AdaBoost is

to create a large pool of features over the whole image. This is done by computing

edge and stripe features for different spatial image locations, sizes and orientations.

Each combination –feature type, location, size and orientation– is a local feature for

the pool and a potential weak classifier. The size of the feature pool depends on

the number orientations, sizes and locations that the user chooses, but in general,
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3.3 The Object Classifier

(a) (b)

Figure 3.7: The object classifier. (a) The object is represented by a set of local features
–oriented Haar-like features–. (b) Each local feature fi is defined by its spatial location
(ui, vi), orientation θi, size si and derivative order.

this value is commonly over thousands. This is another motivation to use a boosting

algorithm, it performs feature selection at the same time that it builds the object

classifier. Therefore, the most discriminative features are selected at each boosting

iteration. This reduces the large number of possible features inside the pool to a small

set that corresponds to the number of weak classifiers.

Computation. Discrete AdaBoost –DAB– in each iteration calls a weak learner in

order to compute a weak classifier. This classifier is built by selecting the feature that

best discriminates the positive samples from negative ones for the current distribution of

weights. Positive samples refers to images containing object instances, whereas negative

samples consists of images containing background. The weak classifier is formed by one

Haar-like feature that is defined by its location (ui, vi) with respect to the object center,

its orientation θi, its scale si and the order of derivative used, see Fig. 3.7. This weak

classifier h, at iteration t, gives a binary decision,

ht(x) =

{

1 : x ∗ ft > ρtδt
0 : otherwise

, (3.10)

where x is a training image sample, f is the Haar-like filter being tested, ∗ indicates

the convolution operation, ρ = {+1,−1} is a parity indicating the direction of the

inequality sign, and δ is the filter threshold. These last two parameters are determined

by the weak learner as those values for which the test feature is most discriminative.
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Algorithm 3 Object classifier computation.

1: Given a number of weak classifiers T , a feature consisting of K Haar-like filters, and
N image samples (x1, y1)...(xn, yn)...(xN , yN ), where yn ∈ {+1,−1} is the label for
positive and negative classes, respectively.

2: Initialize the sample weights D1(xn) =
1
N
, whit n = 1, 2, .., N

3: for t = 1 to T do
4: for k = 1 to K do
5: Using the current distribution of weights Dt, compute the weak classifier hk

with parameters ρk and δk.
6: Compute its classification error ǫk.

ǫk =
∑N

n=1Dt(xn)|hk(xn)− yn|
7: end for
8: Select the weak classifier ht whose error ǫt minimizes ǫk.
9: Compute the weight αt for the selected weak classifier.

αt =
1
2 ln

(

1−ǫt
ǫt

)

10: Update the sample weights.
Dt+1(xn) =

Dt(xn) exp[−ynht(xn)]∑N
n=1

Dt(xn) exp[−ynht(xn)]

11: end for
12: Using a validation set of images, calculate the classifier threshold β that best dis-

criminates positive from negative image samples.
13: Final strong classifier.

H(x) = sign
(

∑T
t=1 αtht(x)− β

)

Finally, the strong classifier H collects each one of the computed weak classifiers h

to assemble the final object hypothesis,

H(x) =

{

1 :
∑T

t=1 αtht(x) > β
0 : otherwise

(3.11)

where α is the weight assigned to each weak classifier and that is calculated according

to its classification error over the training samples. The parameter β corresponds

to the object classifier threshold which is obtained using a set of validation images.

Pseudocode for the classifier computation is shown in Alg. 3.

3.4 The Orientation Estimator

As commented before, the detection of objects in images is done as a binary classifi-

cation problem where the object classifier is evaluated at multiple locations and scales

with the objective of achieving invariance to location and scale changes of objects. To
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3.4 The Orientation Estimator

(a) Orientation estimator. (b) Rotation of the object classifier.

Figure 3.8: Rotation of the object classifier. (a) The estimator predicts the object
orientation φ using the gradients inside the support region. The canonical or reference
object orientation φ0 is established during the learning phase. (b) Given the orientation
estimations, the object classifier is rotated and tested.

deal with in-plane orientation changes, object matching should be evaluated for mul-

tiple orientations as well, increasing the already high computational cost of evaluating

the classifier for numerous hypotheses. Instead of trying each possible orientation, a

more efficient way is to use an orientation estimator to indicate the most likely object

orientation and then to rotate the object classifier according to this orientation. Rotat-

ing the classifier means to steer each local Haar-like feature and to change its spatial

location in relation to the object center.

To compute the angle at which the classifier must be rotated, we compute the

difference between the estimated orientation and the canonical or reference angle,

ϕ = φ− φ0, (3.12)

with φ the estimated orientation and φ0 the reference one, this is the classifier orienta-

tion computed during the learning step. To illustrate this, Fig. 3.8 shows an example

where the object orientation is computed using the orientation estimator. Subsequently,

the object classifier is rotated according to this reference orientation.

To compute the object orientation φ, a histogram of gradient orientations within

a support image region R is built. This histogram was introduced in Sec. 2.7 as a

feature descriptor, but here, it is utilized to estimate the object orientation from image

41



3.4 The Orientation Estimator

(a) Object orientation (b) Orientation histogram

Figure 3.9: Object estimator computation. (a) The orientation estimator is built in
the support region R using the oriented gradients. Each gradient casts a vote for one
orientation bin b which is weighted by its magnitude. From the resulting histogram,
the orientation of the object φ is chosen as the mode of the histogram. (b) Any local
orientation histogram can be calculated efficiently by means of the integral histogram.
For this example, the number of orientation bins is set to six.

gradients. Basically, this histogram is a distribution of gradient orientations that allows

us to parameterize the object orientation by its mode, since it is the most frequent

orientation value and because the gradient orientation changes covariantly with in-

plane rotations. Refer to Fig. 3.9(a) to see a graphical example.

For the computation of this histogram, firstly image gradients are obtained via

Prewitt operators over the input image I,

λy(x, y) = I(x, y) ∗ Py, λx(x, y) = I(x, y) ∗ Px, (3.13)

where λy and λx are the gradient image maps, Py and Px are the Prewitt operators for

axes y and x, respectively, and ∗ denotes convolution. Using these gradient maps, the

gradient orientation ψ is calculated within the support image region with

ψ(x, y) = arctan
λy(x, y)

λx(x, y)
, ∀(x, y) ∈ R. (3.14)

Subsequently, this orientation ψ is discretized into m orientation bins with the aim of

constructing an m-dimensional gradient orientation histogram for the region R. To

this end, each gradient casts a vote for one orientation bin that is weighted by its
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magnitude F (x, y). This can formulated as:

F (x, y) = ‖[λy(x, y), λx(x, y)]‖2, (3.15)

HistR(b) =
∑

ψ(x,y)→b

F (x, y) ∀(x, y) ∈ R, (3.16)

being HistR(b) the value at bin b in the orientation histogram for image region R. This

histogram computation is depicted in Fig. 3.9(a) and the object orientation is chosen

as the mode of this distribution.

This idea is similar to the methodology used in the SIFT descriptor [49] to compute

the orientation of interest points. In that case, each gradient casts a vote that is

weighted by a Gaussian function centered at the support region in order to give more

importance to gradients near to the center of keypoint. In our case, we remove such

process because all gradients are equally important for the estimation of the object

orientation. As objects or images may be highly structured, the orientation histogram

may be easily multimodal. For that case, we follow the same convention as SIFT

features: for any peak in the histogram greater than 80% the size of the mode, a new

orientation is considered.

Determining the orientation over the image using a sliding window is a costly process

that implies computing local histograms for every support region. To sort out this

drawback, we add an integral histogram [68]. This histogram representation is basically

an extension to the integral image that allows to compute any histogram in constant

time independent of its size and location. Its main cost lies in computing the integral

histogram that depends on the number of bins in the histogram. The integral histogram

is explained in Sec. 2.8. In this case, the feature used is the gradient orientation.

Fig. 3.9(b) shows an example for the computation of a local histogram using the integral

histogram.

3.5 Experiments

The proposed object detection method is validated in this section over a collection of

images with a specific object under rotations in the plane. The evaluation is carried

out in terms of detection –recognizing and localizing the object– and its robustness to

mild occlusions.
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(a) (b)

Figure 3.10: Training image samples. (a) Positive samples used to train the boosted
classifier. Shift, scale and orientation changes are added to images to increase the
robustness of the object detector. (b) Negative images collected from images without
the target object.

To train the object classifier –a CD box in this case– a set of training images is gen-

erated. This set has 5250 negative images and 1100 positive images. Negative images

were collected as random patches in background images, whereas positive samples are

synthetic images that are generated after adding affine image distortions, translations,

rotations and scaling. Object translations reach 5 pixels in all directions. Scaling of

the object images goes up to 20% of the original image size, and rotated images reach

±10 degrees. Fig. 3.10 shows some sample images.

The object classifier is constructed using 1000 weak classifiers, each one with an

associated oriented feature. The orientation estimator is computed by considering 36

gradient orientations. This gives an orientation distribution with 36 elements that is

calculated efficiently with the integral histogram.

Fig. 3.11 shows some frames of the live sequence in which the trained object is

recognized. At some point, the object is detected at multiple neighboring locations,

fact indicated by the repetitive superimposed squares on the top-left frame given that a

non-maxima suppression process is not utilized. Also partial occlusions are taken into

account in the image sequence.

To evaluate local orientation accuracy, the proposed detector has been tested using

two approaches for determining the local orientation. The first one is based on Gaussian
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Figure 3.11: Detection of the specific object. Some object detections are shown in
spite of orientation, scale and location changes. Cyan rectangles indicate true positive
detections.

derivatives. More specifically, it computes the ratio of first order Gaussian derivatives

G′
x and G′

y to compute the object orientation according to:

φ = arctan
I ∗G′

y

I ∗G′
x

, (3.17)

where I is the local image region.

The second approach is the proposed estimator. It consists on using the mode of

the gradient-based orientation histogram as the local orientation φ. In this case, all

gradients inside the region contribute to the construction of the distribution of gradient

orientations, and hence, it is more robust to partial occlusions and object variations.

To illustrate the performance of both approaches, two experiments have been per-

formed. The first one is concerned with the robustness when translation and scale

changes are applied. The second one measures the robustness of both methods to

partial occlusions. The orientation estimation error is computed as the absolute error
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Figure 3.12: Local orientation evaluation. (a) Object orientation error in terms of
translation and scale variations. (b) The orientation error is measured under mild
occlusions. The plots at the top row correspond to derivative-based approach, whereas
at the bottom row to the approach based on the gradient-based histogram.

between the object orientation in the synthetic sample and the estimated orientation

given by the tested approach.

For the first experiment 1000 sample images containing the object are used. In the

first 600 images the object has translation changes in all directions –5 pixels–. The

remaining 400 images contain the object with scale variations. The error curves of

this experiment, for the addressed estimation approaches, are shown in Fig. 3.12(a).

According to the plots, computing the local orientation using the histogram deteriorates

more with scale changes than computing the gradient over the entire image region.

Conversely, its performance over translation changes is much better.

For the second experiment, 60 images containing the object under mild occlusions

are used for the evaluation, see Fig. 3.12(b). The plots indicate that the proposed

approach is more robust to occlusions given that the mode is a nonlinear filter focusing

on the most repetitive orientation in the object. Therefore, this technique is much

more reliable in the presence of small occlusions in comparison to the derivative-based

method.
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3.6 Summary

In this chapter, an efficient method for the detection of specific objects was proposed.

This method is capable of dealing with object variations such as changes of location,

scale or in-plane orientations. With the objective of having a rapid evaluation of the

object classifier the method makes extensive use of integral images and Haar-like fea-

tures. Unlike other works using these techniques, we can deal with in-plane rotations in

a very simple and efficient way by introducing fast oriented features and an orientation

estimator.

Our proposed method outperforms classical works that use Haar-like features by

incorporating features that can be oriented to any given orientation with low computa-

tional cost. Classical methods are only able to capture horizontal and vertical contours,

or some complex features at the expense of an increased computational effort. Our fea-

tures, by contrast, can be computed in constant time thanks to the integral image and

steerable filters. We approximate Gaussian derivatives with Haar-based filters to re-

duce the cost of their computation. In our experiments, this approximation has shown

to be reliable when feature extraction is carried out.

From other perspective, this type of features allows to enrich the feature pool used

to train the object classifier. The result is that more informative and discriminative

features with which to describe objects are obtained. From this large feature pool,

AdaBoost is used for feature selection and to construct the object classifier. It yields a

robust and discriminative classifier that is used for recognizing objects in images. This

classifier consists of a weighted combination of weak classifiers where each one of them

is based on a Haar-like feature.

As the object may have orientation changes in the image plane, an orientation

estimator is also proposed. It reduces the computational cost of having to test the

learned boosted classifier for multiple orientations. This gradient-based estimator is

constructed by a simple procedure with the help of an integral histogram. Once the

orientation estimations have been generated, the boosted classifier is rotated according

to these estimations and tested to determine if the current image location contains an

object instance.
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Chapter 4

Boosted Random Ferns for the

Efficient Detection of Objects

In this chapter, Boosted Random Ferns –BRFs– are proposed for the computation of

a very discriminative, efficient and robust classifier that can be used for the problem

of recognizing and localizing object categories in complex scenes containing cluttered

background, intra-class variability, lighting changes and occlusions. Basically, BRFs are

a classifier that is constructed via a boosting algorithm –i.e, AdaBoost– with the aim

of combining, in an iterative and supervised process, the most discriminative Random

Ferns –RFs– into a final hypothesis. Each RF consists on a set of simple comparisons

that are evaluated over image cues. They capture the appearance of image structures

by means of the co-occurrence of their feature outputs –comparisons–. Since RFs are

made of binary comparisons, they can be computed very fast and thus constitute an

efficient and effective detection method. The results reported in this chapter have been

presented in [92, 94].

4.1 Introduction

The problem of detecting object categories in images is known to be very challenging

and needs to address several issues such as large intra-class object variations, changes

in object pose, cluttered background or lighting changes. Many recent methods have

shown a remarkable success when they use machine learning techniques such as boost-

ing [4, 21, 39, 58, 77, 95, 104] or support vector machines [13, 16, 38, 60, 65]. Besides,
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some of these methods use a vocabulary of visual words [61] in order to obtain a com-

pact representation of local appearance with which to describe object components and

to perform their matching. This vocabulary is constructed from the computation of fea-

ture descriptors and is usually followed by a clustering algorithm, namely k-means [50]

or agglomerative clustering [43]. The most common descriptor for that task is the

SIFT descriptor proposed by Lowe [49]. It captures local image texture by means of

a histogram of oriented gradients –HOGs– around interest points. Orientation, scale

and affine invariance of this descriptor is achieved by a series of image processing steps

that are carried out in the neighborhood of interest points [48, 49, 56].

Randomized Trees –RTs– [45], on the other hand, have shown that keypoint match-

ing can be carried out as a generic classification technique where initial processing steps

for insensitivity of keypoints to image distortions are avoided. This fact gives a fast and

efficient method for keypoint classification that relies on the co-occurrence of simple

intensity-based comparisons. Recently, a novel and non-hierarchical structure named

Random Ferns –RFs– was proposed by Ozuysal et al. [64] that replaces the Random-

ized Trees. RFs are simpler and much faster than RTs but keep the same classification

performance as them [9, 64]. Both Random Ferns and Randomized Trees have demon-

strated similar classification results with approaches based on the SIFT descriptor but

with less computational demand.

