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En realidad no sabemos nada, pues la verdad yace en lo profundo.

Demócrito de Abdera

(...) ¿crees que los que están aśı han visto otra cosa de śı mismos o

de sus compañeros sino las sombras proyectadas por el fuego sobre

la parte de la caverna que está frente a ellos? (...)

–Examina, pues –dije–, qué pasaŕıa si fueran liberados de sus

cadenas y curados de su ignorancia, y si, conforme a la naturaleza,

les ocurriera lo siguiente. Cuando uno de ellos fuera desatado y

obligado a levantarse súbitamente y a volver el cuello y a andar

y a mirar a la luz, y cuando, al hacer todo esto, sintiera dolor y,

por quedarse deslumbrado, no fuera capaz de ver aquellos objetos

cuyas sombras véıa antes, ¿qué crees que contestaŕıa si le dijera

alguien que antes no véıa más que sombras inanes y que es ahora

cuando, hallándose más cerca de la realidad y vuelto de cara a

objetos más reales, goza de una visión más verdadera, y si fuera

mostrándole los objetos que pasan y obligándole a contestar a

sus preguntas acerca de qué es cada uno de ellos? ¿No crees que

estaŕıa perplejo y que lo que antes hab́ıa contemplado le pareceŕıa

más verdadero que lo que entonces se le mostraba?.

Platón, La República, Libro VII
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traveśıas por los Pirineos.

Agradezco a dos personas en particular por recordarme continuamente de donde

procedo; una es Guadalupe, que ya se encuentra en el sur saboreando el perfumado

aire de Granada, y la otra es Paco, un ibérico que cada vez se aleja más hacia el
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Chapter 1

Introduction

Since ancient times some people have been interested in the world where they live

and its environment. However, the unlimited human curiosity does not stop here,

and goes beyond to the asymptotic limits of the universe. Questions about kinemat-

ics and dynamics of bodies, i.e. questions about motion, lead us to crucial responses

dressed in consistent scientific theories. In this sense, gravitation has always been

an special topic of study: from the physical philosophy of Aristotle to the free falling

experiments of Galileo; from the Newton’s law of universal gravitation to the Ein-

stein’s theory of general relativity. At the end of XVIII century, the mathematician

physicist Pierre Simon Laplace and the cleric John Michell were influenced by the

scientific ideas of Newton concerning the gravitation and light built by corpuscles.

They were considering how gravitation would affect light, and if it would be possible

that existed a star so massive and dense that light could not escape from its surface.

Effectively, for a spherical star of fixed mass exists a minimum radius that acts as a

frontier. For a values of radius lower than the minimum radius nothing can escape

from the gravitational force at the star surface even the light. This star is named

dark star. One century later, Einstein announced his theory of relativity changing

our perception of the nature of space and time. A few years later, Schwarzschild

found an intriguing solution to the Einstein’s equations of general relativity. For

a spherically symmetric body of fixed mass, neither with angular momentum nor

electric charge, in vacuum, there exists a minimum radius known since then as

Schwarzschild radius under which the body would collapse gravitationally to a

space-time singularity. This object was called by John Wheeler, somewhat joking,

black hole, nevertheless the astronomers have shown that such objects could exist in

1



2 Chapter 1. Introduction

our universe. When an extremely massive compact object gravitationally collapses

it could form a neutron star, however if it reaches the Chandrasehkar’s limit nothing

can stop the collapse and it will form a black hole. Another interesting scenario is

the string theory framework, more concretely the AdS/CFT correspondence, where

black holes are viewed as thermal states of a conformal field theory.

Nevertheless this thesis is basically founded in the semi-classical theory of black

holes. It sheds some light over problems like the information loss or thermodynam-

ical aspects of NS5 and LST black holes that although being constructed in string

theory they will be studied using semi-classical methods. What we call semi-classical

approach is: the background space-time is described by the Einstein’s theory of gen-

eral relativity, whereas the content of matter fields will be described by quantum field

theory. Looking at the Einstein’s equation of gravitation without the cosmological

term

Rµν −
1

2
Rgµν = 8πGTµν , (1.1)

on the left hand side it is seen the background geometry described by the general

metric gµν , the Ricci tensor Rµν and the scalar curvature R; while on the right side

one sees the energy matter content included in the energy-momentum tensor Tµν .

A black hole is a classical solution of the equations of motion (1.1) in which there

is a region of space-time that is causally disconnected from asymptotic infinity [1].

If we consider a spherically symmetric, non-rotating and uncharged distribution of

matter collapsing under self-gravitation, when its radius is lower than the critical

Schwarzschild radius the collapse cannot be stopped. The final result will be the

matter ending up in an infinite density singular point, while the background metric

will be the Schwarzschild metric,

ds2 = −
(
1− 2GM

rc2

)
dt2 +

1

1− 2GM
rc2

dr2 + r2dΩ2
2 , (1.2)

and M is the black hole mass. The event horizon radius is r0 = 2GM . Hereafter

we adopt the Planck units convention: ~ = c = G = kB = 1, except in some cases

where we will restore some units for convenience. The Schwarzschild solution is the

unique spherically symmetric solution of the vacuum Einstein’s equations (Rµν = 0)

[2]. The singularity theorems of Hawking and Penrose [3, 4] guarantee the existence

of singularities once the collapse of a body, not necessarily spherical, reaches a

certain point. Geodesic incompleteness, i.e. a geodesic that cannot be extended

within the manifold but ends at a finite value of the affine parameter, lead us to the

singularity hidden behind a trapped surface, something like a no return barrier. The
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cosmic censorship conjecture preserves us to observe naked singularities formed in a

gravitational collapse from generic initially non-singular state in an asymptotically

flat space-time obeying the dominant energy condition. Thus the singularity of a

black hole will be hidden behind a null-like hypersurface causally disconnected from

the out space of the black hole called the event horizon. All the relevant physics of

black holes take place on the event horizon, consequently all the work developed in

this thesis is concerned with the event horizon of the studied black holes. For a deep

technical study about the above topics of classical black holes we refer the readers to

[1] and [5]. Another important characteristic of black holes is the no hair theorem

that states: four-dimensional stationary, asymptotically flat, black hole solutions

coupled to electromagnetic fields are fully characterized by three parameters, i.e.

mass, angular momentum and electric charge.

In the seventies, Bekenstein stated that black holes have entropy and this is

proportional to the area of the event horizon [6],

SBH =
A

4G
. (1.3)

The second law of thermodynamics states that the entropy of the Universe never

decreases. However one could imagine a quantity of gas around a black hole, which

has a certain entropy, falling towards the black hole. An observer only would see

the gas outside the black hole, then only accounts for the entropy of this gas that it

is vanishing from the view of the external observer. In order to save the second law,

Bekenstein associated an entropy to the black hole proportional to its surface area.

Furthermore, one observes that the surface area of a black hole never decreases, that

is the area theorem. Therefore if two black holes merge, the area of the final black

hole will be equal or greater than the sum of the area of the two initial black holes.

This behavior is reminiscent of the second law of thermodynamics applied to the

black hole area. Eventually it is fulfilled the generalized second law, which states

that the sum of the entropy of the black hole plus the matter surrounding never

decreases,
d

dt
(SBH + Smatter) ≥ 0 . (1.4)

One can establish a direct relation between the laws of thermodynamics and the

mechanics laws of black holes through the relations [7],

E ↔M , S ↔ A

4G
, T ↔ κ

2π
, (1.5)

where A is the event horizon area, κ is the surface gravity of the black hole and

E, S, T are the usual thermodynamical variables respectively energy, entropy and
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temperature. The first law of black hole mechanics can be identified with the first

thermodynamics law,

dM =
κ

8π
dA+Work terms � dE = TdS − PdV . (1.6)

However, after the work of Bekenstein, Hawking found that actually one can speak

about the thermodynamics of black holes. In [8] Hawking found that black holes

radiate a thermal spectrum of particles, since then called Hawking radiation, at

a temperature TH = ~κ
2π
. However, this result shows that the temperature of a

black hole is inversely proportional to its mass, having thus a negative specific heat.

Therefore when a black hole radiates it loses its mass, it evaporates and eventually

disappears, and this fact will lead us to the information loss problem.

Following an heuristic picture, Hawking radiation is produced by vacuum quan-

tum fluctuations around the black hole where the gravitational field is strong. For

black holes of large masses the curvature invariants are sufficiently small, hence

one can work in a semi-classical regime where a theory of quantum gravity is not

needed. Moreover, due to the no-hair theorem one can only know three charge pa-

rameters as mentioned above, thus all physics will be independent of the details of

the initial configuration of matter that will forms the black hole. If the black hole

completely evaporates away with a thermal spectrum, the final state of the radiation

cannot have any information of the initial matter state. This violates the princi-

ple of information conservation, which it is fulfilled both in classical and quantum

mechanics. In classical mechanics this principle is embodied in Liouville’s theorem

on the conservation of phase space volume. In quantum mechanics the principle

of information conservation is expressed as the unitarity of the S-matrix. We have

seen that it is not the case for the black hole evaporation, where the final state

will not be related in a one-to-one to the initial state, thus violating the unitarity

of the time evolution operator. Furthermore, the final state cannot be entangled if

the black hole has completely evaporated. Initially the outgoing particle created by

the quantum fluctuations was in a mixed state with the ingoing particle, and the

outgoing radiation was entangled with the ingoing particles. Therefore, the final

system, after the evaporation, will be described not by a pure quantum state but

by a mixed state. There are a few alternatives in order to avoid this situation. One

of them is the existence of a remnant of Planck size to which the outgoing radiation

would be entangled. However the entanglement entropy is larger than the black hole
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entropy, which is really a huge number 1, thus the number of possible microstates of

the remnant goes to infinity as the mass of the initial black hole increases. Another

alternative, proposed by Hawking, is that black holes completely evaporate and the

initial pure state evolves to a final mixed state in a theory of quantum gravity. In

this case the description of the states is in terms of density matrices. Nevertheless

this approach did not convince the quantum physicists community [9], due to the

violation of quantum unitarity. It has been argued that the Hawking radiation carry

out somehow the information of the collapsing matter, so that the black hole could

completely evaporate and the process would not violate the unitarity.

Since then a lot of work has been done in order to solve the information paradox.

A good candidate is string theory, more concretely the holographic conjecture and

its AdS/CFT realization [10]. For example, counting microstates of the black hole in

[11] the authors obtained a microscopic derivation of black hole entropy. For a good

reviews on black holes in string theory see for example [12, 13, 14, 15]. Nevertheless,

as we have mentioned above, in this thesis we will focus on semi-classical methods

that enable us to obtain non-thermal spectra for the vast majority of black holes.

This fact is due to taking into account the back-reaction of the metric and imposing

energy conservation when the black hole radiates particles. Specifically, we have

studied NS5 and Little String Theory (LST) black holes. We have calculated the

Hawking radiation for both models, obtaining a non-thermal spectrum for NS5,

whereas a purely thermal spectrum for LST.

1Taking into account the expression of the entropy using statistical mechanics S = k logΩ,

where Ω is the number of microstates accessible to the macroscopic system, in this case a black

hole of area A. For a black hole of solar mass one finds 1010
78

states.
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Chapter 2

Semi-classical emission of Black

Holes

Despite the absence of a complete theory of quantum gravity, one may hope to be

able to say something concerning the influence of the gravitational field on quantum

phenomena, for example the radiation emission carried out by black holes. One can

study the quantum aspects of gravity in which the gravitational field is retained

as a classical background, adopting the Einstein’s general theory of relativity as a

description of gravity, whereas matter fields are quantized in the usual way.