RTs and RFs have proven to perform a very fast classification thanks to the nature

of their features, simple intensity-based comparisons over images. Moreover, they have

reported successful results because the co-occurrence of their feature outputs gives a

powerful description with which to characterize keypoints. A related descriptor with

those methods is the local binary pattern –LBP– presented by Ojala et al. in [32, 62]. It

is a gray-scale invariant operator that measures image texture using the co-occurrence

of pixel comparisons arranged in a local neighborhood. Because of its computational

simplicity, it can be used in real-world applications for texture analysis and object

recognition. Similarly, Mita et al. [58] proposed to use the co-occurrence of feature

sets as weak classifiers in a boosting-based approach. In that work, they showed that

feature co-occurrence improves the detection rates in contrast to using only single Haar-

like features. The proposed method was validated for the detection of faces and hands
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despite that those categories have strong intensity patterns that ease their classification,

like eyes tend to being darker than cheeks.

Although the binary features used in RFs and RTs are usually computed over image

intensities, either in gray-scale levels or in color channels [45, 64, 78], recent works

have proposed to compute these features over other cues like HOGs with the objective

of capturing spatial variations and to gain robustness to lighting changes [75, 92].

However, this is at the expense of computing the HOG over the whole image in a

previous step. To reduce the computational burden that this step generates, integral

images are used for the efficient computation of HOGs [68, 98].

The proposed method relies in building a discriminative classifier by means of the

boosted combination of RFs which are computed in the HOG space. The aim of using a

boosting algorithm is to extract a set of the most discriminative and prominent RFs to

assemble them into the object classifier. This is contrary to the original work of RFs [64]

where these features were chosen randomly. In addition, and in contrast to other works

that use a vocabulary of appearances [17, 38, 55, 65], the proposed method relies on

a simpler procedure based on sets of binary features that are densely computed over

local HOGs. The resulting classifier is therefore a very discriminative and fast classifier

that is capable of detecting objects in spite of high intra-class variations, different

illumination conditions, partial occlusions and cluttered background.

The rest of this chapter is organized as follows. Sec. 4.2 shows the formulation and

computation of BRFs by means of local features over the HOG space and a boosting

algorithm. Differences with the original RFs are also discussed. Sec. 4.3 is concerned

with the experimental validation of BRFs over some benchmark datasets where the

proposed method achieves competitive results but being more efficient and straightfor-

ward. Finally, the chapter is summarized in Sec. 4.4.

4.2 Boosted Random Ferns

4.2.1 HOG-based Features

The features used for constructing the RFs and the object classifier are described in

this section. Basically, they are local features whose output is a Boolean value that
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Figure 4.1: Intensity-based feature. This sort of features is computed from binary
comparisons between two different pixel intensities whose locations (u, v) are chosen at
random.

f Binary feature
x Image sample

(u, v) Image pixel coordinates
x(u, v) Image pixel intensity at coordinates (u, v)
HOGx Histogram of oriented gradients computed in image x

Table 4.1: Notation for image features.

depends on the signed comparison between two image features. Classic methods com-

monly calculate this sort of features over the image intensity space [45, 64, 78]. This is

exemplified in Fig. 4.1 where the feature output is defined by the signed comparison be-

tween two pixel intensities –colored dots– whose locations have been chosen randomly.

Notation for this section is shown in Table 4.1 and Table 4.2.

We propose instead to compute these binary features over the HOG space with

the aim of being robust to lighting changes and small image distortions, but keeping

their simplicity and fast computation. This idea was used by Schroff et al. in [75]. In

that work, features are computed for several distinct image cues, including the HOG

space, and then combined into a final object hypothesis. However, the robustness to

lighting changes and image variations is at the expense of computing a HOG over whole

image. This fact increases the computational cost and, hence, some integral images are

required for keeping efficiency [68, 98].
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(a)

(b)

Figure 4.2: HOG-based feature. (a) The proposed features are computed over local
HOGs. The computation of HOG is carried out by calculating gradients, where each
one casts a vote for a spatial and orientation bins. Votes are weighted according to
gradient magnitude. The resulting descriptor is a concatenation of local and adja-
cent distributions of oriented gradients. (b) Once the HOG is computed, features are
calculated from binary comparisons between two different bins –colored dots– of HOG.

As commented before, the feature yields a binary output that allows to map an

image sample x to a boolean space in the form,

f : x→ {0, 1} , (4.1)

by the comparison between two image feature values. For the present case, this com-

parison test is carried out over the HOG space, that is, the signed difference between

two HOG bin values. Therefore, the HOG-based features can be defined as follows:

f(x) =

{

1 HOGx(i) > HOGx(j)

0 HOGx(i) ≤ HOGx(j)
, (4.2)

where i and j are the histogram bin locations, see Fig. 4.2. In the figure, a HOG is

computed using 2 × 2 spatial grid and four gradient orientations. This yields a local

descriptor –histogram– with 16 elements.
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In summary, the proposed features are simple binary comparisons evaluated over

HOGs that measure the layout of oriented gradients in a local image region. Although

one single binary feature is not discriminative enough, we shall see in next sections that

the co-occurrence of several of these simple features gives a powerful and suitable tool

for describing object components.

4.2.2 Formulation

In contrast to the original formulation of the RFs for keypoint matching, the Ferns

expression is written in terms of likelihood ratios between the target object class C and a

background class B. This allows to seek for the feature combinations that maximize this

ratio by means of the boosting algorithm, and to extract the most prominent features

to discriminate the object category from the non-object category –background–.

The goal is to model the logarithmic ratio between the posterior probabilities of the

object and background classes given a set of Nf binary features (f) with the purpose

of building a two-class classifier H(x) = {+1,−1}, defined by

H(x) = sign

(

log
P (C|f1(x), f2(x), ..fNf

(x))

P (B|f1(x), f2(x), ..fNf
(x))

− β

)

, (4.3)

where x is a sample image and β is the classifier threshold. If H(x) = +1, the image x

is assigned to the object class, otherwise, it is assigned to the background one.

Similarly to the formulation of RFs –Sec. 2.1–, this classifier can be expressed

using the Bayes rule, where by removing the evidence factor P (f1(x), f2(x), ..fNf
(x)),

common for both classes, and assuming uniform prior class probabilities P (C) = P (B),

the logarithmic ratio of probabilities can be written as:

log
P (C|f1(x), f2(x), .., fNf

(x))

P (B|f1(x), f2(x), .., fNf
(x))

= log
P (f1(x), f2(x), .., fNf

(x)|C)

P (f1(x), f2(x), .., fNf
(x)|B)

. (4.4)

By computing Ferns over the set of binary features, ̥r = {f
r
1 , f

r
2 , ..f

r
M}, the object

classifier becomes a combination of logarithmic Fern probability ratios,

H(x) = sign

(

R
∑

r=1

log
P (̥r(x)|C)

P (̥r(x)|B)
− β

)

, (4.5)

where R is the number of Ferns. These Ferns are constructed randomly and each one

has M binary features, with M = Nf/R.
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̥ Random Fern
f Fern (binary) feature
x Image sample
X Sample space

H(x) Object classifier
T Number of weak classifiers
Nf Number of binary features
R Number of Random Ferns
M Number of features (f) per Fern
z Fern observation (output) value
Z Dimension of Fern output space
Q Bhattacharyya coefficient
gt Location of Fern t
C Object (positive) class
B Background (negative) class
β Classifier threshold
N Number of training samples
yn Class label of image sample n
D Distribution of sample weights
ǫ Smoothing factor

Table 4.2: Notation for Boosted Random Ferns.

Each Fern captures the local appearance of objects because it encodes the co-

occurrence of theirM features which are tested in a local HOG. The response or output

of each Fern, called Fern observation from now, is represented by the combination of

their Boolean feature outputs. For instance, the observation zr of a Fern ̥r made of

M = 3 features with binary outputs 0, 1, 0, would be (010)2 = 2. In other words, each

Fern maps 2D image samples to an Z = 2M -dimensional space,

̥ : x→ z, x ∈ X, z ∈ {1, 2, .., Z}. (4.6)

Since the probability of each Fern ̥r is given by its observation zr conditioned to

each class, the object classifier can be written as:

H(x) = sign

(

R
∑

r=1

log
P (̥r(x) = z|C, gr)

P (̥r(x) = z|B, gr)
− β

)

, (4.7)

where gr, g ∈ IR2, is the image spatial location where the Fern ̥r is evaluated, measured

from the image center. Table 4.2 shows the notation used for the formulation and

computation of BRFs.
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Figure 4.3: Random Fern computation. Binary features forming the Fern ̥r are com-
puted over the local HOG –red square–. The distance between this region and the
object center is given by gr = (ur, vr). The RF captures the appearance of object
components by means of the co-occurrence of gradient-based features.

Fig. 4.3 shows an example where one Random Fern ̥r is computed over a local

HOG. This HOG is constructed from a local image region –red square– where HOG-

based features –colored and paired symbols– are then computed. The changes on the

histogram are encoded by the Fern observation zr. This observation value represents a

specific signature of the histogram.

4.2.3 Computation of BRFs

We want to build the object classifier H(x), yielding the most discriminative sets of

Ferns ̥ and locations g that maximize Eq. 4.7. This is achieved by means of the Real

AdaBoost algorithm –Sec. 2.3– that iteratively assembles weak classifiers and adapts

their weighting values [73].

To build the classifier, Real AdaBoost –RAB– uses an input set of training samples

(x1, y1)...(xn, yn)...(xN , yN ), where xn corresponds to one sample belonging to sample

space X, and yn is its class label, Y = {+1,−1}, that indicates the object and back-

ground classes, respectively. The algorithm also uses a distribution of weights over

training samples D that is updated after each boosting iteration. This distribution
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Figure 4.4: Boosted Random Ferns. From a large pool of RFs, computed for multiple
image locations, the most discriminative ones for classifying the target object category
are chosen via a boosting phase.

measures the difficulty of training samples during boosting. Initially, all weights are set

equally, but on each round, the weights of misclassified samples are increased so that

the algorithm is forced to focus on such hard samples in the training set.

In order to choose the most discriminative object features, a large pool of RFs is

constructed in a previous step. For every image location, multiple Ferns are computed

at random and each one represents a potential weak classifier. After the boosting phase,

the algorithm selects the best weak classifiers that build up the strong classifier. This

can be illustrated in Fig. 4.4 where a few RFs are shown.

Hence, the object classifier consisting of T weak classifiers can be expressed as:

H(x) = sign

(

T
∑

t=1

ht(x)− β

)

, (4.8)

where each weak classifier ht is defined by the logarithmic probability ratio of Fern ̥t

conditioned to both classes,

ht(x) =
1

2
log

(

P (̥t(x)|C, gt) + ǫ

P (̥t(x)|B, gt) + ǫ

)

. (4.9)

The parameter ǫ is a smoothing factor that avoids infinite values and whose value is

very small. RAB seeks to maximize this ratio during the learning step by evaluating

different RFs and keeping the most discriminative ones. This is done at each boosting

iteration t by calling a weak learner to compute the most discriminative weak classifier

according to the distribution of sample weights Dt. The weak classifier, defined by a
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4.2 Boosted Random Ferns

Algorithm 4 Boosted Random Ferns

1: Given a number of weak classifiers T and a dataset consisting of N image samples
labeled (x1, y1)...(xn, yn)...(xN , yN ), where yn ∈ {+1,−1} is the label for object
and background classes, respectively.

2: Construct a pool of R Random Ferns densely computed over the whole image.
3: Initialize the sample weights D1(xi) = 1/N where i = 1, 2, ...N .
4: for t = 1 to T do
5: for r = 1 to R do
6: Using the current distribution Dt and the current Fern ̥r with location gr,

compute the weak classifier hr as follows:

hr(x) =
1
2 log

(

P (̥r(x)|C,gr)+ǫ
P (̥r(x)|B,gr)+ǫ

)

7: Compute its Bhattacharyya coefficient by
Qr = 2

∑Z
z=1

√

P (̥t = z|C, gr)P (̥t = z|B, gr)
8: end for
9: Select the weak classifier hr(x) that best discriminates the object samples from

background ones using the Bhattacharyya coefficient.
10: Update the sample weights.

Dt+1(xn) =
Dt(xn) exp[−ynht(xn)]∑N

n=1
Dt(xn) exp[−ynht(xn)]

n = 1, 2, .., N

11: Aggregate the computed weak classifier ht to the strong classifier H.
H(x)← ht

12: end for
13: Final strong classifier.

H(x) = sign
(

∑T
t=1 ht(x)− β

)

Random Fern ̥t and its location gt, that maximizes the classification power in terms

of the Bhattacharyya coefficient Q is selected. This coefficient is calculated as:

Q = 2

Z
∑

z=1

√

P (̥t = z|C, gt)P (̥t = z|B, gt), (4.10)

where the Ferns distributions for object and background classes are computed by

P (̥t = z|C, gt) =
∑

n:̥t(xn)=z∧yn=+1

Dt(xn), (4.11)

P (̥t = z|B, gt) =
∑

n:̥t(xn)=z∧yn=−1

Dt(xn), (4.12)

with indexes z = 1, 2, .., Z and n = 1, 2, ...N . After each boosting iteration the distri-

bution of sample weights D is updated and normalized and the procedure is repeated

recursively until a stopping point is achieved –i.e maximum number of weak classifiers–.

Alg. 4 shows the pseudocode used to compute this classifier.
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4.2.4 Comparison with Random Ferns

Boosted Random Ferns and Random Ferns are quite similar since the former ones

are basically RFs that are trained using a supervised learning algorithm –boosting

algorithm–. The main differences between both approaches are:

• BRFs are computed using a boosting algorithm –i.e, Real AdaBoost– in order

to extract the most discriminative RFs for classifying the object category. In

contrast, RFs use a semi-näıve classifier where features are extracted completely

at random without a supervision step.

• Each training sample has a weight corresponding to its classification difficulty.

This weight is updated after each boosting round according to the classification

given by the current weak classifier ht. Therefore, each BRF is trained to focus on

difficult samples that have been classified incorrectly by previous weak classifiers.

Contrary, original RFs are trained independently and without sample weights.

This yields a more straightforward learning procedure but results in a less robust

classifier.

• BRFs are proposed for a two-class separability problem, whereas the RFs are con-

ceived for a multi-class problem. However, the proposed method can be extended

to cope with multiple classes by considering a multi-class boosting algorithm –

i.e, JointBoosting [87]– to train discriminative features for every object class.

• To compute object-specific RFs, the proposed BRFs use a logarithmic ratio be-

tween the Fern probabilities conditioned to both classes, object and background.

In this way, the boosting phase attempts to maximize this ratio by selecting and

combining the most discriminative weak classifiers against background. Contrary,

classic RFs store the probabilities of each Fern conditioned on each class and do

not use a background class. In consequence, the computed RFs are less discrimi-

native when compared with the features we propose.

• Classic RFs are the product of multiplying Fern probabilities whereas BRFs are

an average of Fern probability ratios. This is an important disadvantage for RFs,

because they require that posterior probabilities be trusted. Otherwise, if just

one Fern probability is zero the classification might be incorrect.
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4.2 Boosted Random Ferns

(a) (b) (c)

Figure 4.5: The bootstrapping phase. (a) Once the classifier is computed, it is tested
over training images. (b) According to the ground truth –blue rectangle– and the boot-
strapping criterion, Eq. 4.13, current detections –magenta rectangles– are classified as
either positive or negative samples. (c) Positive samples correspond to object instances
–green rectangles–, whereas negative ones are background regions –blue rectangles–.

4.2.5 Bootstrapping the BRFs

Boosted Random Ferns have shown to be a good alternative for detecting object cat-

egories in an efficient and discriminative way [92]. Although this method has shown

impressive results in spite of its simplicity, its performance is conditioned to the quan-

tity and quality of its training data. This is because boosting algorithms require a

large number of training samples and because each Fern has an observation distribu-

tion whose size depends on the number of features forming the Fern. The larger this

distribution is, the more training samples are needed. This dependence is shown in the

experimental validation of BRFs, refer to Sec. 4.3. This problem becomes critical in

cases where datasets have a small number of images for training –below 50–. To over-

come this limitation, some methods introduce image transformations over the training

data in order to enlarge the set of positive images, and to collect a large number of

random patches over background images as negative samples.

In contrast, we show in this section that adding an iterative bootstrapping phase

during the learning of the object classifier increases its detection rates because addi-

tional positive and negative samples are collected –bootstrapped– for retraining the

boosted classifier. After each bootstrapping iteration, the learning algorithm is concen-

trated on computing more discriminative and robust features since the bootstrapped

samples extend the training data with more difficult images, see Fig. 4.5.
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The procedure is carried out as follows: given the training data, consisting of sets of

positive and negative samples, the BRFs are first computed using those initial samples.

Once the classifier has been computed, it is tested over the same training images with

the aim of extracting new positive and negative samples. As a result, a more challenging

training dataset with which to train the following classifiers is obtained. The extraction

of new training samples is shown graphically in Fig. 4.5.

The criterion for selecting the samples is based on the overlapping rate r between

detections –bounding boxes– and the image ground truth given by the dataset. If that

rate is over a defined threshold, 0.3 by default, those detections are considered as new

positive samples. Otherwise, they are considered as false positives and are aggregated

to set of negative images. The overlapping rate can be written as:

r =
|Bgt

⋂

Bd|

|Bgt
⋃

Bd|
(4.13)

where Bgt indicates the bounding box for the ground truth, and Bd is the bounding

box for the current detection. This procedure automatically yields a set of new positive

samples containing the object under scale changes and shifts since the classifier is

tested at every image location and multiple scales. The robustness of the classifier is

then increased thanks to object samples with small distortions are considered in the

following learning phase. On the other hand, the extracted negative samples correspond

to background regions which have been misclassified by the current classifier. Those

images force the boosting algorithm to seek out more discriminative Ferns towards

object classification in the following iterations.

4.3 Experiments

BRFs were evaluated in diverse datasets with the objective of validating and comparing

their performance with some successful and recent works.

The datasets used are public and consist of a collection of images of an object cat-

egory that has been acquired using bounding boxes around specific objects. For this

chapter, the addressed datasets are the well-known UIUC car dataset [1], the TUD mo-

torbike dataset [25], and the INRIA horse dataset [18]. In spite of the “simplicity” of
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the chosen datasets, in comparison with other recent datasets, they allow the compar-

ison with a wide number of detection methods. In this chapter, we are not interested

in 3D object recognition or multi-class recognition.

UIUC car dataset [1]. This dataset contains car-side views under difficult imaging

conditions such as illumination changes, cluttered backgrounds and mild occlusions.

This dataset has two sets of images for testing. The first one has 170 images containing

200 car instances with similar scale to that of the training samples -40 × 100 pixels-.

The second one has 108 images consisting of 139 cars at different scales, varying from

36× 89 to 85× 212 pixels. This dataset has also a set of training images that is formed

by 550 positive images and 500 negative ones. Positive images are images containing

different cars facing to the left and right. Contrary, negative images are background

images containing diverse things except cars. In this work, the second set of test images

has been chosen because it implies more challenging object recognition task with car

images at several scales.

TUD motorbike dataset [25]. This dataset consists of 115 images containing 125

motorbike instances under occlusions, different scales and difficult backgrounds. This

dataset is included in the PASCAL object recognition database collection [14]. Further-

more, this dataset shows high intra-class variability due to quite different motorbikes

models. For training, the Caltech motorbike dataset is used [17]. It has 826 object

images and a large number of background samples.

INRIA horse dataset [18]. This dataset has 170 images containing one or more

horses. In addition, this dataset has 170 images with background that are used as

negative samples. The dataset is challenging because horses appear at several scales,

poses, and have out-of-plane rotations. Furthermore, this dataset has some visible

horses in images that are not labeled, and thus, they affect negatively the recognition

rates. For training, the first 50 positive and 50 negative images are used. The remaining

images are utilized for testing the computed object classifier.
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(a) Car dataset
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(b) Motorbike dataset

Figure 4.6: Learning phase. Average detection performances are shown for the ad-
dressed datasets: cars (a) and motorbikes (b). Classifiers learned via a boosting algo-
rithms yield better detection rates than those ones learned using random features.

4.3.1 Learning Phase

Three different learning schemes are evaluated. The first two are based on a supervised

learning strategy, boosting algorithms, with the aim of selecting the most relevant Ran-

dom Ferns for classification, whereas the last scheme consists on choosing the Random

Ferns at random –RND–, as proposed originally in [64]. The selected boosting algo-

rithms are the Real AdaBoost –RAB– [73] and the Discrete AdaBoost –DAB– [24], see

Fig. 4.6. These algorithms have been used in the past by many detection approaches

and have demonstrated successful detection rates using a collection of weak classifiers

which their computation can be carried out rapidly [34, 39, 58, 98, 99, 100].

To take into account the feature randomness, each object classifier has been learned

and tested eight times. From the resulting curves, the average curve is computed. The

classification performance is shown in Figs. 4.6 and 4.7. In all cases adding a boosting

algorithm to compute the specific object classifier outperforms the classic feature selec-

tion mechanism of the original RFs. Both boosting algorithms show comparable results,

and from now, the RAB is the algorithm selected for the remainder experiments, and

only average values are plotted in the detection curves.
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Figure 4.7: Comparison of three learning phases for the selection of RFs. Adding a
boosting phase, the BRFs achieve remarkable detection rates over the UIUC car dataset
–top row– and the TUD motorbike dataset -bottom row-. By contrast, Random Ferns
without a boosting phase -RND- yield considerably lower detection rates. Each object
classifier has been learned and tested eight times.
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(a) Car dataset
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(b) Motorbike dataset

Figure 4.8: Feature space. BRFs are trained using two different feature spaces: HOG
and image intensity –INT–. The detection curves for the car and motorbike datasets
are shown. In both cases, HOG-based features outperform to features computed over
image pixel intensities.

4.3.2 Feature Space

The influence of the feature space over the detection performance of BRFs is measured

in this experiment. Toward this end, RFs forming the object classifiers are computed

over either local HOGs or image intensities. Here, we wish to measure and to compare

HOG-based features against traditional methods which calculate RFs over the image

intensity space –INT–. The resulting detection curves are visualized in Fig. 4.8.

Working on the HOG space increases the detection rates because HOGs are more

robust to lighting changes and intra-class variability than intensity-based features. Note

however that for the car dataset, the classifier using intensity-based features achieves

very good results. This is because the images in this dataset have strong intensity

patterns that ease object recognition. Some examples are car shadows that appear

in most of images and pavement color which is almost constant in all images. BRFs

end up learning these patterns and using them for car classification. We can say in

consequence that the context is contributing positively to the detection of cars.
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(a) Car dataset
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(b) Motorbike dataset

Figure 4.9: Weak classifiers. Detection rates according to the number of weak classifiers
in the boosted classifier. (a) Results for the UIUC car dataset. (b) Results for the
TUD motorbike dataset. The number of weak classifiers affects positively the detection
performance of BRFs.

4.3.3 Number of Weak Classifiers

It is well known that detection approaches based on boosting algorithms require of

a large number of weak classifiers to achieve good classification rates because they

rely on weak hypotheses. The combination of more weak hypotheses leads to a more

robust and stronger classifier. In this experiment, BRFs are evaluated according to the

number of weak classifiers allowed to build the boosted classifier H(x). The detection

performance for varying number of weak classifiers used are given in Fig. 4.9. Note

that as the number of classifiers is increased, BRFs improve the detection performance

because more RFs are contributing in the final classification hypothesis. Nevertheless,

after 500 weak classifiers are used, the rate change becomes irrelevant. In that case, it

is said that the detector has achieved its maximum score value despite still having more

weak hypotheses. Although increasing the number of weak classifiers improves detection

rates, it implies more feature computation and therefore a larger computational cost.

Its choice is a trade-off between the computational cost of the detection phase and its

performance.
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(b) Motorbike dataset

Figure 4.10: Feature co-occurrence. BRFs are learned using Ferns with different number
of HOG-based features. Feature co-occurrence improves the detection rates since more
features implies a better description of HOGs.

4.3.4 Number of Features

The number of HOG-based features per Fern is also evaluated in order to measure the

importance of feature co-occurrence over the performance of BRFs. For this experi-

ment, each object classifier is learned using the same number of weak classifiers –300–

but RFs are constructed using a different number of binary features per Fern. The

results for the addressed datasets are depicted at Fig. 4.10. It shows that feature co-

occurrence improves the detection performance until a saturation point where there are

many binary features for a local HOG, and hence, the detection performance of BRFs

deteriorates. Contrary, few features over the histogram may not encode the object

appearance properly thus giving a poor performance as well.

4.3.5 HOG

In this experiment, the parameters concerning to the construction of HOGs are evalu-

ated. They include the number of gradient orientations and the size of the HOG cell.

Gradient orientations refer to the number of bins in which gradients are discretized,

while HOG cell size is the image area where gradient orientation distributions are com-
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(b) Motorbike dataset

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

Recall
 

 

3x3 Pixels
5x5 Pixels
7x7 Pixels

(c) Car dataset
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(d) Motorbike dataset

Figure 4.11: The detection performance of BRFs in terms of the parameters concerning
to the construction of HOG. (a,b) Detection curves corresponding to the number of
gradient orientations. (c,d) Detection curves for different cell sizes.

puted. The cell size is measured in pixels. The spatial concatenation of orientation

distributions leads to the resulting HOG, see Fig. 4.2(a).

Fig. 4.11(a-b) shows the performance of BRFs using different number of gradient

orientations θ. We can see that the best detection rates are achieved using only four

orientation bins. From now, this value is used for the rest of experiments. The detection

curves for different cell sizes are reported in Fig. 4.11(c-d). The results are quite similar
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(b) Motorbike dataset

Figure 4.12: Training data. BRFs are trained using different image set sizes. Note that
the detection performance of BRFs depends on the quantity of training data. More
images leads to better detection rates.

for all cases. This indicates that the performance of BRFs does not rely essentially on

the choice of this parameter.

4.3.6 Training Data

Here, BRFs are computed using several sets of training data. That is, sets with different

amount of images, both positives and negatives. The aim is to observe the influence of

training data size over the detection results. To this end, the BRFs are learned using

300 weak classifiers, seven HOG-based features per Fern and several training image

sets. The detection curves for the different cases are visualized in Fig. 4.12. According

to the plots, there is a strong dependence between the amount of images in the training

data and the performance of BRFs. The more images the dataset has, better detection

rates report. This is because the boosting approaches require a large set of images to

compute robust classifiers since they are based on a combination of weak hypotheses.

Besides, more negative images helps to compute a more discriminative and stronger

classifiers against background.
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(b) Motorbike dataset

Figure 4.13: Fern size. BRFs are learned and tested using different Fern sizes. The best
detection rates are achieved for a compromise between local features and description
of relevant object components.

4.3.7 Fern Size

The Fern size is the size of local HOGs where Random Ferns are computed. This param-

eter has a strong influence over the classification performance of BRFs, see Fig. 4.13,

because if the local HOG is large, the feature co-occurrence might not capture local

appearance properly, and there would be few binary comparisons over the histogram

of oriented gradients. On the other hand, if the HOG size is small it will not capture

relevant object components. This behavior can be seen in the detection plots for the

car and motorbike datasets shown in Fig. 4.13. The best detection results for both

datasets are reported for a Fern size of 4 × 4 cells and 8 × 8 cells, respectively. It is

important to emphasize that the car and motorbike classifiers were trained using an

image size of 12× 30 and 18× 26 HOG cells.

In summary, the choice of Fern size should be local, relative to image size, with the

aim of being robust to partial occlusions, but not too small so as to capture important

object components –i.e car wheels–.
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Figure 4.14: Fern configuration. Detection performance is measured according to four
different Fern configurations. From all configurations, spread features achieve the best
detection rates.

4.3.8 Fern Configuration

To show how the layout of RFs inside a local HOG affects the detection performance,

four different types of Fern configurations have been evaluated. The first three have in

common that feature comparisons are carried out between adjacent HOG cells in spatial

and orientation directions, and in a combination of both. These Fern configurations

resemble the Haar-based features but computed in the HOG domain [103]. Finally,

a spread configuration is proposed in which features are distributed randomly over

the whole local HOG. The detection plots for the car and motorbike datasets shown

in Fig. 4.14 indicate that spread features outperform all other configurations because

they capture important features through the histogram without imposing restrictions.

In addition, we see that orientation-based features outperform, in both datasets, spatial-

based features. The reason is that comparisons between different orientation channels

offer rich and powerful information to describe locally object appearance.
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4.3.9 Computational Cost

The computational cost of testing the BRFs over an input image depends basically on

the number of weak classifiers and the number of binary features per Fern. Moreover,

as the detection phase is performed by a sliding window where the BRFs are tested for

every image location and for several scales, the size of input image and the number of

image scales also affect the computational cost. The idea of having an image represen-

tation consisting of multiple scaled images –pyramid image– is because the classifier

has been learned with a fixed size, the trained object size. Hence, BRFs must be tested

for several scales in order to cope with changes in object size.

Then, we can say that the cost of evaluating the BRFs over an input image I of

size Nu ×Nv is of the order

O(Nu Nv S T M), (4.14)

where S is the number of image scales, and T and M are the number of weak classifiers

and HOG-based features per Fern, respectively.

In order to measure the efficiency of BRFs according to the above mentioned param-

eters, three different experiments were carried out. The first one consists on learning

and evaluating the BRFs over the UIUC car dataset using several numbers of HOG-

based features per Fern. The second experiment proceeds in the same way but com-

puting the RFs over the image intensity space. The aim of this test is to measure

the increment in time of using HOG-based features instead of simple intensity-based

features. Finally, the last experiment concerns the evaluation of BRFs using varying

numbers of weak classifiers.

To speed up the detection phase a cascade strategy is added. In the past, many

methods have used cascade strategies to increase the efficiency of the detection algo-

rithms. The idea is to test a large number of features in an iterative procedure. The

complete feature set is tested by a series of subset evaluations –cascades–, where each

one has more complex and computationally expensive features. In contrast to more

complex strategies [38, 98, 104], we opt for a näıve cascade because of its easy imple-

mentation and to focus on evaluating the BRFs and not the detection schemes. This

simple cascade allows to reduce drastically feature computation time by controlling the
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Figure 4.15: BRFs efficiency. (a) Detection times of BRFs using different number of
HOG features per Fern. (b) Detection times of BRFs using intensity features. (c) The
BRFs are evaluated according to the number of weak classifiers.

classifier output in its iterative evaluation. This can be formulated by,

H(x) = sign

(

T
∑

t=1

ht(x) > ρ

)

, (4.15)

where ρ is the cascade threshold. If the BRFs output at iteration t is over this threshold,

the testing goes on, otherwise, it is stopped and the current image region is discarded.