The Planck scale: Planck length lP =
√

G~
c3

≈ 10−35m and Planck time tP =√
G~
c5

≈ 10−44s; establishes the frontier at which a full theory of quantum gravity is

necessary. Unlike the QED coupling constant e2

~c the Planck length has dimensions,

hence the effects become significant when the length and time scales of quantum

processes of interest fall below the Planck scale. Thus the higher orders of pertur-

bation theory become comparable with the lowest order. Nevertheless, when the

distances and times involved are much larger than the Planck scale, the quantum

effects of the gravitational field will be negligible, and a semi-classical theory ap-

pears to be valid. However, according to the equivalence principle all matter and

energy, included the gravitational energy, couple equally strongly to gravity, thus

the graviton is also subjected to an external gravitational field as could be a pho-

ton. Therefore quantum gravity will enter in a non-trivial way at all scales whenever

interesting quantum field effects occur.

7
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It may still be possible to work with a semi-classical approach. In the same

way that in classical relativity one studies the propagation of gravitational waves in

curved space-time, one can consider the graviton field as a linearized perturbation

on the background space-time: gµν = g
(0)
µν + ĝµν . The contribution of the dilaton

to the left-hand side of Einstein’s equations, can be casted in a form that might be

included along with all the other quantum fields in the right-hand side of Einstein’s

equations, being part of the matter rather than the geometry.

On the other hand, the fact that the gravitational constant G has units of length

square gives rise to a non-renormalizable theory of gravitation. hence the quanti-

zation of gravitational field has not been already accomplished. Nevertheless, one

can truncate the expansion of the semi-classical theory (classical gravity plus quan-

tum matter fields) at one-loop level for example. In this way, the finite number of

divergences can be removed by renormalization of a finite number of physical quanti-

ties, thus the truncated theory could be considered renormalizable. Since important

gravitational effects occur in quantum field modes for which the wavelength is com-

parable with some characteristic length scale of the background space-time, only in

the vicinity of the microscopic black holes or in the early epochs of the Big Bang we

can expect such gravitational effects. Otherwise, in the rest of the phenomenology

one can study quantum field theory in curved space-time, i.e. in a semi-classical

way. The fundamental Hawking’s discovery of thermal emission by black holes [8]

is a clear example of how gravity, quantum field theory and thermodynamics are

closely interwoven. Henceforth all the work developed in this thesis gravitates in

some way around such discovery.

We will see how curved space-time can create particles, henceforth we will not

ever consider particle as a fundamental fixed concept, otherwise it might be con-

sidered as an observer-dependent object. For this study we have followed the notes

in [16]. We consider space-time to be a C∞ n-dimensional, globally hyperbolic,

pseudo-Riemannian manifold [5]. We write the background metric gµν associated

with the line element as

ds2 = gµνdx
µdxν ; µ, ν = 0, 1, ..., (n− 1) , (2.1)

where xµ, xν are the coordinates. We define the determinant as

g ≡| detgµν | . (2.2)

Now we want to consider the quantization of a field in the classical curved space-time
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defined by (2.1). The action is

S =

∫
L(x)dnx . (2.3)

We will consider henceforth the quantization of a scalar field φ(x), thus the La-

grangian density will be

L(x) = 1

2

√
−g
(
gµν(x)∂µφ(x)∂νφ(x)− [m2 + ξR(x)]φ2(x)

)
, (2.4)

where m is the mass of the scalar field and R(x) is the Ricci scalar curvature.

Depending on the value of ξ we can consider two relevant cases: the conformally

coupled case with ξ = (n−2)
4(n−1)

and the minimally coupled case with ξ = 0; we will

work in the minimally coupled regime. Taking the variation of the action (2.3) with

respect to the scalar field φ(x) equal to zero, one obtains the scalar field equation(
�+m2

)
φ(x) = 0 , (2.5)

where� is the D’Alembertian operator in curve space-time defined as� ≡ gµν∇µ∇νφ =
1√
−g∂µ (

√
−ggµν∂νφ). See Appendix A for a discussion on notations and conventions.

The scalar product between two solutions is defined as

(φ1, φ2) = −i
∫
Σ

[φ1(x)∇µφ
∗
2(x)− φ∗

2(x)∇µφ1(x)]
√
−g dΣµ (2.6)

with ∇µ ≡ ∂µ for a scalar field; dΣµ = nµdΣ is the area element for a Cauchy

surface Σ in the globally hyperbolic space-time, with nµ a future directed unit

vector orthogonal to the space-like hypersurface. The value of the scalar product is

independent of the Σ, see [5]. There exists a complete set of mode solutions ui(x)

of (2.5) which are orthonormal in (2.6),

(ui, uj) = δij , (u∗i , u
∗
j) = −δij , (ui, u

∗
j) = 0 . (2.7)

Then the scalar field φ can be expanded in terms of this modes,

φ(x) =
∑
i

[aiui(x) + a†iu
∗
i (x)] . (2.8)

The theory is covariantly quantized invoking the commutations relations

[ai, a
†
j] = δij , [ai, aj] = [a†i , a

†
j] = 0 , (2.9)
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where we must identify ai and a
†
i with the annihilation and creation operators re-

spectively. The vacuum state corresponding to this modes should be constructed

through

ai|0〉 = 0 , ∀i , (2.10)

where |0〉 is defined as the vacuum state. However, we bump into an ambiguity

crucial for the creation of particles by curved spaces. In curved space-times the

Poincaré group is no longer a symmetry group of the space-time, thus there will

be no Killing vectors at all with which to define positive frequency modes. In

Minkowski flat space-time there is a natural set of modes defined in the natural

rectangular coordinate system in which the vacuum is invariant. These coordinates

are associated with the Poincaré group, the action of which leaves the Minkowski

line element unchanged. The modes, in Minkowski space-time, are eigenfunctions

of the Killing vector ∂/∂t with eigenvalues −iω for ω > 0. In this way we have a

well-definite positive frequency modes, whereas this is not the case for curved space-

times. If we consider, for example, the formation of a black hole by the gravitational

collapse of an amount of matter, e.g. a star; the metric is time dependent during

the collapse. Therefore a mode solution that was purely positive frequency in the

null past infinity of the black hole, will be partly negative when reaches the null

future infinity. Near the event horizon of the black hole the mode is very blue

shifted, there will be a mixing of frequencies that is independent of the details of

the collapse in the limit of late times, it depends only on the surface gravity, κ,

that measures the strength of the gravitational field on the horizon. Eventually,

the mixing of positive and negative frequencies leads to particle creation. So that

it does not exist a privileged system of coordinates in which the field φ can be

decomposed into natural frequency modes. Therefore, one can consider a second

complete orthonormal set of modes ūj(x) in which the field φ is expanded

φ(x) =
∑
j

[bjūj(x) + b†jū
∗
j(x)] , (2.11)

bj and b†j will be annihilation and creation operators respectively in the decom-

position of the scalar field into the new modes, which also fulfill the quantization

rules

[bi, b
†
j] = δij , [bi, bj] = [b†i , b

†
j] = 0 . (2.12)

Moreover this decomposition defines a new vacuum state |0̄〉

bj|0̄〉 = 0 , ∀j , (2.13)
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and a new Fock space.

The new modes can be expanded in terms of the old ones

ūj =
∑
i

(αjiui + βjiu
∗
i ) . (2.14)

Conversely,

ui =
∑
j

(α∗
jiūj − βjiū

∗
j) . (2.15)

These are the Bogoliubov transformations and the matrices αij and βij are the

Bogoliubov coefficients that can be evaluated, taking into account the definition of

scalar product, as

αij = (ūi, uj) , βij = −(ūi, u
∗
j) . (2.16)

Furthermore, one can expand the old annihilation-creation operators in terms of the

new operators, equating (2.8) with (2.11) and making use of (2.14), (2.15) and (2.7),

ai =
∑
j

(αjibj + β∗
jib

†
j) ,

a†i =
∑
j

(βjibj + α∗
jib

†
j) , (2.17)

conversely,

bj =
∑
i

(α∗
jiai − β∗

jia
†
i ) ,

b†j =
∑
i

(αjia
†
i − βjiai) . (2.18)

Two properties are accomplished by the Bogoliubov coefficients∑
k

(αikα
∗
jk − βikβ

∗
jk) = δij , (2.19)

∑
k

(αikβjk − βikαjk) = 0 . (2.20)

From (2.17) it follows that the two Fock spaces defined by the modes ui and ūj are

different as long as βji 6= 0, for example: ai|0̄〉 =
∑

j β
∗
ji|1̄j〉 6= 0. Therefore, the

expectation value of the number operator,

Ni = a†iai , (2.21)
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for the number of ui mode particles in the vacuum state defined by the ūj modes,

i.e. |0̄〉, is

〈0̄|Ni|0̄〉 = 〈0̄|a†iai|0̄〉
=

∑
j

〈0̄|βjiβ∗
jibjb

†
j|0̄〉

=
∑
j

|βji|2 , (2.22)

where we have taken into account the commutations relations (2.12). Thus the

vacuum of the ūj modes contains
∑

j|βji|2 particles 1. Therefore, if any βji 6= 0,

the ūi will contain a mixture of positive uj and negative u∗j frequency modes, and

particles will be present.

As a conclusion, a curved space-time creates particle. In terms of field theory

one can understand that the stress-energy tensor on the right of the Einstein’s

equations, which causes a strong gravitational field, is the source of the new created

particles. But not only in curved space-time we can detect the creation of particles.

In Minkowski flat space-time an accelerating observer in a vacuum state observes a

thermal spectrum of particles, see [17]. The idea is that observers with different view

about positive and negative frequency modes will disagree on the particle content

of a given state.

2.1 Hawking radiation

Hawking found in [8] that a thermal flux of particles is emitted by the black holes

when one combines quantum field theory with classical gravity. He described the

background space-time geometry using the Einstein’s general relativity, whereas he

treated the content matter as a quantum field. During the gravitational collapse

to a black hole the space-time is not stationary, thus we expect particle formation.

The infinite time dilation at the event horizon involves that the Hawking radiation

be independent of the detailed collapse. Next we will briefly develop the Hawking

calculation following the notes in [18]. For a Schwarzschild space-time one solves the

Klein-Gordon equation �φ = 0 corresponding to a scalar massless field, which can

1We could also consider the continuum limit simply changing the sum over j by an integral

onto energy:
∑

j →
∫ ω

0
dω′



2.1. Hawking radiation 13

Figure 2.1: Penrose diagram of a spherical collapsing body. A null ray γ is traced back

from the future null infinity I+.

be decomposed into an stationary term, a radial part and the angular part through

the spherical harmonics

φ =
(
Ae−iωt + A∗eiωt

)
R(r)Ylm(θ, ϕ) . (2.23)

A positive frequency outgoing mode solution at the future null infinity I+ can be

written as

φω ∼ e−iωu . (2.24)

Defining the null coordinates

v = t+ r∗ , u = t− r∗ , (2.25)

where r∗ is the tortoise coordinate, v is the advanced time coordinate (or ingoing

coordinate) and u is the retarded time coordinate (or outgoing coordinate), one can

see that the outgoing mode (2.23) is defined by the outgoing coordinate parameter

at a frequency ω. As Hawking proposed in [8], one can trace a null ray γ back in

time from I+, which is the particle’s world-line in optical approximation, see Figure

2.1. This approximation will be justified since near the event horizon at late times

the mode φ is blue-shifted. The ray γ that reach I+ later is propagating more close

to the horizon. Hence one can define the null geodesic generator γH of the event
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Figure 2.2: Parallel transport of the unitary vectors n and l through the future event

horizon.

horizon H+ as the ray γ at t→ ∞. Any ray γ is specified giving its affine distance

to γH along an ingoing null geodesic through H+, whose affine parameter will be

the Kruskal coordinate, thereby U = −ε. Then, taking into account the definition

of the Kruskal coordinates

U = −e−κu , V = eκv , (2.26)

near horizon one obtains

u = − log ε

κ
, (2.27)

and

φω ∼ exp

(
iω

κ
log ε

)
, (2.28)

for the outgoing mode. Therefore it is possible to find the outgoing mode φω at

the past null infinity I− by parallel transporting two defined unitary vectors n and

l along the γH , see figures 2.2 and 2.3. The vector l is defined as the null vector

tangent to the horizon, whereas n is defined as the future-directed null vector which

is directed radially inward and normalized to l · n = −1. The continuation of γH

gets I− at v = 0, whereas the continuation of the ray γ gets I− along an outgoing

null geodesic on I− at the affine distance parameter v = −ε. It is pointed out that
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Figure 2.3: Parallel transport of the unitary vectors n and l through the ingoing null

geodesic.

an ingoing null ray starting at I− with v > 0 never reaches I+ since it crosses the

event horizon H+. Thus the outgoing mode on I− is

φω(v) ∼

{
0 v > 0

exp
(
iω
κ
log(−v)

)
v < 0 .