This simple methodology allows to concentrate on promising image regions.

The detection times, given in seconds, are shown in Fig. 4.15. Results of the first

experiment are shown in Fig. 4.15(a). Increasing the number of features has a quadratic
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impact on overall computation time, even when the computation of HOGs is constant.

The same situation is observed in Fig. 4.15(b). The cost of image computation is

constant and independent of BRFs. Working on the intensity space offers a reduction

in detection time since the computation of HOGs is removed, but this at the expense

of lower detection rates. This fact was evidenced in Sec. 4.3.2.

The number of weak classifiers also affects the efficiency of BRFs. Two testing

approaches are considered. One uses the BRFs in combination with a näıve cascade, and

another without this strategy. The number of HOG-based features for this experiment

has been set to seven. Fig. 4.15(c) shows that the näıve strategy reduces considerably

detection time because less weak classifiers are tested per pose –location and scale–. In

contrast, using BRFs without this simple cascade requires to evaluate the entire and

large set of weak classifiers for every image location and scale, with a time complexity

linear with respect to the number of classifiers used.

The choice of the number of classifiers and the type of features to use is a trade-

off between detection performance and computational cost. To conclude, the previous

experiments were computed using the average detection times over 100 test images

–UIUC car dataset–. The algorithms are implemented in Matlab with some functions

in C++. However, the method is not completely optimized.

4.3.10 Comparison with the State of The Art

In this section, BRFs are placed in context with other successful detection methods

comparing their detection rates over the addressed datasets. Table 4.3 summarizes

these average detection rates. BRFs achieve remarkable results in comparison to the

state-of-the-art methods with the advantage of being computationally more efficient,

because they do not require the computation of complex features or the combination

of multiple cues [44].

Noteworthy, for the UIUC car dataset, the proposed method achieved a detection

rate of 98.2% EER –Equal Error Rate–, with a margin of 1%, for the multi-scale test.

We can also see that computing BRFs via a boosting algorithm –RAB– they outper-

form Classic Random Ferns where features are chosen randomly –RND–. Moreover,

computing RFs over local HOGs reports better rates than computing features over

the image intensity domain –INT–. For the single scale test, the best detection rate
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Method UIUC UIUC TUD
Multi-scale Single scale motorbikes

Agarwal et al. [1] 39.6% 76.5% -
Fergus et al. [17] - 88.5% -
Fritz et al.[25] 87.8% 88.6% -
Mutch et al. [60] 90.6% 99.9% -
Shotton et al. [77] - 92.8% -
Mikolajczyk et al. [55] 94.7% - 89.0%
Leibe et al. [43] 95.0% 97.5% 87.0%
Lampert et al. [38] 98.6% 98.5% -
Leibe et al. [44] - - 92.8%
Gall et al. [26] 98.6% 98.5% -
Maji et al. [51] - 97.5% -
BRFs (RND/HOG) 81.2%(±5.0) 71.2%(±9.4) 72.3%(±5.7)
BRFs (RAB/INT) 95.9%(±2.5) 92.7%(±1.7) 74.8%(±2.0)
BRFs (RAB/HOG) 98.2%(±1.0) 96.2%(±1.8) 86.9%(±2.6)

Table 4.3: Category detection rates for the addressed datasets.

achieved by the proposed classifier is 96.2% EER. Unlike the method presented by

Shotton et al. in [77], BRFs do not need to test each image twice, and the detector is

able to simultaneously detect cars facing to the left or right.

With regards to the TUD motorbike dataset, BRFs give a detection rate of 89.6%

EER with a margin of 2.6%. This rate is competitive with other successful works but

at a reduced computational cost, both in learning and detection. This dataset is very

challenging given its very large intra-class variability, as well as the multiple occlusions

present.

4.3.11 Detection Results

Exemplar detection results over the addressed datasets are shown in Fig. 4.16. BRFs

are capable of detecting object categories in spite of difficult imaging conditions such

as lighting changes, inter-class variability or mild occlusions.

75



4.3 Experiments

Figure 4.16: Detection results for the UIUC car dataset [1] and the TUD motorbike
dataset [17]. The proposed method, based on BRFs, shows remarkable detection results
in spite of difficult image conditions. Green rectangles indicate true positives –correct
detections–, whereas red ones indicate false positives.

4.3.12 Bootstrapping BRFs

BRFs are evaluated on the INRIA horse dataset [18]. This dataset presents a certain

degree of difficulty because of the reduced training set size. More specifically, only 50

positive images and 50 negative images are available. This dataset has a collection of

images containing horses at multiple scales, deformations and out-of-plane rotations.

Given the small number of images for training in this dataset and since BRFs depend

on the quality and quantity of the training data, shown experimentally in Sec. 4.3.6, we

propose to learn the classifier by means of an iterative bootstrapping process. The idea

is to extract more images, from the set, both positive and negative, in order to enlarge

the training data with more difficult samples. In this way, the BRFs are retrained after

every iteration to yield a more robust and discriminative object classifier [94]. The

procedure for bootstrapping was explained in Sec. 4.2.5.

Basically, bootstrapping is carried out by testing the current BRFs over the training

data. The resulting detections are then validated according to ground truth. Those

detections close to ground truth are assigned as new positive samples. Otherwise, they
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Figure 4.17: Bootstrapped images. Positive image samples correspond to the target
object under scale and shift distortions –first and second rows–. By contrast, negative
samples refer to difficult background regions or small portions of the object –third and
fourth rows–.

are assigned to the set of negative images. New positive samples correspond to object

instances under diverse scales and shifts. They help BRFs to be more robust to object

variations inside images. Contrary, bootstrapped negative images represent difficult

images that are false positives emitted by the current classifier. These images force

the algorithm to select more discriminative features against the background. Some

bootstrapped samples after one iteration are shown in Fig. 4.17.

Bootstrapping produces significantly better recognition rates on this dataset. As

shown in Fig. 4.18, our BRF classifiers are evaluated for several bootstrapping iter-

ations, with the conclusion that it takes three iterations to optimize the results of

bootstrapping. Note how for more iterations, overfitting starts to kick in and the per-

formance of the classifier slightly degrades. Moreover, the method competes favorably

with the state of the art as shown in Table 4.4.

With regard to the state of the art, our method outperforms some related works

with a detection rate of 86.0% ±2.8 at 1 FPPI. This detection result and the num-

77



4.3 Experiments

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

 

 

BRFs/iter. 0
BRFs/iter. 1
BRFs/iter. 2
BRFs/iter. 3
BRFs/iter. 4

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPPI
R

ec
al

l
 

 

BRFs/iter. 0
BRFs/iter. 1
BRFs/iter. 2
BRFs/iter. 3
BRFs/iter. 4

(b)

Figure 4.18: The detection performance of Boosted Random Ferns on the horses
dataset improves substantially as the number of bootstrapping iterations increases.
(a) Precision-recall curve. (b) Receiver-operator curve.

Method Num. Num. Boots. PR ROC
Samples Samples EER 1.0 FPPI
pos. / neg. pos. / neg.

Ferrari et al. [19] 50/50 − − 73.7%
Ferrari et al. [18] 50/50 − − 80.8%
Riemenschneider et al. [70] 50/0 − − 83.7%
Maji et al. [51] 50/50 − − 86.0%
Yarlagadda et al. [101] 50/0 − − 87.3%
Toshev et al. [88] 50/50 − − 92.4%
Monroy et al. [59] 50/50 − − 94.5%
BRFs/iter. 0 50/50 − 56.7%± 4.6 71.2%± 4.2
BRFs/iter. 1 50/50 295/576 68.4%± 3.5 80.0%± 4.6
BRFs/iter. 2 50/50 577/1044 75.0%± 3.2 85.1%± 2.9
BRFs/iter. 3 50/50 861/1350 77.0%± 3.0 86.0%± 2.8
BRFs/iter. 4 50/50 1120/1590 75.6%± 1.3 84.4%± 1.6

Table 4.4: Quantitative detection results and comparison with the state of the art.
For every bootstrapping iteration the training data is extended with new positive and
negative samples. Indeed, they are the same original samples –50 samples– under image
distortions: scaling, location shifts and affine transformations.

ber of training samples used at each bootstrap iteration are shown in Table 4.4. The

proposed method is only superseded by Yarlagadda et al. [101], Toshev et al. [88] and

Monroy et al. [59]. However, these works require larger computational effort. In Yarla-

gadda’s work, for example, a novel Hough-based voting scheme is proposed for object
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Figure 4.19: Detection times for BRFs according to the number of bootstrapping it-
erations. The bootstrapped classifier is not only more discriminative but also more
efficient.

detection. This method requires an optimization procedure to group dependent parts

and a verification stage to refine the voting hypotheses. In Toshev’s work, a bound-

ary structure segmentation model is proposed. Particularly, this method makes use

of an initial segmentation based on superpixels and an optimization problem that is

solved using semidefinite programming relaxation. In Monroy’s work, the method inte-

grates curvature information with HOG-based descriptors to produce better recognition

and accuracy results. However, this method also requires additional processing steps,

such as the computation of sophisticated edges, the extraction of segments based on

connected elements and the computation of the distance accumulation. Besides, this

work also performs bootstrapping. More precisely, three iterations are carried out to

bootstrap more negative samples.

The proposed BRFs are very fast to compute, and take about 1 second to detect

horses in one image. On the contrary, Yarlagadda’s method takes about a couple of

minutes per image on this dataset and Riemenschneider et al. takes about 5 seconds

per image. This fact reflects the computational benefit of our method. This efficiency

is achieved by using simple but discriminative Random Ferns in combination with a

boosting phase [92]. Fig. 4.19 shows the detection times of our proposed method in

terms of the bootstrap iterations. Specifically, the times for computing the HOG from
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(f) Iteration 4

Figure 4.20: Spatial feature distribution. (a) Object category. (b-f) Spatial layout of
Random Ferns for diverse bootstrapping iterations. Note, RFs are mainly concentrated
on the neck, head and legs of horses.

images, and testing the BRFs are shown. We also see that the bootstrapped classifier

is more efficient because it is more selective and can discards background image regions

more quickly.

Fig. 4.20 illustrates the benefits of the bootstrapping process for this horse database.

The color coded images represent the distribution of the location of the local HOG

Fern-based weak classifiers chosen by our method. Reddish tones indicate higher con-

centrations of classifiers and bluish colors correspond to lower concentrations. Note hat

at early stages of bootstrapping, features concentrate on the single most discriminative

part of the object around the neck. However, as the number of bootstrapping itera-

tions increases, discriminative features move towards other parts of the horse such as

the belly and the head.

Finally, some detections results for this dataset are shown in Fig. 4.21. In spite of

challenging poses of the horses, the BRFs are capable of detecting the object category

remarkably well.
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Figure 4.21: Detection results over the INRIA horse dataset. BRFs are able to detect
the horse category in spite of difficult image and object variations. Blue rectangles
indicate the ground truth given by the dataset, whereas green ones correspond to
correct detections –true positives–. False positive are indicated by red rectangles.

4.4 Summary

The detection of specific objects categories is addressed in an efficient way by means

of the computation of fast features –Random Ferns– in combination with a boosting

algorithm with aim of extracting the most discriminative features for the object cate-

gory. The resulting classifier, Boosted Random Ferns, is a robust and discriminative

classifier that is capable of recognizing and localizing objects under difficult imaging

conditions. BRFs have been validated in standard datasets where competitive results

with the state of the art are achieved, with the advantage of being computationally

more efficient and straightforward than other works.

Nevertheless, the performance of BRFs is conditioned to the quality and quantity of
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the training data. For cases where the datasets have a reduced set of training images, a

bootstrapping procedure for collecting more difficult images is presented. This method

allows to improve the detection rates of BRFs by retraining the classifier iteratively.

The resulting BRFs are more robust to object variations and discriminative against

background.
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Chapter 5

Efficient Rotation-Invariant

Object Detection Using Boosted

Random Ferns

In this chapter, a novel and efficient method for detecting object categories that may

appear in images under planar rotations is proposed. This detector is based on (i) the

combination of Random Ferns via AdaBoost, Chapter 4, and (ii) a two-step detection

strategy that prevents the classifier from being tested for multiple orientations. More

specifically, we compute an orientation estimator and an object classifier using BRFs.

The first step evaluates efficiently an estimator at each image location to determinate

potential object hypotheses. The second step tests the object classifier only on the hy-

potheses given by the estimator. The resulting detection approach is very efficient and

achieves promising detection rates over a dataset specifically created for the problem

of object detection subject to in-plane rotations. This work was presented at [92].

5.1 Introduction

BRFs are used in this chapter to detect objects of a specific category that may appear

in images subject to planar rotations. This problem has been traditionally addressed

from a multi-class perspective using classifiers specifically trained at different orienta-

tions [34]. These methods however, suffer from two limitations. First, the computa-

tional cost for both the training and test stages increases with the number of classifiers,

and second, the use of multiple classifiers increases the number of false positives.
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A simpler strategy to deal with in-plane rotations would be to rotate the image or

steer the object classifier for multiple orientations. However, this approach would have

a high computational cost, because it would require to test the classifier several times

over the image, one for each discretized orientation. In addition, it would produce

a large number of false positives because the classifier would have to be evaluated

significantly more times.

In [55] objects at different orientations are detected by means of an implicit shape

model –ISM– using rotation-invariant features. Yet, the method is computationally

expensive, as it requires to compute SIFT descriptors over edges, and apply a PCA

analysis followed by a voting strategy. Other approaches address the problem as a

multi-class one using different boosting versions [34]. However, since they decompose

the problem into several classes they require more features and a higher computational

effort. Torralba et al. [87] presented an efficient multi-class boosting algorithm where

the overall number of features are reduced given that features may be shared among

classes. The approach also requires an expensive learning step. Our method is closely

related with Torralba’s work in which we consider each object orientation a different

class, and the estimator would be a top-level multi-class detection stage where Random

Ferns are shared for all classes. The classifier would be a bottom-level stage containing

selective RFs for the orientation-specific class.

Rotation-invariant detection is also addressed by Rowley et al. [71] for rotation-

invariant face detection, and by Ozuysal et al. [65] for detecting cars under general 3D

poses requiring several and relatively complex steps. In our approach, the computation

of the estimator and the classifier is based on BRFs. The estimator is trained for all

orientations with the aim of retrieving the object orientation using the joint probability

between Fern observations and trained object orientations. The classifier is trained for

a canonical orientation in order to construct a very discriminative classifier. This two-

step approach speeds up the detection phase reducing significantly the search space.

An overview of the proposed detection method is given in Sec. 5.2. We then describe

its components: the object estimator –Sec. 5.3– and the object classifier –Sec. 5.4–.

Experimental evaluation of the two-step detection method is illustrated in Sec. 5.5.

The chapter is concluded with a summary showing the achievements and results of the

method –Sec. 5.6–.
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(a) (b) (c) (d)

Figure 5.1: The proposed rotation-invariant object detection approach. First, the
estimator yields an initial set of potential object poses –location, scale and orientation–
over the input image (b). Then, each hypothesis is validated by steering and testing
the object classifier (c). The hypotheses that remain after non-maxima suppression are
considered object instances (d).

5.2 Two-Step Detection

Decoupling orientation estimation from object classification allows to reduce the com-

putational time for the learning and testing phases, maintaining the detection results

high. The estimation step is used as a pre-filter that generates object hypotheses.