(2.29)

By Fourier transforming

φ̄ω =

∫ ∞

−∞
eiω

′vφω(v)dv , (2.30)

one obtains the following relation demonstrated in [18]

φ̄ω(−ω′) = −e−
πω
κ φ̄ω(ω

′) , ω′ > 0 . (2.31)

Eventually, a positive definite frequency mode on I+ becomes a mixed positive and

negative frequency mode on I−. Thus identifying the Bogoliubov coefficients as

αωω′ = φ̄ω(ω
′)

βωω′ = φ̄ω(−ω′) , (2.32)

it is accomplished the following relation between the Bogoliubov coefficients

βij = −e−
πω
κ αij . (2.33)
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Now taking into account the relation (2.19)∑
k

(αikα
∗
jk − βikβ

∗
jk) =

(
e

π(ωi+ωj)

κ − 1

)∑
k

βikβ
∗
jk = δij , (2.34)

and taking i = j ∑
k

|βik|2 =
1

e
2πωi
κ − 1

. (2.35)

Actually the inverse process is needed, namely start with a positive frequency mode

on the past null infinity I− that propagates until it becomes a mixed positive and

negative frequency mode on the future null infinity I+. The final result for the

expectation value of the number of particles created and emitted to I+ is

〈N〉I+ =
1

e
2πω
κ − 1

. (2.36)

This result corresponds to a Planck distribution for black body radiation at the

Hawking temperature

TH =
~κ
2π

. (2.37)

So far we have considered that all the thermal radiation emitted by the black hole

arrives to the future null infinity I+ without any change in the amplitude of the

wave function. However, some emitted radiation will be partially scattered back to

the event horizon. This fact is due to the gravitational potential barrier around the

black hole, where some fraction of radiation will be reflected back to the hole, acting

thus as a filter for the emitted radiation. Taking into account this effect we have to

modify the orthonormal condition (2.19) by∑
k

(αikα
∗
jk − βikβ

∗
jk) = Γ , (2.38)

where Γi is known as the greybody factor and it accounts for the deviation from

pure black body spectrum, then the number of emitted particles will be

〈N〉I+ =
Γ

e
2πω
κ − 1

. (2.39)

Greybody factors have a relevant importance because successful microscopic account

of black hole thermodynamics should be able to predict them. For example, it is

shown in [19] that D-branes provide an account of black hole microstates which is

successful to predict the greybody factors. There exists a vast literature on how

to compute greybody factors in the context of the quantum field theory in curved

space-time, e.g. [20, 21, 22, 23, 24, 25, 26].
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2.2 Euclidean path integral and Hawking temper-

ature

One can better understand the result that black holes radiate thermally appeal-

ing the Euclidean path integral formalism [27]. If one works with imaginary time

coordinate setting

t = iτ , (2.40)

for a four-dimensional spherically symmetric black hole we obtain a positive definite

metric known as Euclidean metric,

ds2E = f(r)dτ 2 +
1

f(r)
dr2 + r2dΩ2

2 , (2.41)

where f(r) is a metric function defined as f(r) ≡
(
1− r0

r

)
being r0 the radius of

the event horizon. This metric still presents a coordinate singularity at r = r0, so

that one performs a change of coordinates going to the Rindler sector. For a general

four-dimensional spherically symmetric background we define the proper length as

ρ =

∫
√
grr dr . (2.42)

Expanding around r0 we write the metric function f(r) near horizon as

f(r) = f(r0)
′(r − r0) . (2.43)

Then the new Rindler radial coordinate will be

ρ = lim
r→r0

[
2

√
(r − r0)

f(r)′

]
. (2.44)

Thus for the Schwarzschild black hole, i.e.: grr = 1
f(r)

with f(r) =
(
1− 2M

r

)
and

r0 = 2M in Planck units; the Euclidean Schwarzschild metric is

ds2E = ρ2(κdτ)2 + dρ2 + r2dΩ2
2 , (2.45)

where κ is the surface gravity 2 and equals to

κ =
1

4M
. (2.46)

2The surface gravity of a black hole is defined as the acceleration of a static particle near

the event horizon measured by an asymptotic observer. It can be calculated with the formula

κ2 = − 1
2 (∇µζν) (∇µζν) evaluated at the event horizon, where ζν is a Killing vector. See [28] for a

rigorous study.
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The metric in the ρ− τ plane is just the plane polar coordinates if one identifies τ

with period 8πM . In general, the coordinate singularities on the horizon (conical

singularities) of Euclidean black hole metrics can be removed by identifying

τ → τ +
2π

κ
, (2.47)

so that the imaginary time coordinate τ is periodic with period 2π
κ
. Therefore the

Euclidean functional integral must be taken over fields that are periodic in τ with

period 2π
κ
.

The Euclidean path integral is

Z =

∫
D[φ] e−SE [φ] , (2.48)

where SE is the Euclidean action. Taking the integral over fields that are periodic

in imaginary time with period ~β, one can write (2.48) as

Z = tr e−βH , (2.49)

which is the thermodynamic partition function corresponding to a quantum system

with Hamiltonian H at the temperature given by β = 1
kBT

, being kB the Boltzmann

constant.

In order to see this last result we consider the probability amplitude to go from

an initial field configuration φ1 on the space-like hypersurface at t1 to a field config-

uration φ2 on the hypersurface at t2. This amplitude is determined by the matrix

element eiH(t2−t1) [29]. Also we can calculate the amplitude as a path integral over all

fields φ between t1 and t2 with φ1 and φ2 as fields on the initial and final hypersurface

respectively. Thus

〈φ2, t2|φ1, t1〉 = 〈φ2|eiH(t2−t1)|φ1〉 =
∫

D[φ] eiS[φ] . (2.50)

Then if one considers that the interval time is imaginary and equal to β,

t2 − t1 = iβ . (2.51)

Choosing as boundary conditions,

φ1 = φ2 (2.52)

on the two hypersurfaces, and summing over all field configurations φn, one ob-

tains on the left of (2.50) the partition function Z of a quantum system, i.e. the
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expectation value of e−βH summed over all states, at a temperature kBT = β−1.

Furthermore, using the Euclidean action on the right of (2.50), we finally obtain

Z =
∑
n

〈φn|e−βH |φn〉 =
∫

D[φ] e−SE [φ] . (2.53)

Therefore the partition function for the field φ at temperature T is given by a path

integral over all fields in Euclidean space-time, which is periodic in the imaginary

time direction with period β = (kBT )
−1. So that fields in Schwarzschild space-time

in particular, and in curved background in general, will behave as if they were in a

thermal state with temperature TH = ~κ
2πkB

, or using Planck units,

TH =
κ

2π
(2.54)

where TH is the Hawking temperature of a black hole at which the quantum field

theory is in equilibrium. We point out that the equilibrium of a Schwarzschild black

hole at Hawking temperature is unstable. From (2.46) and (2.54) we see that a black

hole that emits radiation loses its mass hence its temperature increases, therefore

the specific heat capacity of Schwarzschild black hole is negative.

2.3 Hawking radiation as tunneling

One way to solve semi-classically the information loss paradox is proposed in [30],

where the authors obtains a non-thermal emission spectrum corresponding to a

Schwarzschild black hole. The problem is addressed considering the emission of

radiation by a black hole as a tunneling process. The key idea is that the energy

of a particle changes its sign as it crosses the event horizon. The heuristic picture

[31] shows a virtual pair of particle and antiparticle created just inside the horizon.

Then the positive energy virtual particle can tunnels out, it materializes as a real

particle and propagates to the infinity. These particles will be seen by an asymptotic

observer as Hawking flux radiation. Conversely, the virtual pair could be created just

outside the horizon, in that case the negative energy particle can tunnels inwards

the black hole. In both cases the negative energy particle is absorbed by the black

hole, thus the mass of the black hole decreases in the same amount of the positive

energy released out through the emitted particle. The fact that black hols decreases

its mass supports the quantum gravity idea that black holes can be regarded as

highly excited states. Anyway the total energy of the system is conserved. The idea

that black holes lose mass by absorbing negative energy is studied in [16].
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In the WKB approximation the tunneling rate probability is related to the imag-

inary part of the action for the classically forbidden path,

Γ ∼ e−2ImS . (2.55)

The tunneling is between two separated classical turning points which are joined by

a complex path. Nevertheless in this case it does not preexist a barrier, but it is

just created by the outgoing particle itself. As the total energy must be conserved

during the emission of radiation by the black hole, when particles are emitted the

hole loses mass. Therefore, if the black hole loses mass it shrinks its event horizon to

a new small radius, and the contraction will depends on the energy of the outgoing

emitted particle [32].

We introduce the method of tunneling emission considering at first a line element

of a four-dimensional spherically symmetric black hole.

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
2 , (2.56)

where the metric function is

f(r) ≡ 1− r0
r
, (2.57)

being r0 the event horizon radius. In order to avoid coordinate singularities at the

event horizon we will write the metric in regular Painlevé coordinates [33], thus we

obtain a smooth behavior through the horizon. Just to say that the Painlevé time

coordinate is nothing more than the proper time of a radially free-falling observer

[34]. Then if we shift the time coordinate to proper time coordinate

t→ t− g(r) , (2.58)

where g(r) is a function that depends only on the radial coordinate, we can write

the new metric as

ds2 = −f(r)dt2 + 2f(r)g(r)′dtdr +
(
f(r)−1 − f(r)g(r)′2

)
dr2 + r2dΩ2

2 , (2.59)

Also demanding that the constant time slices be flat,

f(r)−1 − f(r)g(r)′2 = 1 ⇒ g(r)′ =

√
1− f(r)

f(r)
. (2.60)

Eventually the metric, written in Painlevé coordinates, is

ds2 = −f(r)dt2 + 2
√
1− f(r) dtdr + dr2 + r2dΩ2

2 . (2.61)
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Considering the Schwarzschild solution in Planck units with

f(r) ≡ 1− 2M

r
, (2.62)

being M the mass of the black hole, one obtains for the metric in Painelevé coordi-

nates,

ds2 = −
(
1− 2M

r

)
dt2 + 2

√
2M

r
dtdr + dr2 + r2dΩ2

2 . (2.63)

We can see that these coordinates are stationary and not singular through the hori-

zon. Then we can define a vacuum state demanding that it annihilates the modes

with negative frequency. Now consider a radial null geodesic

ṙ = ±1−
√

2M

r
, (2.64)

with the plus (minus) sign corresponding to outgoing (ingoing) geodesics respec-

tively. However, we have to modify the geodesic equation when self-gravitation is

included, then we will not consider the emission of point particles but the propa-

gation of shell particles. Self-gravitating shells in Hamiltonian gravity were studied

in [35]. Keeping fixed the ADM mass [36] and allowing the black hole mass to

vary, we see how the metric backreacts due to the emission of a shell particle, hence

M →M − ω in order to keep energy conservation.

The wavelength of the radiation is of the order of the size of the black hole. Nev-

ertheless, when we trace back the outgoing wave, we point out that the wavelength

is blue-shifted, justifying thus the use of the WKB approximation (2.55). In order

to simplify, one could consider the propagation of an s-wave, neglecting then the

angular part of the background metric (2.63). Thus using the Birkhoff’s theorem

one can decouple gravity from matter. Therefore, the imaginary part of the action

for an s-wave outgoing positive energy particle will be

ImS = Im

∫ rout

rin

prdr = Im

∫ rout

rin

∫ pr

0

dprdr . (2.65)

The particle crosses the horizon from rin to rout with rin > rout due to the shrinking

of the horizon when the particle is emitted and the metric backreacts. Making use

of the Hamilton’s equation ṙ = dH
dpr

and writing the Hamiltonian as H =M − ω, we

obtain

ImS = Im

∫ M−ω

M

∫ rout

rin

dr

ṙ
dH = Im

∫ ω

0

(−dω)
∫ rout

rin

dr

1−
√

2(M−ω)
r

. (2.66)
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Figure 2.4: Diagram picture of the tunneling approach. A particle of energy +ω is

emitted by a black hole of initial mass M and initial radius rin. After the emission the

event horizon shrinks, ε, and the black hole loses mass.

In the last integral there is a pole in the upper half plane of integration. In order to

perform the integral we use the Feynman prescription to displace the pole from ω

to ω − iε deforming the contour around the pole. We just can see how the particle

tunnels along forbidden classical path between rin = 2M − ε just inside the horizon

and rout = 2(M − ω) + ε just outside. Hence the imaginary part of the action will

be

ImS = 4π

(
Mω − ω2

2

)
. (2.67)

Finally from (2.55) the emission rate of the tunneling process is

Γ ∼ e
−8π

(
Mω−ω2

2

)
. (2.68)

We point out that we can write the above result in a statistical mechanics fashion

in terms of the change of the entropy as

Γ ∼ e∆SBH , (2.69)

where ∆SBH is the change of the Bekenstein-Hawking entropy according to the

area law, being the entropy before the emission Si = 4πM2 and after the emission

Sf = 4π(M−ω)2. It is very interesting to notice from the expression (2.68) that the
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emission is not purely thermal. Taking into account the backreaction of the metric

and imposing energy conservation we obtain a non-thermal emission reflected in the

presence of the ω2-term. This fact leads us to think that some sort of correlations

exist between the emitted particles, carrying out some degrees of freedom that en-

ables us to recover the information lost in the black hole. Of course, if we neglect

the quadratic energy term we obtain the Planck spectrum

ρ(ω) =
Γω

(eω/T − 1)

dω

2π
, (2.70)

at a Hawking temperature TH = 1
8πM

, where Γω is the greybody factor.

One can perform the same analysis in the Reissner-Nordstrom black hole ob-

taining similar conclusions. However, in order to simplify, we only consider the

emission of uncharged particles, otherwise we must consider the electromagnetic in-

teractions between the particles and the electromagnetic field of the black hole. The

line element for the Reissner-Nordstrom charged black hole is

ds2 = −
(
1− 2M

r
+
Q2

r2

)
dt2 +

1(
1− 2M

r
+ Q2

r2

)dr2 + r2dΩ2
2 , (2.71)

being Q the charge of the black hole. In Painlevé coordinates this metric is written

as

ds2 = −
(
1− 2M

r
+
Q2

r2

)
dt2 + 2

√
2M

r
− Q2

r2
dtdr + dr2 + r2dΩ2

2 . (2.72)

A radial null geodesic for a outgoing uncharged particle is

ṙ = 1−
√

2M

r
− Q2

r2
. (2.73)

As in the Schwarzschild case we compute the imaginary part of the action for the

emission of a shell of energy ω

ImS =

∫ M−ω

M

dH

∫ rout

rin

dr

ṙ
=

∫ ω

0

d(−ω)
∫ rout

rin

dr

1−
√

2M
r

− Q2

r2

. (2.74)

In order to evaluate the radial integral we perform the following change of coordi-

nates

u =
√
2Mr −Q2 ⇒ du =

M

u
dr , (2.75)

thus the radial integral in terms of the u coordinate is∫
u(u2 +Q2)

M (u(u− 2M) +Q2)
du . (2.76)
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The integral has a pole at u = M ±
√
M2 −Q2, where plus/minus sign corre-

sponds to the outer/inner horizon position, effectively if we apply the Cauchy’s

theorem we obtain a residue value of

(
M+

√
M2−Q2

)2

√
M2−Q2

. Now if we take into account

the self-gravitation [37], then replacing M by M −ω and integrating the energy, the

imaginary part of the action becomes

ImS = −2π

∫ ω

0

(
(M − ω) +

√
(M − ω)2 −Q2

)2
√
(M − ω)2 −Q2

d(−ω) (2.77)

= 2π
[
M
(
M +

√
M2 −Q2

)
− (M − ω)

(
M − ω +

√
(M − ω)2 −Q2

)]
.

Eventually we can also see quadratic energy terms, thus the emission rate (2.55) is

non-thermal,

Γ ∼ e
−4π

[
M

(
M+

√
M2−Q2

)
−(M−ω)2−(M−ω)

√
(M−ω)2−Q2

]
. (2.78)

2.4 The complex path method

Another semi-classical method in order to calculate the particle production near

the event horizon of black holes was proposed in [38]. The complex path method

has the advantage that avoids the Kruskal extension of the space-time thus one can

work with the usual spherical coordinates, and hence it is not needed to compute

the Bogoliubov coefficients. We will show the method in the simple case of four-

dimensional spherically symmetric background (2.56) and (2.57). We only consider

the r−t sector relevant for the emission process, so that the effective two-dimensional

metric is

ds2eff = −f(r)dt2 + 1

f(r)
dr2 . (2.79)

Now we consider the propagation of a massless scalar field in this two-dimensional

background, then the Klein-Gordon equation of motion

gµν∇µ∇νφ = 0 , (2.80)

can be written as [
1

f(r)
∂2t − ∂r (f(r)∂r)

]
φ = 0 . (2.81)

Then if we take the WKB ansatz solution

φ ∼ e
i
~S(t,r) , (2.82)
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where we have written ~ explicitly, and substituting in (2.81) we get

1

f(r)

(
∂S(t, r)

∂t

)2

− f(r)

(
∂S(t, r)

∂r

)2

+ (2.83)

+
~
i

(
1

f(r)

∂2S(t, r)

∂t2
− f(r)

∂2S(t, r)

∂r2
− df(r)

dr

∂S(t, r)

∂r

)
= 0 .

Now taking the expansion of the action in terms of
(~
i

)
S(t, r) = S0(t, r) +

∞∑
n=1

(
~
i

)n
Sn(t, r) , (2.84)

substituting into the equation of motion (2.83), and neglecting terms of the order(~
i

)
and higher; we obtain at leading order in the action a Hamilton-Jacobi equation,

∂S0(t, r)

∂t
= ±f(r) ∂S0(t, r)

∂r
, (2.85)

whose solution is

S0(r2, t2; r1, t1) = −ω(t2 − t1)± ω

∫ r2

r1

1

f(r)
dr . (2.86)

The plus/minus sign corresponds to the ingoing/outgoing particle respectively whereas

ω is the energy of the absorbed or emitted particle. Henceforth, we will neglect the

time part which accounts for the stationary phase of the solution and does not

affect the final result. In order to evaluate the integral of the radial part of the

solution (2.86) we must take into account that the position of the event horizon r0

stay between the turning points r1 and r2, thus when we integrate from r1 < r0 to

r2 > r0 we bump into a singularity at r0, which makes the integral divergent since

f(r0) = 0. Therefore we might carry out an integration over the complex plane,

specifying what complex contour we will use in order to perform the integration

around the pole r0. Following the prescription used in [38], we use as a contour of

integration the infinitesimal semi-circle above r0 for outgoing particles on the left of

the horizon (r < r0) and ingoing particles on the right of the horizon (r > r0), so

that displacing the pole r = r0 − iε. Whereas, for incoming particles on the left and

outgoing particles on the right of the horizon the contour will be a semi-circle below

r0, being just the reversed time situation of the previous case, thus displacing the

pole r = r0 + iε.

If we consider an outgoing particle at r1 < r0, the contour of integration lies on

the upper half-complex plane, see Figure 2.5, and the radial integral in (2.86) can
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Figure 2.5: Emission action integral (2.86). Contour of integration in the complex plane

corresponding to an outgoing particle on the left of the event horizon r0, between the

turning points r1 and r2.

be written as

Se0 = −ω lim
ε→0

∫ r0+ε

r0−ε

dr

f(r)
+ (Real) , (2.87)

where the contribution to the integral in the range (r1, r0− ε) and (r0+ ε, r2) is real.

Then, taking into account that the residue of the function f(r) is iπr0, the result of

the complex integration is

Se0 = iπωr0 + (Real) . (2.88)

We can show that it is the correct result if we perform the change of variables into

complex plane: r = r0 + ρeiθ ⇒ dr = iρeiθdθ, then the integral becomes∫ r0+ε

r0−ε

dr

f(r)
=

∫ r0+ε

r0−ε

r

r − r0
dr =

∫ 0

π

r0 + ρeiθ

r0 + ρeiθ − r0
iρeiθdθ . (2.89)

Now considering that we have infinitesimally displaced the pole, we take the limit

lim
ρ→0

=

∫ 0

π

(r0 + ρeiθ)idθ = −iπr0 . (2.90)

The same result had been obtained if we had considered the propagation of an

ingoing particle. In this case we might choose the contour of integration lying in the
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Figure 2.6: Absorption action integral (2.86). Contour of integration in the complex

plane corresponding to an ingoing particle on the right of the event horizon r0, between

the turning points r1 and r2.

lower half-complex plane. The result (2.88) corresponds to the emission action at

leading order for a massless scalar particle.

Next, we perform the same analysis for an ingoing particle at r2 > r0 that crosses

the horizon being absorbed by the black hole. Choosing the contour in the upper

half-complex plane, see Figure 2.6, we get

Sa0 = −ω lim
ε→0

∫ r0−ε

r0+ε

dr

f(r)
+ (Real) . (2.91)

One obtains the same result considering an outgoing particle with a contour of

integration lying in the lower half-complex plane. Then the absorption action at

leading order for a massless scalar particle will be

Sa0 = −iπωr0 + (Real) . (2.92)

We are going to use the saddle point approximation that enables us to com-

pute the semi-classical propagator in flat space-time for a particle propagating from

(t1, r1) to (t2, r2), [39],

K(r2, t2; r1, t1) = N exp

[
i

~
S0(r2, t2; r1, t1)

]
. (2.93)



28 Chapter 2. Semi-classical emission of Black Holes

Therefore taking into account the definition of probability,

P = |K(r2, t2; r1, t1)|2 , (2.94)

we will have for the emission probability,

Pe ∼ exp

[
−2πωr0

~

]
, (2.95)

and for the absorption probability,

Pa ∼ exp

[
2πωr0

~

]
. (2.96)

Thus, the relation between the emission and absorption probability it is just

Pe = exp

[
−4πωr0

~

]
Pa , (2.97)

that when compared with the thermodynamical result

Pe = e−βωPa , (2.98)

allows to identify the temperature as

β−1 = T =
~

4πr0
. (2.99)

For the Schwarzschild case where r0 = 2M we obtain T = ~
8πM

, which it is just the

correct Hawking temperature.

Thus the complex path method reviews the study of particle production in curved

space-times and permits to obtain the correct Hawking temperature. In the next

chapter we will see how this method can be implemented taking into account the

back-reaction of the metric.



Chapter 3

Hawking radiation in Little String

Theory

3.1 LST, thermodynamics overview

Little String Theory (LST) is a non-gravitational six-dimensional and non-local

field theory believed to be dual to a string theory background. LST is defined

as the decoupled theory on a stack of N NS5-branes. For some good reviews see

[40, 41, 42, 43, 44, 45, 46, 47]. In the limit of a vanishing asymptotic value for the

string coupling gs → 0, keeping the string length ls fixed while the energy above

extremality is fixed, i.e. E
ms

= fixed, the processes in which the modes that live

on the branes are emitted into the bulk as closed strings are suppressed. Thus the

theory becomes free in the bulk, but strongly interacting on the brane. In this limit,

the theory reduces to Little String Theory or more precisely to (2,0) LST for type

IIA NS5-branes and to (1,1) LST for type IIB NS5-branes [47].

We shall consider the non-extremal case, from where we shall deduce the ther-

modynamics properties of the black hole. Even if the Hawking’s area theorem ap-

plies in Einstein frame, where the weak energy condition is satisfied [48], we have

cross-checked that all our claims concerning the semi-classical emission can also be

obtained from the string frame. For a discussion see Chapter 6.