Given these hypotheses an orientation-specific classifier is properly steered and verified

according to the estimated orientation, see Fig. 5.1. In this way, the proposed method

avoids having a set of orientation-specific classifiers, or the computation of just one

but steering it for multiple orientations in the detection phase. Both approaches are

computationally expensive, both for testing and learning.

In contrast, the proposed approach only needs to test the estimator over the image

to determine potential object candidates with an associated pose –location, scale and

orientation–. This estimator can be performed efficiently thanks to the use of Random

Ferns. Moreover, in a second step, the object classifier is very discriminative since

it is trained using image samples at a canonical orientation. However, to avoid false

positives, the object classifier is only tested on the hypotheses given by the estimator.
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5.3 The Object Estimator

The object pose estimator E(x) is computed in the same way as BRFs –Sec. 4.2–,

that is, by a boosted combination of weak classifiers where each one is based on a RF

that is computed at specific image location. The most discriminative sets of Ferns ̥

and locations g are chosen via a RAB algorithm –Sec. 2.3– to construct, iteratively,

the object estimator. The estimator can, therefore, be expressed as a sum of T weak

classifiers,

E(x) = sign

(

T
∑

t=1

ht(x)− βe

)

, (5.1)

where ht is a weak classifier and βe is the estimator threshold whose default value is

zero. In practice, when computing the pose estimator each weak classifier incorporates

an additional orientation parameter Θ that is a label assigned to every training sample

indicating the object orientation that has been applied by rotating training data to W

in-plane rotations. Thereby, a weak classifier is calculated by the co-occurrence of Fern

observation and image orientation,

ht(x) =
1

2
log

(

P (̥t(x),Θ(x)|C, gt) + ǫ

P (̥t(x),Θ(x)|B, gt) + ǫ

)

, (5.2)

where Θ(x) ∈ {1, 2, ..,W}, gt indicates the location where ̥t is computed, and ǫ is a

smoothing factor. Refer to Table 5.1 for the nomenclature of this section.

The estimator seeks to maximize this co-occurrence during the learning step by

evaluating different Random Ferns and keeping the most discriminative ones. This

is done at each iteration t of the boosting step by calling a weak learner to compute

and select the most discriminative classifier according to a weight distribution over the

training samples Dt,

P (̥t = z,Θ = w|C, gt) =
∑

n:̥t(xn)=z∧Θ(xn)=w∧yn=+1

Dt(xn), (5.3)

P (̥t = z,Θ = w|B, gt) =
∑

n:̥t(xn)=z∧Θ(xn)=w∧yn=−1

Dt(xn), (5.4)

with w = 1, 2, ..,W , z = 1, 2, .., Z, n = 1, 2, .., N . The number of training samples is

denoted by N .
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̥ Random Fern
E(x) Estimator
H(x) Object classifier
βe Estimator threshold
βc Object classifier threshold
h Weak classifier
T Number of weak classifiers
x Image sample
z Fern observation (output) value
Z Dimension of Fern output space
Θ Sample orientation label
Q Bhattacharyya coefficient
gt Location of Fern t
N Number of training samples
yn Class label of image sample n
D Distribution of sample weights

Table 5.1: Notation for computing the object estimator and classifier.

At each iteration, the weak classifier that maximizes the classification power in

terms of the following Bhattacharyya coefficient is selected,

Q = 2

W
∑

w=1

Z
∑

z=1

√

P (̥t = z,Θ = w|C, gt)P (̥t = z,Θ = w|B, gt). (5.5)

The weak classifiers built using this methodology are focused on Random Ferns that

are both discriminative for their observations and for their orientation distributions.

Thus, if one weak classifier tends to favor some orientations, subsequent classifiers are

forced to classify those samples labeled as misclassified orientations. Details of this

methodology for computing the estimator are given in the pseudocode of Alg. 5.

In order to estimate the object orientation at runtime using the previously computed

estimator, this is evaluated according to the following conditioned expression:

E(x) =
T

2

T
∑

t=1

log
P (̥t(x)|C, gt)

P (̥t(x)|B, gt)
+
T

2

T
∑

t=1

log
P (Θ(x)|C, gt,̥t(x))

P (Θ(x)|B, gt,̥t(x))
. (5.6)

The left-hand side of this equation is the root classifier Φ that corresponds to the

ratio of observation probability of the T selected RFs. Note that it does not consider

the orientation parameter Θ, and hence, this classifier responds to object instances

under multiple in-plane rotations. By setting a threshold Φ > βe, we can choose a
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Algorithm 5 Object Estimator

1: Given a number of weak classifiers T and a dataset consisting of N image samples
labeled as (x1, y1,Θ1)..(xn, yn,Θn)..(xN , yN ,ΘN ), where yn ∈ {+1,−1} is the label
for the object and background classes, respectively; and Θn ∈ {1, 2, ..,W} is the
orientation label.

2: Construct a pool of R Random Ferns densely computed over the whole image.
3: Initialize sample weights D1(xi) =

1
N
, where i = 1, 2, .., N .

4: for t = 1 to T do
5: for r = 1 to R do
6: For the current distribution Dt and Fern ̥r, with location gr, compute the

weak classifier hr(x),

hr(x) =
1
2 log

(

P (̥r(x),Θ(x)|C,gr)+ǫ
P (̥r(x),Θ(x)|B,gr)+ǫ

)

7: Calculate the Bhattacharyya coefficient QS.
8: end for
9: Select the weak classifier hr that minimizes Q.

10: Update the sample weights.
Dt+1(xn) =

Dt(xn) exp[−ynht(xn)]∑N
n=1

Dt(xn) exp[−ynht(xn)]
n = 1, 2, .., N.

11: Aggregate the computed weak classifier ht to the estimator E(x).
E(x)← ht

12: end for
13: Final strong classifier.

E(x) = sign
(

∑T
t=1 ht(x)− βe

)

large number of potential hypotheses at runtime. The right-hand side of the Eq. 5.6 is

the orientation estimation term which is made by the combination of local orientation

estimations given the observations of BRFs. According to this distribution, the object

orientation for the image sample x is calculated as:

φ = argmax
w

T
∑

t=1

log
P (Θ(x) = w|C, gt,̥t(x))

P (Θ(x) = w|B, gt,̥t(x))
. (5.7)

The method is exemplified in Fig. 5.2. The upper row shows the initial object

hypotheses for varying values of the root detector threshold βe. The object pose –

location, scale and orientation– is represented by means of red lines. The images in the

second row show the object detection results after testing the steered object classifier

over those initial hypotheses. The parameter βe controls the number of false positives

of the estimator and, consequently, the computational cost of the algorithm. Therefore,

the choice of this parameter is a trade-off between false positives and computational

burden.
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Figure 5.2: Object estimation and classification. First row: object hypotheses given by
the object estimator E(x). Red lines indicate location, size and orientation of potential
objects. Second row: classification results after testing the object classifier over initial
hypotheses. In each case, the classifier is steered and evaluated according to estimated
poses. Each column corresponds to a different value of the parameter βe = {0, 2, 4}.

5.4 The Object Classifier

This section provides the computation of the object classifier H(x), via Boosted Ran-

dom Ferns, and the procedure for steering this object classifier according to hypotheses

given by the estimator E(x).

5.4.1 Computation of the Object Classifier

Unlike the estimator E(x), that is computed using images for multiple object orien-

tations, the object classifier –BRFs– is trained using image samples at a canonical

orientation –i.e non-rotated images–. This yields a classifier that is very discriminative

but not rotationally invariant. This is similar to the detection approach addressed in

the previous chapter: BRFs for the detection of view-specific objects. To achieve ro-

tation invariance, the classifier is steered at every orientation prediction given by the

estimator. This prevents from having to train a set of orientation-specific classifiers.

Hence, the object classifier H(x) is given by

H(x) = sign

(

T
∑

t=1

ht(x)− βc

)

, (5.8)

where βc is the classifier threshold and ht is a weak classifier.

89



5.4 The Object Classifier

(a) (b)

Figure 5.3: Spatial feature layout. (a) Motorbike category. (b) Spatial locations of
computed Random Ferns for the given object category. Locations correspond mainly
to prominent category parts –i.e wheels and handlebars–. Reddish tones indicate higher
concentrations of features and bluish colors correspond to lower concentrations.

The procedure to compute BRFs is carried out as explained in the previous chapter.

That is, by computing weak classifiers using AdaBoost, and selecting, according to

Bhattacharyya coefficient, the most discriminative Ferns. Following this method, each

weak classifier ht is expressed as:

ht(x) =
1

2
log

(

P (̥t|C, gt) + ǫ

P (̥t|B, gt) + ǫ

)

, (5.9)

where ǫ is a smoothing parameter whose value is very small. At iteration t, the prob-

abilities P (̥t|C, gt) and P (̥t|B, gt) are computed under the distribution of sample

weights Dt by

P (̥t = z|C, gt) =
∑

n:̥t(xn)=z∧y(xn)=+1

Dt(xn), (5.10)

P (̥t = z|B, gt) =
∑

n:̥t(xn)=z∧y(xn)=−1

Dt(xn), (5.11)

where z = 1, 2, .., Z, n = 1, 2, .., N and N is the number of training samples.

The weak classifier is chosen to minimize the following Bhattacharyya coefficient,

Q = 2
Z
∑

z=1

√

P (̥t = z|C, gt)P (̥t = z|B, gt). (5.12)

The Random Fern that minimizes this coefficient is selected and added to construct

the object classifier. The combination of all weak classifiers gives the strong and robust

classifier classifier H(x). Fig. 5.3 illustrates that the boosting step extracts discrimi-

native Random Ferns for a given class –i.e. motorbikes–. For that case, features are

concentrated mainly in semantic object parts such as wheels and handlebars.
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5.4.2 Steering the Classifier

In order to be invariant to object rotations in the image plane, the object classifier

must be steered and tested. To this end, for each object hypothesis made by the

estimator E(x), the classifier H(x) is steered by simply rotating the coordinates of

each HOG-based feature. This is done by,

Ω∗ =





cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1



Ω+





0
0
p



 , (5.13)

where Ω refers to feature location expressed by their spatial and orientation bin coor-

dinates [u, v, θ]′ in the HOG, φ is the rotation angle given by the estimator, and p is

the angular translation increment defined by φW
πK

. The parameter K is the number of

gradient orientations used in the construction of HOG.

5.5 Experiments

The decoupled detection approach consisting of BRFs is validated for the recognition

and localization of an object category under in-plane rotations. The evaluation is

carried out in terms of the detection performance and the computational efficiency of

the proposed two-step detection strategy. The estimator accuracy and its efficiency are

also described in this section.

The parameters concerning to the computation of the detectors have been fixed for

all experiments. The object classifier is trained using 300 weak classifiers –Random

Ferns–, each one with 7 binary features. The estimator is trained using 100 RFs, each

one with 7 binary features. With regards to the computation of HOGs, 8 gradient

orientation channels have been chosen. Fern sizes are 6× 6 and 4× 4 HOG cells for the

estimator and the classifier, respectively. To train the estimator, 16 object orientations

are considered, resulting in accuracy of 22.5 degrees.

A new dataset is introduced to evaluate the decoupled detection approach against

object rotations in the image plane. This dataset was created due to non-existence of

datasets for the problem of detecting and categorizing objects under in-plane rotations.

Most of datasets are focus on general 3D rotations.
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Figure 5.4: Detection results for the IRI freestyle motocross dataset. Green rectangles
indicate true positives, while red rectangles indicate false positives. BRFs in combina-
tion with a two-step detection strategy lead to a robust and efficient method that is
able to detect objects in spite of partial occlusions, planar rotations and scale changes.

IRI freestyle motocross dataset. This dataset was built in order to explicitly

evaluate the proposed algorithm to rotations in the plane. The images were extracted

from the Internet and correspond to motorbikes with challenging conditions such as

extreme illumination, multiple scales or partial occlusions. Moreover, some instances

show some degree of out-of-plane rotations, see Fig. 5.4. There are two sets of images

for testing. The first set has 69 images with 78 motorbikes without in-plane rotations,

whereas the second one has 100 images with 128 motorbikes instances with multiple

rotations in the plane. The learning was done using images from the Caltech motorbike

dataset [17]. However, the positive training set was created selecting the most closely

related images to the target motorbike model. Following, affine transformations were

added into images in order to extend the training set with new samples considering

image distortions. This process was performed until 700 images were created.
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Figure 5.5: Two-step detection strategy. (a) Detection curves for two different detec-
tion strategies. The evaluation is carried out, first, over samples without orientation
change. Adding an estimator does not affect the final object detection since false hy-
potheses, given by the estimator, are rejected by the classification step. (b) Detection
performance for the object category under in-plane rotations. The proposed approach
reports better detection rates than testing the specific classifier at multiple orientations.

5.5.1 Two-step Detection

To validate the estimation-classification method, two types of experiments are per-

formed. In the first experiment, two detection approaches are considered; one that

only uses the object classifier and another where the classifier is tested in combination

with the estimator. For this experiment, the first set of test images of the addressed

dataset is used. This set refers to images containing motorbikes without in-plane rota-

tions but with difficult imaging conditions such as occlusions or extreme illumination.

Results for both detection strategies are shown in Fig. 5.5(a). According to the per-

formance curves, both methods report similar detection rates –91.03% EER–. This

experiment shows that adding the estimator to detect objects without rotations does

not undermine the performance of the detector, because even when many object can-

didates are given by the estimator, the classification step is still able to reject false

hypotheses.

For the second experiment, two detection approaches were considered again. The

first one uses the estimator-classifier combination and the second one tests the classifier
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Figure 5.6: Estimator accuracy and efficiency. (a) Detection performance is measured
in terms of estimator accuracy. Larger accuracies indicate high detection rates but
with larger error in the retrieved object orientation. (b) Detection efficiency for the
different detection strategies. Single BRFs achieve the lowest detection time, but are
not invariant to object rotations. The proposed two-step detection approach achieves a
reasonable detection time, whereas the method based on testing the BRFs at multiple
rotations is considerably slow.

at multiple orientations. This experiment is carried out over the second set of test

images that corresponds to images having motorbikes with orientation change in the

plane. The detection rate for combining estimator and classifier is 93.75% EER while

for the detection under multiple classifier rotations is 85.94%, see Fig. 5.5(b). This large

difference shows that the combination of estimator and classifier yields better results

than the classifier tested at multiple orientations since the latter has to be evaluated

N times, being N the number of discretized orientations. Hypotheses verification at

multiple orientations increases the number of false positives and computational cost.

5.5.2 Estimator Accuracy

Results from another batch of experiments designed to measure the orientation accu-

racy of the estimator are shown in Fig. 5.6(a). In these experiments, a true positive

detection is only considered when the difference between the estimated orientation and

the ground truth orientation is below a given accuracy value. The figure plots different

detection curves for different accuracy values. The proposed method provides good
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detection results, above 91% EER, for an error margin of 15 degrees. The accuracy

of the orientation estimation could be improved whether more object orientations are

considered in the learning phase. However, this is at the expense of increasing the

computational cost during the training phase.

5.5.3 Computational Efficiency

The computational cost of testing the proposed detection approach depends on the

time spent on both steps, the orientation estimator and the object classifier. As both

steps are computed using BRFs, their costs depend directly on the amount of weak

classifiers and HOG-based features used. The cost of evaluating the estimator over an

image of size Nu ×Nv can be expressed as follows:

O(Nu Nv S Te Me), (5.14)

where S is the number of scaled images –pyramidal representation–, and Te and Me

are the number of weak classifiers and binary features for the estimator, respectively.