We take the ten-dimensional action corresponding to a scalar field φ propagating

29



30 Chapter 3. Hawking radiation in Little String Theory

in the NS5 background,

S =
1

2k210

∫ √
−g
(
R− 1

2
gµν∂µφ∂νφ− 1

12
e−ΦH2

(3)

)
d10x , (3.1)

where k is a constant, R is the Ricci curvature scalar, Φ the dilaton field and H(3)

a strength field. Taking the variation of the action with respect to the strength

field, scalar field and metric respectively, we obtain the equations of motion for the

three-form H(3),

∂µ(
√
−ge−ΦHµνρ) = 0 , (3.2)

the scalar Klein-Gordon equation,

1√
−g

∂µ(
√
−ggµν∂νφ) +

1

12
e−ΦH2 = 0 , (3.3)

and the Einstein’s equations

Rµν −
1

2
gµνR =

1

2

(
∂µφ∂νφ− 1

2
gµν∂βφg

βα∂αφ

)
+

+
1

12
e−Φ

(
3HµabHνcdg

acgbd − 1

2
H2gµν

)
. (3.4)

The throat geometry corresponding to N coincident non-extremal NS5-branes in

the string frame [49] is

ds2 = −f(r)dt2 + A(r)

f(r)
dr2 + A(r)r2dΩ2

3 +
5∑
j=1

dx2j , (3.5)

where dx2j corresponds to flat spatial directions along the 5-branes, dΩ2
3 corresponds

to 3-sphere of the transverse geometry,

dΩ2
3 = dθ2 + sin2θ dϕ2 + sin2θ sin2ϕ dψ2 , (3.6)

and the dilaton field is defined as

e2Φ = g2sA(r) . (3.7)

The metric functions are defined as

f(r) = 1− r20
r2

, A(r) = χ+
N

m2
sr

2
, (3.8)

the location of the event horizon corresponds to r = r0. The black hole mass

is related with r0 through the relation M ∼ r20, see Appendix C and Chapter 6
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equation (6.11) for a exact relation in string frame and Einstein frame respectively.

We define the parameter χ which takes the values 1 for NS5 model and 0 for LST,

these are the unique values for which exist a supergravity solution. In addition

to the previous fields there is an NS − NS H(3) form along the S3, H(3) = 2Nε3.

According to the holographic principle the high spectrum of this dual string theory

should be approximated by certain black hole in the background (3.5). The geometry

transverse to the 5-branes is a long tube which opens up into the asymptotic flat

space with the horizon at the other end. In the limit r → r0 appears the semi-infinite

throat parametrized by (t, r) coordinates, in this region the dilaton grows linearly

pointing out that gravity becomes strongly coupled far down the throat. The string

propagation in this geometry should correspond to an exact conformal field theory

[50]. The boundary of the near horizon geometry is R5,1 × R × S3. The geometry

(3.5) is regular as long as r0 6= 0.

We are going to reduce the metric (3.5) to the r − t sector, relevant for the

forthcoming sections. At first step we take the scalar field action

S =
1

2k210

∫
M

d10x
√
−g
(
R− 1

2
∂µφ∂

µφ− 1

12
e−ΦH2

(3)

)
. (3.9)

Performing a change to tortoise coordinate, see (3.5): dr∗ =

√
A(r)

f(r)
dr, we expand

the ten-dimensional action as

S =
1

2k210

∫
dtdr∗dθdϕdψ

5∏
j=1

dxj r
3A(r)2 sin2θ sinϕ (gse

−Φ)5/2

[
f(r)√
A(r)

×

×
(
R− e−Φ

12
H2

(3)

)
+

(
1

2
√
A(r)

(∂2t − ∂2r∗)−
f(r)

2r2A3/2

(
∂2θ +

1

sin2θ
∂2ϕ+

+
1

sin2θ sin2ϕ
∂2ψ

)
− f(r)

2
√
A(r)

6∑
j=2

∂2j

)
φ(t, r)S(Ω3) e

i
∑
kjxj

]
,

(3.10)

where we have decomposed the scalar field into r − t, 3-angular and 5-brane parts.

Our following approximations are based on three main steps:

1. We only consider the propagation mode of an s-wave.

2. We only take into account a subset of states of the Hilbert space such that the

eigenstates of momentum parallel to the NS5-brane vanish.

3. We take the near horizon limit, r → r0.
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Eventually we come back to the original r radial coordinate, obtaining for the

action

S =
Vol(S3)Vol(R5)

2k210

∫
dtdrA(r)2e−2Φ

(
− 1

f(r)
∂2t +

f(r)

A(r)
∂2r

)
φ(t, r) , (3.11)

where Vol(R5) stands for the volume of the NS5-branes and Vol(S3) is the volume

of the 3-sphere. From (3.11) we find out that the scalar field can be seen as (1+ 1)-

dimensional scalar field φ(t, r) propagating in the background

ds2eff = −f(r)dt2 + A(r)

f(r)
dr2 , (3.12)

together with an effective dilaton field

e2Φ = g2sA(r) . (3.13)

Henceforth we are going to work with this two-dimensional effective metric.

Concerning the black hole thermodynamics we will construct the thermal states

of the black hole following the same analysis of Chapter 2, Section 2.2. Working

in imaginary time coordinate t = iτ , we will write the positive Euclidean metric in

Rindler coordinates. The radial Rindler coordinate is

ρ = lim
r→r0

[
2

√
A(r)(r − r0)

f(r)′

]
. (3.14)

Thus the Euclidean metric in Rindler coordinates is

ds2E = ρ2(κdτ)2 + dρ2 + A(r)r2dΩ2
3 +

5∑
j=1

dx2j , (3.15)

where we have defined κ as

κ =
f(r0)

′

2
√
A(r0)

, (3.16)

which it is precisely the surface gravity of the NS5 and LST black holes. In the

footnote of Section 2.2 we had given a simple explicit formula in order to calculate

the surface gravity [28],

κ2 = −1

2
(∇µζν) (∇µζν) (3.17)
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evaluated at the event horizon, where ζν is a Killing vector. For the NS5 and LST

stationary black holes we choose the Killing vector

ζν = (−∂t, ζ i) with ζ i = 0 , i = 1, ..., 9 ; (3.18)

and its covariant form

ζν = gνλζ
λ = gtt (−∂t) . (3.19)

Calculating

∇µζν = gµλ∇λζ
ν = grr∇rζ

t , (3.20)

and

∇µζν = ∇rζt , (3.21)

it is obtained the expression

κ =
1

2

√
−gtt · grr (∂rgtt) . (3.22)

Evaluating this expression at the event horizon r0, it is obtained the surface gravity.

Concretely for NS5 and LST we obtain

κ =
f(r0)

′

2
√
A(r0)

=
1√

χr20 +
N
m2

s

. (3.23)

Then identifying the period of the Euclidean time with τ → τ + 2π
κ

we avoid the

conical singularity in (3.15), thus the imaginary time is periodic with period β =
2π
κ
. As it was demonstrated in Section 2.2 we can identify β−1 with the Hawking

temperature TH , thereby calculating the value of the surface gravity (3.16) we obtain

the Hawking temperature for the NS5 and LST black holes,

TH =
~

2π
√
χr20 +

N
m2

s

. (3.24)

Notice that this value for LST (χ = 0) is independent of the black hole radius,

that is fixed even if many particles impinge on the black hole. This results holds at

all orders in α′ (inverse string tension) corrections, but receives modifications from

higher genus [51, 52].

We would like to address the question whether an observer in a moving frame

observes a temperature above the Hagedorn temperature. We know that in the

near horizon limit of NS5, i.e. LST, the system reaches the maximum temperature,

namely the Hagedorn temperature. One could think that a boosted observer may
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observe a temperature higher than the Hagedorn one, for this reason we want to

verify the validity of this statement. We have evaluated the simplest case, namely a

scalar particle-like observer who moves on an NS5-brane with constant velocity at

a fixed distance r from the horizon of the LST black hole. We consider the orbit for

which x1 = vt. Relating the time coordinate t with the proper time τ (this is not

the imaginary time) through dτ 2 = −gµνdxµdxν , one obtains

dτ

dt
=
√
f(r)− v2 . (3.25)

The velocity is bounded by the local velocity of light thus we have to impose the

constraint v2 ≤ f(r). This relation brings us to a new coordinate of the horizon

position seen by the moving particle, r = r0√
1−v2 . Furthermore the Killing vector

relevant for the process is ζ = −∂t + v∂x1 . Therefore evaluating the surface gravity

using this new coordinate r, we obtain the local temperature for the moving scalar

particle

T̄ =
~(1− v2)

2π
√
χ

r20
(1−v2) +

N
m2

s

, (3.26)

where we have used natural units, c = 1 and v < 1. We notice two important

features. First of all, we see that in the v → 0 limit we recover the result (3.24).

Secondly, comparing the temperature for the particle-like observer (3.26) with the

temperature defined by (3.24) for an asymptotic static observer, we see that the for-

mer is lower than the later. We conclude that the Hawking temperature of LST is a

maximum bound and corresponds to the Hagedorn temperature. Unfortunately, we

are not able to perform the same analysis for an accelerating particle-like observer.

The main problem is that the path which the particle follows is not generated by

a Killing vector field, this fact prevent us from using the surface gravity method in

order to calculate the temperature.

Next, we calculate the entropy using the area law through the Bekenstein-

Hawking entropy relation

SBH =
AH

4G(10)~
, (3.27)

where AH is the area of the event horizon and G(10) is the ten-dimensional gravita-

tional constant. Working in string frame the area of the event horizon is

AH =

∫ √
−g(8) dθ dϕ dψ djx = Vol(R5) 2π2

(
χr20 +

N

m2
s

)3/2

, (3.28)
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the factor 2π2 accounts for the volume of the 3-sphere, see Appendix B, and −g(8)

is the determinant of the induced metric on the event horizon

ds̃2 = A(r) r2dΩ2
3 +

5∑
j=1

dx2j . (3.29)

Then the Bekenstein-Hawking entropy is

SBH =
AH

4G(10)~
=

Vol(R5) π2
(
χr20 +

N
m2

s

)3/2
2G(10)~

. (3.30)

We have seen that the LST temperature is independent of the black hole radius

and therefore of the black hole mass. We could identify this temperature with

the Hagedorn temperature. It has been argued, [53], that the energy, entropy and

temperature of a CFT at high temperatures can be identify with the mass, entropy

and Hawking temperature of the dual black hole. The Euclidean action for a LST

black hole solution gives a vanishing contribution to the Helmholtz free energy:

logZ = −I = 0, with Z being the string partition function. In that precise case

the entropy and energy density are directly proportional to each other and the

Bekenstein-Hawking entropy relation is fulfilled. Otherwise, one can compute the

Komar energy E for the LST background, see Appendix C, either in Einstein frame

[51, 54] or in string frame [46, 49] which satisfies the usual thermodynamic relation

S = βE. This relation implies that the free energy of the system F = E − TS

vanishes. This behavior suggests that at leading order the Hagedorn density of

states at very high energies grows as ρ(E) = eS(E) ∼ eβE [45, 55]. At first sight one

could think that a phase transition is present when the system evolves from NS5

to the near horizon limit of NS5, i.e. LST, but we have checked that it is not the

case. Plotting the entropy (3.30) versus the temperature (3.24) we do not detect

any critical point (Davies point) [56] that would signal a phase transition. Even

working in thermodynamic geometry [57], writing the LST metric as a Ruppeiner

metric ds2 = −3
√

πG
~2M dS2, we do not detect any divergence in the scalar curvature

that would signal a possible phase transition. However calculating the specific heat

as C = T ∂S
∂T

, we have found that it has a negative value: −3S, showing that the

theory is unstable. In the work [45], the authors show that loop/string corrections

to the Hagedorn density of states of LST were of the form ρ(E) ∼ EαeβE(1+O( 1
E
)),

where α is a correction factor. The temperature-energy relation thus becomes β =
∂ log ρ
∂E

= β0 + α
E
+ O( 1

E2 ), where β0 = T−1
H . The authors found that since α is

negative the high energy thermodynamics corresponding to near-extremal 5-branes



36 Chapter 3. Hawking radiation in Little String Theory

is unstable, the temperature is above the Hagedorn temperature and the specific

heat is negative. This instability would be associated to the presence of a negative

mode (tachyon) in string theory. The high temperature phase of the theory yields

the condensation of this mode. The authors are lead again to the conclusion that the

Hagedorn temperature is reached at a finite energy, being associated with a phase

transition.

3.2 Semi-classical emission in NS5

We are going to calculate the Bogoliubov coefficients, partially following [58], cor-

responding to the NS5 black hole. We want to stress that it is not possible to

make this computation for the LST black hole because it is not asymptotically flat.

The creation of particles in the vacuum is due to a mixing of positive and nega-

tive frequency modes near the event horizon where the gravitational field is strong.

Somehow we are observing the evolution of an initial positive frequency state in one

definite vacuum to a final negative frequency state in another vacuum. Working

in Heisenberg picture and evaluating the number operator between initial vacuum

state, one observer in the final vacuum state will detect a number of particles created

in the process. We are interested in the propagation of a massless scalar field φ in a

geometry which is asymptotically flat. We decompose the scalar field into positive

frequency ingoing modes {fi} in the past null infinity hypersurface I−

φ =
∑
i

(fiai + f ∗
i a

†
i ) . (3.31)

The set {fi} form a complete orthonormal basis with well inner defined product

(2.6). The operators ai and a†i can be interpreted as annihilation and creation

operators respectively that fulfill the usual commutation relation [ai, a
†
j] = δij and

[ai, aj] = [a†i , a
†
j] = 0. Thus one obtains a well defined vacuum state on I−

ai|0−〉 = 0 . (3.32)

At some point a black hole is formed and an event horizon appears. On the future

horizon H+ there is not Cauchy data coming from the future null infinity hyper-

surface I+, in the same way on I+ we do not have Cauchy data coming from H+.

Therefore the scalar field can also be decomposed as

φ =
∑
i

(pibi + p∗i b
†
i + qici + q∗i c

†
i ) , (3.33)
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where {pi} are positive frequency outgoing modes defined on I+ with its correspond-

ing creation and annihilation operators bi and b
†
i . The modes {qi} are absorbed by

the future event horizon H+ thus cannot escape to I+. These modes are not-well

positive frequency defined modes because on H+ we cannot define positive (or neg-

ative) frequencies, having thus a mixing of positive and negative frequency modes.

Nevertheless the choice of {qi} does not affect the calculation at the asymptotic

limit since they are zero at I+. Also we can define a vacuum state on I+

bi|0+〉 = 0 . (3.34)

The modes {pi} on I+ can be decomposed in terms of the incoming modes {fi}

pi =
∑
j

(αijfj + βijf
∗
j ) . (3.35)

In the same way we can relate the corresponding operators

bi =
∑
j

(α∗
ijaj − β∗

ija
†
j) ,

b†i =
∑
i

(αija
†
j − βijaj) . (3.36)

These relations are known as Bogoliubov transformations and relate different modes

expressed in different basis. We can see that operating with annihilation operator

bi in the vacuum state defined on I− the result will be different from zero, if the

coefficients β∗
ij are non-zero. Thus one has a mixing between positive and negative

frequency modes. It can be calculated the number of particles created, i.e. the

number of particles measured by an observer in the future null infinity in the vacuum

defined on I−,

〈0−|Ni|0−〉 = 〈0−|b†ibi|0−〉 =
∑
j

|βij|2 . (3.37)

In order to calculate the scalar field modes we must solve the Klein-Gordon

equation for a massless particle �φ = 0. In the background (3.5) this equation is

written as[
−A(r) ∂

2

∂t2
+ f(r)A(r)

∂2

∂y2
+
f(r)

r3
∂

∂r

(
r3f(r)

∂

∂r

)
+
f(r)

r2
L2

]
φ = 0 , (3.38)

where we have defined the angular momentum operator as

L2 ≡ 1

sin2θ

∂

∂θ
sin2θ

∂

∂θ
+

1

sin2θsinϕ

∂

∂ϕ
sinϕ

∂

∂ϕ
+

1

sin2θsin2ϕ

∂2

∂ψ2
. (3.39)
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We are looking for a solution of type

φ =
(
Ae−iωt + A∗eiωt

)
R(r)

(
Beikx +B∗e−ikx

)
Yl,m,m′(θ, ϕ, ψ) , (3.40)

where we have decomposed the solution into stationary part, a pure radial term,

the propagation through the flat-space brane directions x and the angular part in

which the 3-dimensional scalar spherical harmonics satisfy

L2Yl,m,m′(θ, ϕ, ψ) = −l(l + 2)Yl,m,m′(θ, ϕ, ψ) . (3.41)

Thus the equation of motion can be written as[
A(r)ω2 − f(r)A(r)k2 +

f(r)

r3
∂

∂r

(
r3f(r)

∂

∂r

)
− f(r)

r2
l(l + 2)

]
R(r) = 0 . (3.42)

Performing a change to tortoise coordinate

dr∗ =

√
A(r)

f(r)
dr , (3.43)

and the standard functional change R(r) = R(r∗)
r

, [39], we obtain a Schrodinger-type

equation [
∂2

∂r2∗
+

(
ω2 − f(r)k2 − f(r)

A(r)r2
L2

)]
R(r∗) = 0 . (3.44)

Considering the propagation of an s-mode in the asymptotic limit we find the solu-

tion

R(r) =
1

r

(
C1e

−i
√
ω2−k2 r∗ + C2e

i
√
ω2−k2 r∗

)
(3.45)

where C1 and C2 are constants. Eventually the scalar field takes the form

φ =
(
Ae−iωt + A∗eiωt

)
×
(
Beikx +B∗e−ikx

)
×

× 1

r

(
C1e

−i
√
ω2−k2 r∗ + C2e

i
√
ω2−k2 r∗

)
Yl,m,m′(θ, ϕ, ψ) . (3.46)

If we only consider a subset of states of the Hilbert space such that the eigenstates

of momentum parallel to the NS5-brane vanish, i.e. k = 0, the scalar field solution

will be

φ =
1

r

(
AC1e

−iω(t+r∗) + AC2e
−iω(t−r∗) + A∗C1e

iω(t−r∗) + A∗C2e
iω(t+r∗)

)
×

× Yl,m,m′(θ, ϕ, ψ) . (3.47)

We introduce the advanced and retarded null coordinates

v = t+ r∗ , u = t− r∗ , (3.48)
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and we use them as a canonical affine parameters in order to define the positive

frequency modes. Substituting (3.48) in (3.47), we obtain for the incoming modes

defined at I−,

fω′lmm′ ∼ 1√
2πω′

Fω′(r)

r
eiω

′v Yl,m,m′(θ, ϕ, ψ) , (3.49)

and for the outgoing modes defined at I+,

pωlmm′ ∼ 1√
2πω

Pω(r)

r
eiωu Yl,m,m′(θ, ϕ, ψ) . (3.50)

Fω′(r) and Pω(r) are integration variables that contain tiny effects depending on r

since this modes are calculated at the asymptotic. The normalization constant 1√
2πω

is frequently used in the Klein-Gordon equation.

Next, we transform the discrete expressions (3.35), (3.36) and (3.37) to the con-

tinuous limit integrating the energy ω and considering the same value for the l, m,

m′ numbers, thereby we obtain

pω =

∫ ∞

0

(αωω′fω′ + βωω′f ∗
ω′)dω′ , (3.51)

bω =

∫ ∞

0

(αωω′aω′ − β∗
ωω′a

†
ω′)dω

′ , (3.52)

and

Nω =

∫ ∞

0

|βωω′|2dω′ . (3.53)

We calculate the Bogoliubov coefficients αωω′ and βωω′ by Fourier transforming

(3.51). Then substituting (3.49) into (3.51) and multiplying both sides by∫∞
−∞ e−iω

′′vdv, we obtain∫ ∞

−∞
pωe

−iω′′vdv =
1√
2πω′

Fω′(r)

r

∫ ∞

0

(αωω′2πδ(ω′ − ω′′) + β∗
ωω′2πδ(−ω′ − ω′′)) dω′ ,

(3.54)

where the second term of the integral must be zero due to the properties of the delta

distribution. The Bogoliubov coefficients can be written as

αωω′ =
r
√
ω′

Fω′(r)
√
2π

∫ ∞

−∞
pωe

−iω′vdv , (3.55)

βωω′ =
r
√
ω′

Fω′(r)
√
2π

∫ ∞

−∞
pωe

iω′vdv . (3.56)
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Figure 3.1: On the left: a Penrose diagram which shows the future and past null infinity

and the future and past event horizon. On the right: a null ray is traced back in time

from the future null infinity using the parallel transporting of two unitary vectors n and

l. It is obtained a relation between the null coordinates v and u in order to express the

outgoing modes pω in terms of the advanced null coordinate v.

In order to evaluate the integral (3.55) we must express the outgoing modes

pω in terms of the advanced null coordinate v. It is considered a light ray traced

backward from I+ as proposed in [8] and it is taken the Kruskal coordinate as the

affine parameter on the past event horizon H−. We consider a mode pω propagating

backward from the future null infinity hypersurface I+ and with zero Cauchy data on

H+. Some part of this mode solution will be scattered over the black hole potential

and will eventually emerge at I− with the same frequency ω. On the other hand,

some part of pw will be partially scattered and reflected, eventually emerging at

I−. This second part will produce the creation of some new particles measured by

the asymptotic observer at I+. The modes will be extremely blue-shifted at H+

because the outgoing null coordinate tends to infinity, therefore we are able to use

the optical theorem, which states that only the reflected part of the wave will be

significant. Now consider a point x on the horizon, a null tangent vector lµ on the

horizon at x, and a future directed null vector nµ at x which is normal to the horizon

and directed radially inwards. This two vectors are normalized: lµ · nµ = −1, see

figure 3.1. Then we consider a null geodesic γ that starts at a point u0, goes along

H+, is reflected at the center, and emerges towards I− along a path defined by v0.
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This is the last time on I− that a ray will reach I+, for later times v > v0, the ray

will be absorbed by the black hole and never will reach I+. Any vector −εnµ, with ε
small and positive, will connect the point x on the future event horizon to a nearby

null surface of constant u, and therefore with a pω surface of constant phase. If we

parallel transport the vectors lµ and nµ along the null geodesic γ which defines H+

until it intersects H−, the vector −εnµ will always connect the event horizon with

the same surface of constant phase of pω. The null geodesic will be reflected in the

center at r = 0, will propagate towards I−, and the vector −εnµ would then lie along

H−. Then on H− we use as a canonical affine parameter the Kruskal coordinate

U = −Ce−κu , (3.57)

where κ is the surface gravity defined on the horizon, and C is a constant. The

Kruskal coordinate U takes the values 0 on the future horizon H+ and −ε on the

null geodesic near the horizon. Thus from (3.57) it is obtained the relation

u = −1

κ
(log ε− log C) . (3.58)

Otherwise the phase of the mode pω is related with the ingoing null affine parameter

v when it propagates along the null geodesic γ towards I−. Remembering that for

v > v0 any ray will reach I+, for a null geodesic near the event horizon it is fulfilled

ε = v0 − v. Furthermore the vector nµ on I− will be parallel to a Killing vector ην

which is tangent to the null geodesic generator of I−,

nµ = Dην , (3.59)

where D is a constant. Finally we obtain the desired relation between the null affine

parameters u and v,

u = −1

κ
(log(v0 − v)− log C − log D) . (3.60)

Substituting this relation in (3.50), we find the outgoing mode expressed in terms

of the ingoing null coordinate v,

pω(v) =

{
0 v > v0

Pω(r0)

r
√
2πω

exp
[
− iω

κ
log
(
v0−v
CD

)]
v < v0 .