Similarly, the cost of the object classifier has an upper-bound complexity of

O(η Tc Mc). (5.15)

where Tc and Mc are the number of weak classifiers and Fern features for the classi-

fier, and η denotes the image locations where the classifier is tested. Remember that

the decoupled approach allows to initially evaluate the estimator and just consider the

classifier when the estimator score exceeds a certain parameter βe. Hence, the parame-

ter η depends on the value of βe, whose choice is a compromise between efficiency and

detection performance. A small value means more classifier evaluations, while a large

one gives less feature computation but more false negatives, that is, missing object

instances. This was shown in Fig. 5.2. In the worst case, the detector cost will equal

to the cost of applying both the estimator and the classifier sequentially. In fact, this

cost is lower than testing multiple independent classifiers at different orientations, for

which the cost would be:

O(Nu Nv S T M Nθ), (5.16)

with Nθ is the number of discretized orientations.
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Fig. 5.6(b) shows the detection times for the different strategies utilized. This

plot was computed for the average detection times over the test 1 of the motorbike

dataset –69 images–. The strategies are: the classic BRFs described in the previous

chapter, which is not rotationally invariant; the proposed decoupled detection approach,

invariant to object orientation changes; and an approach that evaluates exhaustively

the BRFs for several and discrete orientations.

We see that the most efficient is the single BRFs. The proposed method is an order

of magnitude faster than evaluating exhaustively BRFs at multiple rotations. This fact

demonstrates the computational benefit of the proposed work. The estimator alleviates

the cost of evaluating this classifier many times over images and reduces the number

of false positives.

5.5.4 Detection Results

Exemplar detection results for the IRI freestyle motocross dataset are shown in Fig. 5.4.

Note how the two-step approach and BRFs are able to recognize and localize objects

within difficult scenes. We can also see that object orientations are estimated correctly.

5.6 Summary

The detection of object categories under in-plane rotations has been addressed in an

efficient way in this chapter. We propose the use of BRFs together a decoupled detection

approach. This allows having fast feature computation and avoiding to test the object

classifier at multiple orientations. The two-step detection approach, first evaluates the

estimator in images to provide possible object candidates. Then, given these candidates,

indicated by location, scale and orientation, the discriminative object classifier validates

each hypothesis.

The method has been evaluated in a dataset specifically created for the presented

problem. It has a set of images containing side-view motorbikes under rotations in the

plane and challenging image conditions such as lighting changes or occlusions.
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Chapter 6

Shared Random Ferns for

Efficient Detection of Multiple

Categories

Boosted Random Ferns –BRFs– are proposed in this chapter to detect multiple object

categories, exploiting the fact that different categories may share common features but

with different geometric distribution. This yields an efficient detector which, in contrast

to existing approaches, considerably reduces the computation cost at runtime where the

feature computation step is traditionally the most expensive process. More specifically,

at the learning stage, shared features are computed by applying the same Random

Ferns –RFs– over the histograms of oriented gradients –HOGs– on the training images.

Following, a boosting step is applied to build discriminative weak classifiers, and learn

the specific geometric distribution of the RFs for each class. At runtime, only a few

Random Ferns have to be densely computed over each input image, and their geometric

distribution allows performing the detection. The results from this chapter are the bulk

of [93] and [91].

6.1 Introduction

In the last years the problem of detecting many different kinds of objects in cluttered

scenes has received attention in the computer vision community. Nowadays, there are

some works for this problem that have shown successful detection rates in spite of
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difficult scene and object conditions [13, 16, 30, 60, 88, 92]. Nevertheless, the computa-

tional efficiency of these methods becomes critical when several category classifiers are

evaluated in images. The problem is that most methods scan exhaustively the image

using a sliding window where the object classifier is tested for every image location

and several scales. This strategy is computationally expensive and even more when

multiple categories are considered. Some works overcome this problem using branch-

and-bounds schemes that reduce significantly the amount of classifier evaluations and

speed up object detection [38, 42]. However, these methods are not specially conceived

for the multi-class object detection task.

The simplest approach to cope with the detection of multiple objects is to learn

each category-specific classifier independently from the rest. While this procedure

allows focusing on the most discriminative features for each category, it has a high

computational cost at runtime, because the total number of features increases with

the number of object categories. This is the case of BRFs which were proposed in

Chapter 4. They constitute very efficient and robust classifiers, but each one has its own

set of features –RFs–. This yields a detection strategy that involves the computation

of a large number of features in images.

Recent approaches have attempted to reduce this computational burden inherent in

the multi-class object detection problem by splitting the detection process in two steps:

initially the object class is estimated by either using joint class classifiers [34, 87, 100] or

a rough class estimator [15, 65, 92], and subsequently the object is accurately detected

through category-specific classifiers. Nevertheless, in both situations the initial estima-

tion is only reliable when object categories may be represented by predefined-regions

with the same size or aspect ratio. To overcome this limitation of object size variabil-

ity, other works have introduced hough-based methods, where object constituents cast

probabilistic votes for the object center [6, 26, 51, 55, 69]. This avoids using detectors

with rough and fixed sizes, but requires the computation of object-part codebooks or

more sophisticated descriptors.

In order to address this situation, we proceed as the former methods mentioned

above, independently learning a robust classifier for each category. However, to make

their computation as efficient as possible, we propose to build a random pool of features
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Motorbike Model Car Model

Shared Random Ferns

Figure 6.1: Shared Random Ferns. Each colored square ̥i represents to a specific RF.
The set of RFs are used for the construction of each category-specific classifiers.

that is shared by all the categories. For instance, in the example shown in Fig. 6.1, three

features are shared by the “car” and “motorbike” classes. Then, at runtime, only these

three features have to be evaluated over the input image, and the decision to classify

such an image to belong to one class or the other, depends on the response of category

classifiers built from the common features. Note that the process to calculate the

features only needs to be done once, and is independent from the number of categories.

More specifically, the shared pool of features is built by applying the very same

Random Ferns [64] on the HOGs of a set of training images from multiple classes. Given

these features, we then use a boosting step to learn discriminative object classifiers. The

result of the boosting step is a specific combination of Random Ferns for each category,

that although sharing the same Ferns, a geometric distribution that is particular for

each class. As will be shown in the Experiments section, our detector yields similar

recognition and detection results as some state-of-the-art works when applied to each

of the individual classes. With regards to BRFs –Chapter 4–, the proposed method

increases even more their efficiency by sharing features among classes and by reusing

features in the construction of a large number of weak classifiers. Moreover, a new and

efficient methodology for testing BRFs is provided. It splits the feature computation

from the evaluation of classifiers.
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Figure 6.2: The proposed approach. (a) Training phase. Each object classifier is
trained by separated but sharing the same features –Shared Random Ferns–. For the
given example, car and motorbike detectors are computed via AdaBoost. (b) Testing
phase. Object detection is carried out in two consecutive and efficient steps: feature
computation, that is common for all categories, and classifier evaluation.

6.2 Overview of the Method

The proposed work copes with the efficient detection of multiple object categories by

learning each category-specific classifier independently but sharing the same features

–Shared Random Ferns–. This is exemplified in Fig. 6.2(a). In a first step, the set of

features is computed at random over HOGs. This set represents the common features

that are subsequently used by the boosting algorithm with the aim of building each

object classifier. The algorithm constructs in each iteration, and for each category,

a weak classifier to assemble it into the final object classifier. This weak classifier is

computed by testing all RFs, inside the feature pool, over multiple object locations.

The pair, Fern and location, that best distinguishes positive samples from negative ones

is chosen as a weak classifier. This classifier computation is described through Sec. 6.4.

The result of this procedure is a set of very discriminative and robust object clas-

sifiers that shares the same Random Ferns. This fact leads to an efficient testing of
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diverse detectors given that feature computation is done once. Basically, the detection

phase is performed via two consecutive steps, see Fig. 6.2(b). The first step is the most

expensive process but it is common for all object detectors. It is feature computation

that involves the convolution of the set of RFs over the input images. The second step

consists on evaluating every object classifier given the Ferns outputs.

The remainder of this chapter is organized as follows. The set of random and shared

features is described in Sec. 6.3, whereas the computation of specific classifiers using the

shared features is explained in Sec. 6.4. The computational efficiency and the validation

of the proposed method are given in Sec. 6.5 and Sec. 6.6, respectively. In Sec. 6.7, the

chapter is concluded with a summary and conclusions.

6.3 Shared Random Ferns

The computation of shared features is performed by computing a reduced set of Random

Ferns over HOGs. This set ϑ encodes different image appearances by means of the co-

occurrence of several features outputs. Ferns are computed at random and using a fixed

size –i.e 4 × 4 cells inside the HOG space– in order to guarantee generalization and a

common size for all object categories. In this way, RFs are not specific for an object

class but generic features for multiple categories. This fact motivates the learning of

several classifiers using a compact and shared representation of features that alleviates

the cost of testing multiple classifiers over images.

This feature set consisting of R Random Ferns can be written as:

ϑ = {̥1,̥2, ..,̥R}, (6.1)

where each Fern ̥i is defined by a collection of M binary features, which are computed

over the HOG. Similarly, a Random Fern can be expressed by

̥i = {f1, f2, .., fM}, (6.2)

where fi denotes a random binary feature. Refer to Table 6.1 for the nomenclature.

The impact of the amount of RFs over the detector performance is evaluated in

Sec. 6.6 in terms of detection rates over a public dataset. The number of RFs determines

not only detector performance but also its detection efficiency given that more common

features involves more feature computation.
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̥ Random Fern
f Fern (binary) feature
x Image sample

Hj Boosted classifier for object class j
hj Weak classifier for class j
T Number of weak classifiers
R Number of Random Ferns
M Number of features (f) per Fern
z Fern observation (output) value
Z Dimension of Fern output space
Q Bhattacharyya coefficient
gt Location of Fern t
Cj Object (positive) class j
B Background (negative) class
βj Classifier threshold for classifier j
N Number of training samples
D Distribution of sample weights

Table 6.1: Notation for BRFs using common features.

6.4 Category-specific Classifier

The category-specific classifier is computed using BRFs. Basically, each category clas-

sifier is trained independently using its own set of training data, but sharing the same

features –Random Ferns–. This shared set of features is initially constructed by com-

puting a reduced number of Random Ferns. This set is used recursively for building

discriminative weak classifiers in the boosting phase. Hence, the classifier is constructed

as a combination of weak classifiers where each one is based on one RF, selected from

the feature pool ϑ, with an associated spatial image location.

More formally, the object category classifier Hj(x), for the category j, is computed

to yield the sets of Ferns ̥ and locations g that best discriminate the object category Cj

from the background B. This is done by means of the Real AdaBoost algorithm

described in Sec. 2.3. The idea behind the boosted learning step is to extract the

most discriminative and reliable features and their spatial distributions for classifying

the target class in an iterative and supervised process where each training sample

has a weight corresponding to its classification difficulty. The algorithm updates these

weights on each round. The weights of those samples incorrectly classified are increased

in order to put more effort in their classification in the following iterations.
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Algorithm 6 Object Classifier j.

1: Given a number of weak classifiers T , a shared feature pool ϑ consisting of R Ran-
dom Ferns, and N image samples (x1, y1)...(xn, yn)...(xN , yN ), where yn ∈ {+1,−1}
is the label for object Cj and background classes B, respectively:

2: Initialize the sample weights D1(xi) =
1
N
, where i = 1, 2, .., N .

3: for t = 1 to T do
4: for r = 1 to R do
5: for g ∈ IR2 do
6: For the current distribution of weights Dt, Fern ̥r and image location g,

compute the weak classifier hjr,g.

hjr,g(x) =
1
2 log

(

P (̥r|Cj ,g)+ǫ
P (̥r |B,g)+ǫ

)

7: Compute the Bhattacharyya coefficient Q
8: end for
9: end for

10: Select the weak classifier hj that minimizes the Bhattacharyya coefficient.
11: Update the samples weights.

Dt+1(xn) =
Dt(xn) exp[−ynht(xn)]∑N

n=1
Dt(xn) exp[−ynht(xn)]

n = 1, 2, .., N

12: Aggregate the computed weak classifier hjt to the strong classifier Hj ← hjt .
13: end for
14: Final strong classifier.

Hj(x) = sign
(

∑T
t=1 h

j
t (x)− βj

)

Then, a category-specific classifier, consisting of T weak classifiers, is given by

Hj(x) = sign

(

T
∑

t=1

hjt (x)− βj

)

, (6.3)

where βj is the classifier threshold and hjt is a weak classifier defined by

hjt (x) =
1

2
log

(

P (̥t(x)|Cj , gt) + ǫ

P (̥t(x)|B, gt) + ǫ

)

, (6.4)

being ǫ a smoothing factor. At iteration t, the probabilities P (̥t|Cj , gt) and P (̥t|B, gt)

are computed using the distribution of sample weights D,

P (̥t = z|Cj , gt) =
∑

n:̥t(xn)=z∧yn=+1

Dt(xn) , n = 1, 2, .., N (6.5)

P (̥t = z|B, gt) =
∑

n:̥t(xn)=z∧yn=−1

Dt(xn) , n = 1, 2, .., N (6.6)

where N is the number of training samples, and z = 1, 2, .., Z indicates the Fern output

or observation. The value of Z is determined by 2M .
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Figure 6.3: Category-specific classifiers. Each weak classifier h
Cj

i consists of a specific
Fern ̥i, chosen from the pool ϑ, and a distance gi relative to object center. Each
resulting classifier has a specific geometric and appearance distribution that makes
each one very discriminative.

For each round t, the boosting algorithm seeks the most discriminative weak classi-

fiers by evaluating each RF at every image location. The selection of the weak classifier,

corresponding to one Fern ̥i at specific location gi, is carried out by the classification

power of this weak classifier over the training samples. This is measured by means of

the Bhattachryya coefficient between object and background distributions. Therefore,

the classifier hjt that minimizes the following criterion is selected,

Q = 2
Z
∑

z=1

√

P (̥t = z|Cj , gt)P (̥t = z|B, gt) . (6.7)

Fig. 6.3 depicts some weak classifiers –colored squares– retrieved for the car and

motorbike categories. Pseudocode to compute the object classifiers is shown in Alg. 6.

6.5 Efficiency of Sharing Features

The efficiency of the proposed method lies in the simplicity and efficiency of sharing

Random Ferns in multiple classes. Sharing features allows to decouple the detection

phase into two consecutive steps. While the first one performs feature computation,

the second step evaluates every object classifier. Feature computation involves to test

each RF, inside the feature set, over the input image. The cost of this step can be

formulated as:

O(Nu Nv R M), (6.8)
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where Nu × Nv is the image size, R is the number of RFs, and M is the number of

features per Fern. As we can observe, the computational cost of this step does not

depend neither on the number of categories nor the amount of weak classifiers forming

the object classifier. Furthermore, this process is carried out just once. This is the

main advantage of the proposed method, the reduction of computational cost when

multiple object categories are considered.

On the other hand, the cost of evaluating each object classifier can be expressed by

O(Nu Nv T Kc), (6.9)

being T and Kc the number of weak classifiers and object categories, respectively.

Note also that this step does not involve feature computation. It only evaluates the

weak classifiers given the responses of Random Ferns –the first step–. The object

classification is then computed from the combination of weak classifier outputs. This

proposed detection procedure reduces the expensive cost of evaluating multiple and

feature-independent classifiers, whose cost would be

O(Nu Nv R M T Kc). (6.10)

This cost is significantly larger than our method, and augments drastically with the

number of classes.