(3.61)

Pω(r0) is the radial function Pω evaluated at the past event horizon. Therefore

inserting (3.61) into (3.55) in a region near the horizon we obtain,

αωω′ =
P̄ω(r0)

2π

√
ω′

ω
(CD)

iω
κ

∫ v0

−∞
(v0 − v)−

iω
κ e−iω

′vdv . (3.62)
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We have collected the functions Fω′(r0) and Pω(r0) in a one single expression, P̄ω(r0).

Then performing the change of variable x = v0 − v and using the Gamma function∫ ∞

0

xε−1e−txdx = Γ(ε)t−ε , (3.63)

we can evaluate the integral in (3.62). The Bogoliubov coefficient thus is

αωω′ =
P̄ω(r0)

2π

√
ω′

ω
(CD)

iω
κ e−iω

′v0 Γ

(
1− iω

κ

)
(−iω′)−1+ iω

κ , (3.64)

which is related with the coefficient βωω′ by

βωω′ = −iαω(−ω′) , (3.65)

where we have used the definitions (2.16). In order to calculate βωω′ from (3.65) we

analytically continue αω(−ω′) anticlockwise around the singular point ω′ = 0. Thus

we find

|αωω′ |= e
πω
κ |βωω′| . (3.66)

In [18] it is demonstrated the lemma (3.66). Using the continuum orthonormal

condition (2.19) between the Bogoliubov coefficients,∫ ∞

0

(|αωω′|2−|βωω′ |2)dω′ = Γω , (3.67)

where we have considered the effect of the greybody factor Γω that deviates the spec-

trum from a pure Planckian spectrum. Eventually, we obtain the average number

of particles created in the mode pω on I+,

< Nω >=
Γω

e
2πω
κ − 1

. (3.68)

From this expression we identify the Hawking temperature at which the NS5 black

hole radiates away its energy

TH =
~κ
2π

=
~

2π
√
r20 +

N
m2

s

. (3.69)

3.3 Hawking radiation via tunneling

In this section we basically reproduce the work [59], where we calculated the Hawking

emission of NS5 and LST black holes. We analyze the thermal transition between
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NS5-branes and LST. It is shown that once the near horizon limit is taken, i.e.

LST, the emission is thermal even if back-reaction is taken into account. We remark

that this fact is due to the LST mass-independent temperature. However, it is not

the case for NS5, which shows a non-thermal emission and thus the possibility of

recovering information through the correlations between the emitted particles.

We motivate this study since a central issue in the black hole information puzzle

is the problem of low-energy scattering for ordinary quanta by an extremal black hole

with a subsequent absorption and Hawking reemission. From a semi-classical point

of view the final radiation turns to be that of an exact black body [60, 61]. It has been

argued, but not demonstrated, that departures from thermal emission could explain

black hole evaporation without lost of information and hence reconcile quantum

mechanics with general relativity. In most of the approaches in the literature the

role of the black hole is similar to that of a soliton in field theory, being gravity

treated as a non-perturbative field to be added to the game once the spectrum

and quantization rules to the particle-like objects have been put down by quantum

mechanics rules. Although this view suffices in a semi-classical picture it can be

inappropriate when one probes Planck scales.

One successful approach that overcomes partially this problem, incorporates the

self-gravitation interaction in the radiation process [35]. The underlying idea in this

model is extremely simple: the full hole-particle system is reduced to an effective one-

dimensional system and for that purpose all the degrees of freedom are truncated

to two dimensional. In particular the model for emission/absorption is still only

suitable for regions of low-curvature and exclusively tackles the s-wave part of the

short-wavelength radiation. This fact allows to employ the WKB approximation

that makes any calculation almost straightforward. All the studies pursued within

the mentioned approach reveal so far that Hawking radiation is not purely thermal.

These results, although encouraging to explain the Hawking effect, are distressing

and it is not clear which is the ultimate reason that allows all the black holes to

have a non-thermal emission independently of their nature. Our aim is to present

some features of the semi-classical geometry and Hawking radiation in a family of

black holes with strict thermal emission even if back-reaction effects are taken into

account.

We shall begin by outlining the most salient features of a simpler related model,

LST, that is at the main core of the study. Many of the points that will arise
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here are implicitly or explicitly given in other works. Next we present the emission

probability via tunneling in this model, and explain some details of the formalism.

As a next step we elucidate a plausible “dynamics” that rides a NS5 setup towards

its Hagedorn temperature and study the spectrum of the emission. As we shall see

as temperature is increased in this process the spectrum, initially non-thermal, goes

to a thermal one.

It should be stressed that thermal emission is not something peculiar of this

metric space, but most probably a feature of a full family of spaces [62]. We also

worked out a model which ultraviolet completion reduces to the previous one. In

that sense one does not expect to obtain the very similar result as before for the

decay width, because the emission/absorption process is produced near the horizon

and must be insensible to the behavior of the radial asymptotic in the metric. As

we shall see this does not turn to be the case.

3.3.1 Tunneling approach in LST

Following [30] we consider the emission of an s-wave massless scalar particle in

the radial direction of (3.5). This will allow to use Birkhoff’s theorem and decouple

gravity from matter. In order to find the Hawking emission we bring the line element

(3.5) to a smooth form near the horizon using a Painlevé-like transformation t →
t̂ + g(r), which is nothing more than the proper time along the radial geodesic

worldline [63]. This form will be more suitable to study across-horizon physics, for

instance the tunneling of massless shells. In doing so, we consider a transformation

with the property that at a constant time slice matches the geometry of LST space

without a black hole immersion

ds2 =
5∑
j=1

dx2j +N

(
dr2

r2
+ dΩ2

3

)
. (3.70)

This is accomplished by choosing

f(r) = −
√
N arctanh

(
r

r0

)
, (3.71)

which allows to rewrite (3.5) as

ds2 = −f(r)dt̂2 +
5∑
j=1

dx2j − 2
√
N

r0
r2
drdt̂+

N

r2
(
dr2 + r2dΩ2

3

)
. (3.72)
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The function (3.71) is time independent and as a consequence (3.72) remains sta-

tionary as was already the case for (3.5).

To describe the black hole emission we rely on the notion of virtual pair creation

near the horizon [8]. Loosely speaking, if the pair is created inside the horizon the

positive energy particle tunnels out while the antiparticle is absorbed by the black

hole which horizon recesses. Alternatively the pair can be created just outside the

horizon, in that case is the antiparticle which tunnels through the horizon, shrinking

once more the size of the black hole while the particle escapes. In any of the cases

the quantum state of the outside particle is not a pure state, and it is possible to

compute the entanglement entropy between the particles that fall into the hole with

those that escape to infinity.

This intuitive picture contains some drawbacks, the main one is the lack of

understanding the origin of the source for the potential barrier to be tunneled across.

The approach devised in [30, 32] overcome this by noticing that when a virtual pair

of particles is created is the self-gravitating field of the emitted particle the source

for the potential barrier to be tunneled across the horizon. In addition one has to

take into account the energy conservation in the process: the ADM mass remains

fixed while the black hole mass decreases when the quanta is emitted. This back-

reaction deforms the initial metric and is implemented in (3.5) by shifting the black

hole mass appearing in the warping factors, M ∼ r20. To be concrete, once the shell

is emitted the correct warp factor would be proportional to M −ω, with ω been the

energy released in the emission. This would correspond to a new, smaller value for

the radius r1.

For an observer located at the radial infinity of (3.5), an object approaching

r0 is infinitely blue-shifted. This allows to apply a semi-classical treatment to the

particle emission problem and with an extend to use the classical action, in the

smooth coordinates (3.72), to describe the wave function Ψ(r) ∼ eiSclass . Keeping

this in mind we evaluate the rate emission for massless particles in the sequel.

The metric (3.5) is stationary and the lagrangean density derived from it fulfills

the simple relation H = −2L with the hamiltonian density. For dynamics, one

consideres only the radial coordinate the expression L = −ṙpr holds and the classical

action reads as

S =

∫ rout

rin

prdr =

∫ rout

rin

∫ M−ω

M

dH

ṙ
dr = −

∫ ω

0

dω

∫ rout

rin

dr

ṙ
, (3.73)
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being ω the maximum energy released by the shell. To obtain (3.73) we have applied

Hamilton’s equation, defined ṙ := dr/dt̂ and pulls out factors that do not contribute

to the imaginary part of the action. Inherently the expression (3.73) is obtained in

the semi-classical regime, i.e. the emitted shell must be a probe, ω � M. This also

is justified because for large black hole masses, much larger than the Planck mass,

the only relevant field configurations taken into account by the WKB approximation

are short wavelength solutions in a relative low curvature region. This, in addition,

overcomes the ill-defined extremal limit [64].

For the geometry (3.72) the radial light-like geodesics are orthogonal to the

surfaces of constant time on which r measures the radial proper distance and is

given by

ṙ =
1√
N
(r ± r0) , (3.74)

where the plus (minus) sign corresponds to the geodesic rays going towards (away

from) the observer. Its general solution is r = r0

(
et̂/

√
N ± 1

)
. Any radial light-like

emission reach the future null infinity at t̂→ ∞. While a light-like emission leaving

the observer at t̂ = 0 reach the horizon at t̂ = ln 2/
√
N . therefore, as one increases

the number of NS5-branes the traveling time gets reduced.

Using the Feynman prescription +iε to displace the pole, the imaginary part

of (3.73) reads ImS = π
√
Nω . One does not fail to notice that: i) this result is

independent of the black hole radius and ii) that no infinities arise in this calculation,

so is mathematically well defined without any need for regularization. The previous

relation, together with (3.24), leads to the rate emission

Γ ∼ |Ψ(r)|2 ∼ e−β0ω , (3.75)

where β0 =
2π

√
N

ms
= T−1

H . The exponent contains the difference between the actions

of the higher and lower black hole mass evaluated at the same and unique tempera-

ture for the system. The emission (3.75) follows a black body distribution and hence

the LST black hole radiation is purely thermal.

The consequences of (3.75) are: i) all the corresponding states in the dual CFT

must be a priori equally weighted,and ii) one can convince oneself that cluster de-

composition applies and as a result the quantum state of Hawking radiation does

not depend on the initial state of the collapsing body. In addition, this fact implies

that the probability of emission of a shell of energy ω1+ω2 is equal to the probability

of emitting independently two shells with the same total amount of energy.
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As the radiation comes always as a pure state, the Hilbert space can be factorized

into two disjoint parts, H = Hin ⊕Hout, which correspond to states located at the

inner and outer sides of the event horizon, respectively. It will follow from the

superposition principle that the state inside the horizon must be a unique state

carrying no information at all. Summing up, this can be expressed in a somewhat

muted fashion as: the black hole at the Hagedorn temperature does not interact

with its environment and hence we can represent a state of the entire space as

|ψ(t)〉 = |ψin(t)〉 ⊗ |ψout(t)〉.