6.6 Experiments

In this section, we validate several aspects of the proposed method on public datasets,

and compare its performance to some state-of-the-art works. The datasets we consider

are the well-known UIUC car dataset [1], the TUD motorbike dataset [25] and the

Caltech face dataset [17].

UIUC car dataset [1]. This dataset contains car-sides under difficult imaging con-

ditions such as illumination changes, cluttered backgrounds and mild occlusions. This

dataset has two sets of images for testing. The first one has 170 images containing 200

car instances. The second one has 108 images including 139 cars at different scales.

This dataset has also a set of training images that is formed by 550 positive images

and 500 negative ones. The second test set has been chosen for the experiments as it
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represents a more challenging object recognition problem since images contain cars at

several scales.

TUD motorbike dataset [25]. This dataset consists of 115 images containing 125

motorbike instances under occlusions, several scales and difficult backgrounds. Fur-

thermore, this dataset shows high intra-class variability because the quite different

motorbike models. For training, the Caltech motorbike dataset is used [17]. It has 826

object images and a large number of background samples.

Caltech face dataset [17]. The dataset has 450 images containing frontal faces of a

specific group of people with different lighting, face expressions and backgrounds. For

training, the first 250 images were chosen. The rest are used for testing.

6.6.1 HOG-based Ferns

The proposed method has been tested using Ferns on the HOG and intensity domains,

see Fig. 6.4(a,b). This experiment is performed over the multi-scale car dataset. The

aim of this experiment is to show detector performance with respect to the feature space.

Besides, the classifiers are trained using different weak classifiers sizes –100, 300, 500,

and 1000–, but the same number of Random Ferns. That is, the same pool size. For

this experiment, we consider 10 shared Random Ferns and 7 features per Fern. The

plots show that using HOG-based features instead of intensity-based features results

in better detection rates. In addition, we realize that increasing the number of weak

classifiers the detection performance is also increased. Yet, since the number of features

remains the same, the cost of the algorithm does not increase significantly.

6.6.2 Feature Set Size

Here, classifier performance is evaluated according to the size of the feature pool. The

choice of this parameter has an impact over classification performance. More Ran-

dom Ferns implies increased ability to capture different image appearances but also

more feature computation given that the set of Ferns must be evaluated inside images

exhaustively.

The present evaluation is carried out using the TUD motorbike dataset. For train-

ing, we have used 400 motorbike images from the Caltech motorbike dataset [17].
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Figure 6.4: Detection performance of our method with different training parameters.
(a) HOG-based features with varying sets of weak classifiers. (b) Features based on
pixel intensities –INT–. (c) Performance in terms of the feature set size.

Fig. 6.4(c) shows the detection curves for varying number of Random Ferns. It also

shows that with only 10 shared Random Ferns the classifier achieves remarkable results

comparable to some state-of-the-art methods specifically tailored to single object de-

tection, refer to Table 6.2. In this experiment, the classifier has been trained using the

same number of weak classifiers and features per Fern, 300 and 7, respectively.
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Figure 6.5: Sharing features. Distributions of shared Random Ferns for the construction
of three different category-specific classifiers. Classifiers were trained using a fixed set
of 10 Random Ferns and 1000 weak classifiers. Note that RFs are repeatably used for
constructing the 1000 weak classifiers and in similar proportions for all object categories.

6.6.3 Sharing Features

To illustrate how features are shared by different object categories in order to compute

their corresponding classifiers, Fig. 6.5 shows the distribution of Random Ferns for

the given category-specific classifiers. Each classifier has been learned using the same

parameters, 7 HOG-based features and 1000 weak classifiers. We see that RFs are

repeatably used for constructing the 1000 weak classifiers and in similar proportions

for all categories. This fact shows that RFs are generic and that can be utilized for

the description and classification of multiple categories. Other important fact to stand

out is that RFs are reused to compute different weak classifiers and thus to preserve

the same computational cost. Consequently, feature computation has constant cost,

independent of the number of object categories and weak classifiers.

As commented before, although the object-specific classifiers share the same set

of features, they are highly discriminative since a particular geometric distribution of

features is extracted for each class. This is done by AdaBoost that selects, for each

class, robust and relevant features at specific image locations. This is exemplified in
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(a) (b) (c)

Figure 6.6: Spatial feature distribution. Spatial layout of Random Ferns for different
object categories: faces (a), motorbikes (b) and cars (c). Reddish tones indicate higher
concentrations of classifiers and bluish colors correspond to lower concentrations

Method UIUC Caltech TUD
Cars Faces Motorbikes

Agarwal et al. [1] 39.6% - -
Fergus et al. [17] - 96.4% -
Fritz et al. [25] 87.8% - 81.0%
Mutch et al. [60] 90.6% - -
Shotton et al. [77] - 94.0% -
Mikolajczyk et al. [55] 94.7% - 89.0%
Leibe et al. [43] 95.0% - 87.0%
Lampert et al. [38] 98.6% - -
Leibe et al. [44] - - 92.8%
Gall et al. [26] 98.6% - -
Our Method 97.8% 99.1% 86.7%

Table 6.2: Object detection performance. Our best detection rates together with other
rates provided by some state-of-the-art works. The evaluation indicates Equal Error
Rates –EER–. The proposed method yields competitive results.

Fig. 6.6 where three feature distribution maps are shown, each one corresponding to

a specific object category. Note, for instance, that for the car category features are

mainly concentrated on wheels.

6.6.4 Detection Results

In order to establish a comparison with some recent and successful works, Table 6.2

summarizes our best detection rates and some rates reported by other works. The

proposed method achieves competitive results with the benefit of its computational

efficiency. In spite of the simplicity of the shared features used, the method yields high

detection rates.
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6.7 Summary

We have presented an algorithm for multiple object detection, that makes use of a

common pool of features, computed using Random Ferns over the HOG domain. We

have shown that sharing common features yields an efficient method for the recognition

and localization of multiple object categories, with detection rates similar to current

approaches that compute specific features for each category.

The proposed method computes very discriminative and robust classifiers by learn-

ing each category independently. Nevertheless, and in oder to reduce the inherent cost

of testing multiple classifiers, we present a new methodology where Random Ferns are

first computed and then used to build up specific classifiers. This leads to feature com-

putation that is evaluated only once. The classifier reuses RFs for the construction of

its weak classifiers. This reduces even more the detector cost.

With regards to BRFs, this chapter provides a new method for learning and testing

the object classifier via BRFs. The new approach we present is much more efficient

because a small and shared set of features is utilized to compute a large number of

weak classifiers across classes. This is contrary to our previous BRFs –Chapter 4–,

where each object classifier has its own feature set, and each weak classifier is based on

unique and independent Random Fern.
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Chapter 7

Efficient 3D Object Detection

using Multiple Pose-Specific

Classifiers

In this chapter, we combine the two-step detection strategy using BRFs from Chapter 4

with feature sharing from Chapter 6 to come up with an efficient method for object

localization and 3D pose estimation. In the first step, a pose estimator is evaluated

in the input images in order to estimate potential object locations and poses. These

candidates are then validated, in the second step, by the corresponding pose-specific

classifier. The result is a detection approach that avoids the inherent and expensive

cost of testing the complete set of specific classifiers over the entire image. Further

speedup is achieved by feature sharing. Features are computed only once and are then

used for evaluating the pose estimator and all specific classifiers. The proposed method

has been validated on two public datasets for the problem of detecting of cars under

several views. The results show that the proposed approach yields high detection rates

while keeping efficiency. The results from this chapter have been presented in [91].

7.1 Introduction

The problem of efficiently testing multiple specific classifiers has recently gained popu-

larity for tackling the problem of detecting multiple object categories or specific objects

seen from different viewpoints. In these problems, each object class, or object view,

is commonly considered as a different topic represented by a distinct classifier. As a
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Figure 7.1: Efficient localization and pose estimation in the Savarese car database [72].
Our approach allows localizing cars and estimating their pose despite large inter-class
variations and in about 1 second. Correct detections are depicted by green rectangles,
whereas false positives are indicated by red ones. The ground truth is shown by a blue
rectangle. The circle and car toy indicate the estimated viewpoint.

result, a large number of discriminative and specific classifiers are computed. Although

these classifiers can be learned quite efficiently, testing each of them over an image is

computationally expensive.

In this work we propose an efficient strategy for testing multiple specific classifiers

for object detection. We study the problem more closely on the detection of cars from

multiple views. This category includes challenges such as high inter-class variations,

lighting changes, several car sizes and different aspect ratios of the bounding box. In

order to address all these issues, we use a decoupled approach consisting of (i) a pose

estimator and (ii) a set of pose-specific classifiers. The estimator acts as a filter and

prevents having to evaluate all the specific classifiers at each position. Furthermore,

we use feature sharing for the estimator and all classifiers. Both these characteristics

yield remarkable computational efficiency with high detection rates. Fig. 7.1 depicts

some detection results and the corresponding estimated poses.
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Several strategies have been proposed in the past for this object detection and pose

estimation problem. Some of them mainly rely on (i) features that can be computed

very fast over images, and thus, increase the speed of the sliding window classifier that

is evaluated at multiple scales and locations [64, 90, 98]. Other methods use specific

cascaded classifier structures eg. [82, 98] which allow rejecting background windows at

early stages and hence, also reduce the computational effort. In other words, these

approaches aim for (ii) reducing the search space during the detection phase. This is

also achieved by means of branch and bound techniques [38, 42], using object priors [2]

or splitting the process in two consecutive phases of object estimation and specific

detection [51, 65, 71, 92]. Finally, other works (iii) have proposed to share features

across object classes or views [87, 93, 100].

We propose an efficient method that integrates synergically the strategies reviewed

above. More specifically, our method computes Random Ferns (RFs) [64] over local

histograms of oriented gradients. They are basically Boosted Random Ferns which were

introduced in Chapter 4 for the recognition of specific object categories. In addition,

we use shared Random Ferns –Chapter 6– that are used for the computation of the

two-step detection approach, that is, the pose estimator and the set of pose-specific

classifiers. Unlike other previous works that use Hough-based approaches as object

classifiers [6, 26, 51], we use a novel Hough-RFs for building an efficient and robust

3D pose estimator. This estimator uses the Hough transform to learn and map the

local appearances of objects –encoded by RFs– into probabilistic votes for the object

center. This methodology overcomes previous works which compute rough estimators

or predict the object size first [65, 92].

The resulting method is able to learn and detect objects in a straightforward and

efficient manner. In particular, the estimator and specific classifiers can be learned in

a couple of minutes, while the object detection is performed in about 1 second, using a

non-optimized code based on Matlab. In addition, this efficiency is accompanied with

high detection rate, comparable and even better than existing approaches.

7.2 Overview of the Method

The main ingredients of our approach are (i) a shared feature representation and (ii) an

object pose estimator that limits the search space for (iii) object pose specific classifiers.
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Figure 7.2: Overview of the proposed approach. To detect the 3D pose, given an input
image we initially compute a set of shared RFs –Feature Computation–. We then apply
the pose estimator to generate several object/pose hypotheses which are verified by the
pose-specific classifiers. Non-maximal potential detections are finally filtered out.

Fig. 7.2 depicts an overview of the method, which we describe in detail in the following

sections.

Since features are shared among classifiers, their computation is performed in an

initial step that is pose independent. This allows an efficient computation of both

the pose estimator and the classifiers. For the pose estimation step, each feature is

evaluated over the entire image, and casts probabilistic votes for the object/pose center.

This yields a set of potential hypotheses –clusters within the voting space–, which are

then validated according to a set of specific classifiers. Finally, multiple detections are

removed using non-maxima suppression.

7.3 Feature Computation: Random Ferns

The first key element of our approach are the kind of features we use: the Random

Ferns. They consist of sets of binary features resulting from simple comparisons on the

intensity domain, refer to Sec. 2.1. Yet, and drawing inspiration from [92], we compute

RFs over local histograms of oriented gradients –HOGs–, that is, our binary features are

simple comparisons between two bins of HOG. The co-occurrence of all feature outputs

encodes different image appearances that are used for building the estimator and each

one of the classifiers. More formally, each Random Fern ̥ captures the co-occurrence

ofM binary features, whose outputs determine the Fern observation z. Therefore, each
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Fern maps the image appearances to an Z = 2M -dimensional space, ̥ : x → z where

x is an image sample and z ∈ {1, 2, .., Z}.

In addition, in order to gain in efficiency we share the same RFs among different

classes. This was already proposed in the previous chapter, although as we will show

in the results section, this previous work does not scale properly for a large number of

classifiers since every classifier is independently tested.

7.4 The Pose Estimator

Based on the response of the RFs on an input image, the pose estimator will provide

image regions with a high probability of object/pose. For that, we will need to map

from the feature domain of the RFs to spatial image locations. This is achieved by

means of what we call Hough-RFs.

7.4.1 Hough-RFs

In the spirit of Hough-Forests [26, 51], our Hough-RFs encode the local appearance

captured by RFs and cast probabilistic votes about the possible location of object

poses. Specifically, each Fern output (̥i = z) represents a specific image appearance

that has associated a list of distances dzi where that appearance has occurred. These

distances have been extracted during the learning phase as those ones with higher

occurrence over training samples.

The computation of the Hough-RFs is done by evaluating a fixed set of R RFs over

the training samples for each object view Wj and an additional background class B.

Assuming probability independence among Ferns [64], we define the estimator EWj
as:

EWj
(x) = log

∏R
r=1 P (̥r(x) = z, g|Wj)
∏R
r=1 P (̥r(x) = z, g|B)

=

R
∑

r=1

log
P (̥r(x) = z, g|Wj)

P (̥r(x) = z, g|B)
, (7.1)

where g refers to image locations where the Fern ̥r, with observation z, has occurred.

These locations are always measured from the image center of the object pose j.

The aim is to compute the estimator that maximizes the ratio of probabilities be-

tween the object view and background classes –Eq. 7.1– with the objective of selecting

the most important image appearances and their locations for the current pose. This

is done by selecting the most discriminative locations against the background samples.
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(a) (b)

Figure 7.3: The Hough-RFs estimator. (a) The computation of the estimator is carried
out by selecting the most discriminative appearance locations against the background
category B. Each Fern output (̥r = z) describes a specific image appearance that
has associated a list of distances dzr indicating where this appearance has occurred over
training samples. (b) In runtime, each Fern is evaluated in every image location q to
cast probabilistic votes for diverse image locations according to its output. The result
is a voting space where its maximum values correspond to possible object instances.

Fig. 7.3(a) shows a simple example where discriminative locations for Fern outputs z1

and z2 are chosen. These locations form the lists of distances dz1r and dz2r which are

used to cast probabilistic votes in runtime. These votes are weighted according to their

occurrences over training images,

P (dz,qr ) = log
P (̥r = z, g = q|Wj)

P (̥r = z, g = q|B)
. (7.2)

Once the estimator has been constructed for every object pose, it is evaluated in

runtime as follows: given an input image, a HOG is computed over the whole image for

then to test the R RFs. For each image location q –in the HOG space–, each Fern ̥r

casts votes for different image locations according to its observation z and its voting

list dr. This voting procedure is illustrated in Fig. 7.3(b). The result of evaluating

all RFs is a 3D voting space where their maximum values correspond to object/pose

candidates.

7.4.2 Efficient Pose Estimation

As it was exposed in the previous section, the cost of the estimator depends on the

number of poses given that each RF must cast votes for the different views. In order

to speed up the process, similar to the work of [3], to deal with pose variations, we

propose to evaluate the estimator in two consecutive steps. For each Fern ̥i, the first

step predicts the most likely object pose according to its observation. The second step
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casts votes only for the estimated pose. In this way, the cost of evaluating the estimator

for multiple poses is reduced considerably.

The most likely object pose W r
∗ for a Fern ̥r is computed with

W r
∗ = argmax

j

log
P (̥r(x)|Wj)

P (̥r(x)|B)
, j = 1, 2, .., J (7.3)

where J is the number of poses. Using the definition of conditional probability, the

estimator can be defined as:

E(x) =
R
∑

r=1

log
P (̥r(x)|W

r
∗ )

P (̥r(x)|B)
+

R
∑

r=1

log
P (g|̥r(x),W

r
∗ )

P (g|̥r(x), B)
, (7.4)

where the first part of the equation is the probability ratio of Fern observations, whereas

the second part is the probability of appearance locations given the Fern observations.

In order to reduce the possible locations where a time-consuming pose-specific clas-

sifier –see Sec. 7.5– has to be evaluated, we look for the most remarkable hypotheses.

This is done by filtering the estimator output, E(x) > βe, being βe a sensitivity pa-

rameter. The choice of this parameter is, however, a trade-off between speed of the

approach and an increment of false negatives. For instance, if βe = 0 each pose-specific

classifier is tested on every image position. In this case, the object is not missed but it

implies a high computational cost given that all classifiers are tested. In contrast, for

increasing values of βe we speed up the detection phase but with the risk of filtering

likely object locations. The estimator in this case reduces the search space and may

yield false negatives –missed objects–. The effects of this parameter are evidenced in

more detail in Sec. 7.6.

7.5 The Pose-specific Classifier

Each one of the pose-specific classifiers is built independently using a boosting combi-

nation of RFs –the BRFs proposed in Chapter 4–. Hereby, a classifier is a set of weak

classifiers, where each one of them is based on a Fern selected from the common pool

of RFs. This pool is constructed at random and is shared by all classifiers in order

to reduce the cost of computing a large number of pose-specific features and to reuse

features for constructing different weak classifiers. This idea was used in Chapter 6 to

increase the efficiency of BRFs when multiple classes were considered.
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The specific classifier HWj
(x) is built to find the Ferns ̥r and locations gr that most

discriminate the positive class from the background. The positive class corresponds to

a collection of image samples extracted from the specific object view Wj, whereas the

background images B are used for extracting negative samples. The classifier compu-

tation is done by means of the Real AdaBoost algorithm – Sec. 2.3–, that iteratively

assembles weak classifiers and adapts their weighting values focusing all its effort on

the hard samples, which have been incorrectly classified by previous weak classifiers.

The boosted classifier is then

HWj
(x) =

T
∑

t=1

h
(t)
Wj

(x) > βWj
, (7.5)

where βWj
is its threshold and h

(t)
Wj

is a weak classifier computed by

h
(t)
Wj

(x) =
1

2
log

P (̥t|Wj, gt) + ǫ

P (̥t|B, gt) + ǫ
, (7.6)

where ̥t is the selected RF that is evaluated at fixed location gt, measured from the

image center, and the parameter ǫ is a smoothing factor. At each boosting iteration

t, the probabilities P (̥t|Wj, gt) and P (̥t|B, gt) are computed using a distribution of

weights D over the training samples. This is done as follows,

P (̥t = z|Wj, gt) =
∑

n:̥t(xn)=z
yn=+1

Dt(xn), P (̥t = z|B, gt) =
∑

n:̥t(xn)=z
yn=−1

Dt(xn) (7.7)

being xn and n = 1, 2, .., N the set of training samples. To select the most discriminative

weak classifier at each iteration we use, as other previous works, the Bhattacharyya

coefficient. In this way, the weak classifier h
(t)
Wj

that minimizes this distance is chosen.

In the present work all pose-specific classifiers are learned using the same parame-

ters, that is, 300 weak classifiers and 10 shared RFs. Since they are learned indepen-

dently to extract the most relevant features for each pose, the resulting classifiers are

very discriminative for each pose and focus on the most relevant object parts.

7.6 Experimental Results

We validated the proposed method using two public and recent datasets: the Savarese

car dataset [72] and EPFL car dataset [65]. They are described in more detail following.
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Figure 7.4: Savarese dataset. Car detection using different evaluation approaches.
(a) ROC curves. (b) Recall-Precision curves. We see that pose verification reduces
detection rates because some pose estimations are incorrect, due mainly to confusions
of the true with the symmetric pose pose.

Savarese car dataset [72]. This dataset has multiple views of 10 cars in outdoor

settings. For each car, images under 8 different angles, 2 camera heights and 3 distances

are available. We train and test our detector using two different sets of images, Test 1

and Test 2. Test 1 is made by 320 car images without the largest distance, whereas

Test 2 contains the entire set of 480 images. The first 5 cars of each set are used for

training and the rest are used for testing.

EPFL car dataset [65]. This dataset contains cars under multiple views, light

changes and varying backgrounds. The set of images is formed by images collected

from 20 specific cars rotating on a platform. The first 10 cars are used for learning the

estimator and each one of the pose-specific classifiers. The remaining 10 cars are used

for testing [65]. For this dataset, 32 pose-specific classifiers corresponding to 16 views

and 2 different aspect ratios have been learned.

7.6.1 Savarese car dataset

Detection performance of our approach on this dataset is shown in Fig. 7.4. We depict

the results of just detection –Test 1,2– and detection plus pose estimation –Test 1,2 +

Pose Verif–. Note that for images with the largest distance, Test 2, the detection rates
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Figure 7.5: Savarese dataset. (a,b) Confusion matrices for Test 1 and Test 2.

(a) (b)

Figure 7.6: Savarese dataset. Comparison against state of the art. (a) ROC curves
for our method and some recent works. (b) The comparison is done using the Recall-
Precision plots. (c) Comparison in terms of the diagonal values of the confusion matrix.

are lightly reduced. This is because this test contains cars at multiple scales, including

the largest distance. Fig. 7.5(b,c) show the confusion matrix both for Test 1 and Test 2,

respectively. Observe that only a small fraction of detections are incorrect, and usually

correspond to confusions only of symmetry.

The ROC curves of Fig. 7.6(a) and the Recall-Precision plots of Fig. 7.6(b) compare
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Figure 7.7: Savarese dataset. (a) Comparison with other methods in terms of the
diagonal values of the confusion matrix. (b) Detection according to the sensitivity
parameter βe.
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Figure 7.8: Savarese dataset. Efficiency in terms of the sensitivity parameter βe. (a) De-
tection times. (b) Computational reduction of the proposed approach.

our approach with state of the art methods [27, 33, 46, 72, 83, 84]. In both cases, our

method outperforms the detection rates of other approaches. Fig. 7.7(a) compares the

methods in terms of pose classification. Note again that the proposed method yields

better results. A few sample results are shown in Fig. 7.1.

Fig. 7.8(a), depicts the detection times of our approach for different values of the
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Figure 7.9: EPFL dataset. Detection and efficiency. (a) Recall-Precision plots of the
proposed method and the state-of-the-art [65]. (b) Detection times for several values
of the parameter βe.

sensitive parameter βe. We also show an additional method that would test all the

pose-specific classifiers –Indep. Classifiers–. It can be seen that the efficiency of our

method is increased for larger magnitudes of βe, see Fig. 7.8(b). However, this is at

expense of a reduction in the recall rate, because the estimator misses correct object

hypotheses. This can be observed at Fig. 7.7(b).

7.6.2 EPFL car dataset

Detection rates for this dataset using several values of βe are shown in Fig. 7.9(a). Also

the performance curve reported by [65] is depicted for comparison purposes. We see

that our method consistently outperforms this work. On the other hand, Fig. 7.9(b)

plots the detection times, and shows the efficiency of our method by reducing the time

of evaluating the set of pose-specific classifiers.

To measure the viewpoint estimation accuracy of our approach on this dataset we

build again the confusion matrix –Fig. 7.10(a)–. We can see that most estimations are

correct, showing a diagonal line. This performance is similar to the results reported

in [65], where most of incorrect estimations appear on symmetric points of view. This

is because there is a strong similarity among these views. This issue is represented in
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Figure 7.10: EPFL dataset. Car pose estimation. (a) Confusion matrix. Incorrect
pose estimations occur mainly at opposite views because of their strong similarities.
(b) Distribution of error for each pose bin.

Fig. 7.10(b), where the distribution of error among pose bins is shown. Most of pose

estimations are correct –i.e., they belong to bin 0–, but a few of them appear at opposite

and adjacent pose bins. Fig. 7.11 shows some sample detections on this database.

7.7 Summary

In this chapter we introduced an efficient strategy to test multiple classifiers with a

decoupled approach consisting of a pose estimator and a set of pose-specific classifiers.

This method has reported high detection rates and efficiency for the problem of de-

tecting cars from multiple vantage points. The estimator filters out image locations to

yield potential candidates where specific classifiers are then evaluated.

To increase efficiency, we propose to compute all the specific classifiers and the

estimator using a reduced set of features –Random Ferns–. This allows to reduce the

cost of evaluating a large number of features and to decompose the detection process

into two stages. The first one tests the RFs over the input image, whereas the second

one computes the estimator and the corresponding specific classifier. The benefit is

that feature computation is independent of the number of classifiers.
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7.7 Summary

Figure 7.11: EPFL dataset. Sample Results. Correct detections are depicted by green
rectangles, whereas false positives are indicated by red ones. The ground truth is shown
by a blue rectangle. The circle located at top and left indicates the estimated viewpoint.

With respect to the ideas presented in the previous chapters in this dissertation, this

work integrates previous ideas for the problem of detecting 3D objects in an efficient

way. In detail, we use a two-step detection strategy that combines BRFs –Chapter 4–

and feature sharing –Chapter 6– to compute a pose estimator and a set of pose-specific

classifiers.
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Chapter 8

Conclusions and Future Work

This chapter provides the conclusions and contributions of this dissertation. The con-

clusions, as well as the future work, are organized by chapters.

• Chapter 2. This chapter presented some computer vision techniques and al-

gorithms for the computation of efficient features and robust object classifiers.

These techniques have been studied and used through this dissertation to build

novel approaches for object detection in challenging conditions. This chapter, in

summary, gave the background for the following chapters.

• Chapter 3. In this chapter, a novel method for object detection under in-

plane rotations was proposed. This method is based on Haar-like features for

fast feature computation. However, and in contrast to other works, the method

integrates the steerable filters property to steer efficiently a set of Haar-based

features. Besides, an estimator that predicts locally the object orientation in

images was also introduced. This particular combination of ideas resulted in

an efficient and robust approach that allows to detect specific objects using a

more representative set of features. The results of this chapter were published

in [95, 96, 97].

Future work. As the orientation estimator was based on a fixed –rectangular–

support region, the method is sensitive to changes in object size. This estimator

is also conditioned to global object statistics, such as, the mode on the distribu-

tion of oriented gradients. This limits the ability of the estimator for predicting
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correctly the object orientation. Therefore, a feasible line of research is to create

a new and more sophisticated estimator –i.e, based on the Hough transform–,

where local features may cast probabilistic votes about the object center and its

orientation. This methodology would allow detecting objects and computing their

orientations from local estimations using a voting space.

• Chapter 4. In this chapter, the Boosted Random Ferns –BRFs– were proposed

to compute efficiently and robustly object classifiers that in difficult imaging con-

ditions achieve remarkable detection rates. In comparison with original Random

Ferns, the proposed method computes, using AdaBoost, the most robust and dis-

criminative features on local histograms of oriented gradients -HOGs- in order

to increase the robustness of the method against lighting changes and intra-class

variations. This chapter was the bulk of [92, 94]. Furthermore, BRFs are at the

base of the following chapters. In Chapter 5, for instance, BRFs were used to

detect objects under planar rotations, and Chapter 6 proposed BRFs to compute

multiple object classifiers.

Future work. We are considering an online version of BRFs for object detection

and tracking in videos. The idea is to compute an object classifier that is updated

and improved during the image sequence by tracking and detecting the object, and

by bootstrapping the classifier [28, 29, 37]. This idea would be of great interest for

robotics applications, automatic object modeling, human-robot interfaces, etc.

Also, more recent and sophisticated boosting algorithms could be assessed and

used with the aim of improving the resulting object classifier [4, 21, 100, 82].

• Chapter 5. An efficient approach to cope with the detection of object cate-

gories that might have rotations in the image plane was proposed in this chapter.

Particularly, a two-step detection approach, consisting of an object estimator

and classifier, was presented to reduce the computational cost of the detector.

This method showed reducing considerably the search space during the detection

phase using the object estimator, while kept high detection rates. Both the es-

timator and classifier were computed using BRFs. This chapter also presented a

new database specially designed to evaluate the proposed method. This database

contains motorbikes with in-plane rotations. The method reported remarkable
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detection rates on this dataset with low rates of false positives. This work was

presented in [92].

Future work. Similarly to the estimator presented in Chapter 3, performance

of the estimator is conditioned to the object size and its aspect ratio. This is

because the estimator was computed using a rectangular and fixed window. This

is an important drawback when we consider object categories with larger size

variations –i.e, cars– because the choice of the window size becomes critical. In

consequence, a potential work is to develop an orientation estimator that considers

changes in size. In Chapter 7 was proposed an estimator based on the Hough

transform that overcame this problem. However, this idea would require the

computation of rotation-invariant features. That is, to create a new type of

Random Ferns invariant to orientation changes. Shared features, proposed in

Chapter 6 to compute BRFs, are also future work.

• Chapter 6. In this chapter, BRFs were used for the multi-object detection prob-

lem. More precisely, and aiming efficiency in the detection phase, we proposed

to share the same set of features –RFs– to compute each one of the object clas-

sifiers. This speeded up detecting multiple object in images since that feature

computation was common for all object detectors, and was done only once. The

experimental evaluation showed that with a reduced set of RFs, it is possible

to learn different object classifiers and achieve, at the same time, high detection

rates in some standard databases. The results of this chapter were published

originally in [93], and the idea was used in following articles [91, 94].

Future work. We have seen that a shared and random set of feature allows to

compute multiple classifiers. However, we are considering the use of a learning

step to construct that feature set. This probably would increase recognition rates

since that a more compact and useful feature set might be computed. This also

would remove the randomness of our method. Another potential future work

is to augment the efficiency of the method by reducing the number of classifier

evaluations, given that each classifier is tested by separated. To this end, the

JointBoosting algorithm [87] could be a reference work to share not only features

but also weak classifiers among object categories.
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• Chapter 7. This chapter addressed the multi-view object detection using effi-

cient and robust techniques. The proposed method combines sinergically BRFs,

sharing features and a two-step detection approach. In contrast to Chapter 6,

where all classifiers are tested by separated, a novel pose estimator is presented in

this chapter to avoid testing the set of pose-specific classifiers individually. This

estimator –Hough-RFs– is efficient and robust to changes in object size, contrary

to estimator introduced in Chapter 5. The method showed experimentally to be

fast and achieved high detection rates on some popular 3D object datasets. This

work was presented in [91].

Future work. Although this work was focused for the detection of objects from

multiple views, we think that it might be extended for multi-view and multi-object

detection. However, there are issues that should be considered before, such as,

the voting space given by the estimator grows proportionally to the amount of

views and objects. A feasible line of research is the computation of hierarchies

from object parts [20, 63]. This would allow to transfer information among views

and object categories, and would yield a compact and reduced representation

with which to describe multiple objects [35].
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