3.3.2 Locking information at the Hagedorn temperature

That the result (3.75) gives the correct behaviour for the LST system is intuitively

clear in the semi-classical approach from the very beginning since in this type of

black holes the temperature is not related with the black hole mass. It is precisely

this fact which encodes the ultimate reason for the non-thermal behaviour in the

model of [30]. To make this point more clear, instead of using the field content of

LST we retain the full asymptotic, ten-dimensional CHS background [65]

ds2 = −f(r)dt2 +
5∑
j=1

dx2j +
A(r)

f(r)
dr2 + A(r)r2dΩ2

3 , (3.76)

and dilaton e2φ = χ+ N
m2

sr
2 with χ ≡ 1 in (3.8). One then sees that the temperature

depends on the black hole mass [66]. In this case the Hawking temperature can be

determined by the surface gravity method at the event horizon and is given by

βCHS = β0

√
1 + χr20/N , (3.77)

notice that it provides an infra-red cutoff for the radial coordinate. We have used

χ as an eventual continuous variable that parameterizes the geometry (3.76). By

no means, one should not understand that all the intermediate values correspond to

supergravity solutions. Its utility is twofold: first the near horizon limit is recovered

setting χ = 0, and second it will also control the temperature; for instance χ → 0

increases the temperature to the Hagedorn one. The basic tenant is that (3.77)

relates the temperature with the size of the black hole, thus as the black hole emits,

not only the radius shrinks but also the temperature increases. This fact relates the

emission with the thermodynamic properties of the black hole and contrary to the

previous situation we expect that the radiation provides information on the black

hole state.
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As previously, the geometry at the horizon can be brought to a smooth form

with a Painlevé-like change of coordinates

t → t̂− r
√
A(r)− χf(r) arctanh

(
r

r0

√
1− χ

f(r)

A(r)

)
+

+ r0
√
A(r) log

[
2r
(√

χ+
√
A(r)

)]
. (3.78)

After using (3.78) the metric field (3.76) is reduced to

ds2 = −f(r)dt̂2 +
5∑
j=1

dx2j − 2
√
A(r)

r0
r
dt̂dr + A(r)

(
dr2 + r2dΩ2

3

)
. (3.79)

A calculation similar to (3.73) leads to the probability for a CHS black hole of mass

M to emit a shell of energy ω

Γ ∼ exp

(
−2π

√
N +Mχ ω +

χω2

4
√
N +Mχ

+ . . .

)
, (3.80)

where the ellipsis stand for terms proportional to higher powers of ω. Now for χ→ 1

(3.80) is clearly non-thermal while for χ→ 0 we recover once more the thermal emis-

sion (3.75). In view of this fact it seems wholly tenable that as the temperature is

increased, βCHS → β0, the system evolves from non-thermal to thermal, and as a

consequence an asymptotic observer could conjecture that the black hole internal

degrees of freedom are reduced during the evaporation process and eventually one

remains with a single state. The very same conclusions can be traced back from

a stringy point of view if one consider the strings as the fundamental degrees of

freedom of the black hole. In a flimsy language: as one approaches the Hagedorn

temperature strings condense leaving a residual single one, a unique state that con-

tains no information at all [67]. To substantiate this point we have computed, in the

spirit of [68], some properties of a classical string located at the stretched horizon,

i.e. a time-like curve slightly outside the global event horizon, that is of relevance

in describing the evaporation process. We expect that for sufficiently large black

hole masses both the proper distance between the stretched and the event horizon,

∼
∫ s.h.

e.h.
dr
√
grr, and the local Unruh temperature,

Tloc(r) =
1

β
√
f(r)

, (3.81)

are ballpark of the Planck order (up to a numerical factor of order 1). This implies

that the stretched horizon must be almost coincident with the event horizon, rP ≈
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r0 + δ for some positive and infinitesimal constant δ. Using (3.81) at the Planck

radius and the Planck temperature, TP ∼ G−1/2, we obtain

δ ≈ G
√
GM

β2
0 + 4GMχ

, (3.82)

where we have momentally reinstated the Newton constant G in the proper space-

time dimension. For the CHS model δ ∼
√
G/M , thus for large black hole masses

one can consider that the stretched horizon is almost on top of the event horizon.

As we increase the temperature the distance δ also increases up to reaching δ ∼
G
√
GM/β2

0 at the Hagedorn temperature. At this point the stretched horizon is

displaced towards the distant observer and swallows up all of space, provided we

ensure the validity of the supergravity approximation

M ∼ r20 � N � 1 . (3.83)

In the CHS model all the thermodynamic quantities on the stretched horizon can be

identify as those of the event horizon, with additional subleading terms suppressed

by the black hole mass. This is in contrast with the outcome at the Hagedorn

temperature where subleading contributions are no longer suppressed.

Let us continue examining the classical behavior of the stretched horizon and vi-

sualize the “number of states”. For that purpose we calculate, in the two-dimensional

flat Minkowski space at the Planck temperature TP , the mass of a ring shaped string

located between the boundary and the event horizon. It reads

m =

∫ √
GM+δ

√
GM

2πrρP dr ≈


1

GM
, if χ = 1;

M
β2
0
+O

(
GM
β4
0

)
, if χ = 0

(3.84)

where we have used the behavior ρP ∼ G−2. Notice that (3.84) matches the result

below (3.80): For the background (3.76) the string mass can be considered residual

and in accordance the black hole mass remains to be almost ∼ GM . Furthermore,

the whole mass is localized inside the event horizon. As we increase the temperature

the mass of the string forming a ring of radius rP is of the order of the black hole mass

and hence there must be only a residual mass in the interior of the event horizon.

With the expectation of a small distortion with respect to the flat Minkowski space

the approach of (3.84) is fully justified in this latter case. One can regard this

phenomenon as a progressive melting of the strings as they encounter Hagedorn

temperature conditions [69]. The energy of the strings states is so large when the
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Hagedorn temperature is approached, that the strings on the horizon will tend to join

forming a single one [70]. Thus the system evolves to a single state and consequently

the entropy is reduced. This picture matches the view where black hole states at the

Hagedorn temperature are in one to one correspondence with single string states.

3.3.3 Hawking emission via tunneling: Wrapped fivebranes

The metric (3.5) is the ultraviolet completion of a large family group of regular non-

abelian monopole solutions in N = 4 gauged supergravity, interpreted as 5-branes

wrapped on a shrinking S2 [62]. In the following we shall deal with a thermal

deformation of one of such metrics dual to N = 1 SQCD with a superpotential

coupled to adjoint matter [71]. Analyzing the emission problem with the method

outlined in Section 3.3.1 leads to the same result obtained in (3.24), i.e. a constant

outward flux of particles independent of the black hole characteristics. The metric

field in Einstein frame is given by

ds2 = e
φ0
2 r

[
−K(r)dx21 +

4∑
j=2

dx2j +Nα′
(

4

r2K(r)
dr2 +

1

ξ
dΩ2

2 +
1

4− ξ
dΩ̃2

2

)
+

+
Nα′

4

(
dψ + cos θdϕ+ cos θ̃dϕ̃

)2]
, K(r) = 1−

(r0
r

)4
. (3.85)

In addition we have a dilaton field which is linear φ = φ0+ r and a RR 3-form field.

First of all we truncate the theory to two dimensions: the radial and temporal

one. To cast (3.85) in Painlevé coordinates we chose the function f(r) in (3.71) as

f(r) =
√
N logK(r) . Then the truncated theory equivalent to (3.85) is rewritten as

ds2 = e
φ0
2 r

(
−K(r)dx21 + 4Nα′ dr2

r2K(r)
− 4

√
Nα′ r

2
0

r3
dx1dt

)
. (3.86)

To calculate the semi-classical emission one needs the radial null geodesics of the

back-reacted metric. The mass scales as M ∼ r40 , then the emission of a shell with

energy ω translates in a shift in the radius, so M − ω ∼ r41. This leads, after the

emission, to the geodesic

ṙ =
1

2
√
Nα′

r

(
r21
r2

± 1

)
. (3.87)
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Its solutions are r2 = r21

(
e±x1/

√
Nα′ ∓ 1

)
, and one finds for timings the very same

pattern as in the LST case.

Inserting the outgoing solution of (3.87) in (3.117) one obtains ImS = π
√
Nω,

from where follows once more the behavior (3.75). Thus, most probably, all metrics

which asymptotic completion is LST will emit thermally.

As in the LST case, one can check that using the mass density m = r40e
2φ0N5/2

and entropy density s = r40e
2φ0N2 [54] the emission entropy in (3.75) turns to be

directly related with Hawking-Bekenstein entropy, e−β0ω = e∆SBH .

3.4 Complex path and anomalies in LST

In this section we reproduce the work [72] where we have studied the Hawking ra-

diation of NS5 and LST using two semi-classical methods: the complex path and

the gravitational anomaly. As in the previous section NS5 exhibits non-thermal

behavior that contrasts with the thermal behavior of LST. We remark that energy

conservation is the key factor leading to a non-thermal profile for NS5. In con-

trast, LST keeps a thermal profile even considering energy conservation because the

temperature in this model does not depend on energy.

Since the pioneering proposal of Hawking that black holes can radiate [8], much

work has been done in order to obtain a complete theory of quantum gravity. When

Hawking announced his amazing results, a new powerful paradox emerged. The

information loss paradox with the apparent violation of unitarity principle has con-

sequences on well-established quantum mechanics. A recent effort in order to solve

this paradox has been done studying different semi-classical approaches such as the

tunneling method, studied in the preceding section, proposed by Parikh and Wilczek

[30, 32], the complex path analysis [38, 73, 74] or the cancellation of gravitational

anomalies [75, 76, 77].

In order to develop our study we have reduced the ten-dimensional metric of

LST to two-dimensional one, see (3.10−3.12). Momentally we make a comment on

the validity of this truncation of the metric (3.5) to two dimensions. The interesting

points concern: i) the fate of dimensional and field content reduction on the S3

modes is consistent [78]. ii) Furthermore, both the R5 and S3 wrap factors are
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independent of the (t, r) coordinates. As a consequence the equation of motions of

these modes can be taken static and r independent, i.e. the emission in the t − r

plane does not alter the dynamics in the transverse coordinates to it. Hence all the

physics will be analyzed within the propagation of massless particles in the r − t

sector of the metric. We have verified that the NS5 model shows a non-thermal

emission whereas LST shows a thermal emission. This last conclusion matches with

the Hagedorn properties of LST, namely the temperature of LST corresponds to the

Hagedorn temperature.

Complex path method and anomalies yields the same results as the tunneling

method, analyzed in [59], for the temperature and the emission rate. It is worth to

mentioning that in the classical computation of the Bogoliubov coefficients all the

results for emission rates shows thermal profiles due to the lack of energy conserva-

tion. This fact had driven Hawking to state that all the information that falls into

the black hole is lost for ever, establishing in this way the information loss para-

dox. Nevertheless, one hopes to overcome this weird conclusion using semi-classical

methods.

3.4.1 Complex path method

The complex path method has been developed in [38], in order to calculate particle

production in Schwarzschild-like space-time and it was extended for different coordi-

nate representations of the Schwarzschild space-time [73, 74]. Nevertheless complex

path analysis had already been discussed by Landau and Lifshitz [79], where it

was used to describe tunneling processes in non-relativistic semi-classical quantum

mechanics.

We will follow the reference [38] in which the authors avoid to work in the Kruskal

representation. They use the standard coordinates in the r− t sector. However the

method presents a disadvantage because one finds a coordinate singularity at the

horizon. Nevertheless using the techniques of complex integration one bypasses the

singularity. We also want to mention that the method of complex path leads to the

same results with those in [27]. In both methods, for the Schwarzschild space-time

and also as we will see in this section for NS5 and LST space-time, it has been found

that the relation between emission and absorption probabilities is of the form
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Pe = e−βωPa , (3.88)

where ω is the energy of the emitted particles. We are tempting to compare this

relation with the standard thermal Boltzmann distribution for blackbody radiation

where β−1 is identified with the Hawking temperature. We have verified that this

is the case, if we compare our results with the temperature calculated using the

definition of surface gravity for example. It is noteworthy to say that this method

allows one to derive temperatures for black holes comparing probabilities of emission

and absorption but it is not able to calculate the spectrum of thermal radiation. In

that sense the tunneling method is so far incomplete. To remove this shortcoming

the authors in [80] presented a new mechanism.

In order to apply the complex path method to NS5 and LST we have constructed

the semi-classical action obtained from Hamilton-Jacobi equations. Then we have

computed the semi-classical propagator K(r2, t2; r1, t1). Eventually we have calcu-

lated the emission and absorption probabilities.

We consider the equation of motion of a massless scalar particle �φ = 0 in the

background (3.12),

−A(r) ∂
2

∂t2
φ(t, r) +

f(r)

r3
∂

∂r

[
r3f(r)

∂

∂r
φ(t, r)

]
= 0 . (3.89)

Using the standard ansatz solution

φ(t, r) ∼ e
i
~S(t,r) , (3.90)

and substituting in (3.89) we get an expression in terms of the action S(t, r),

−A(r)
(
∂S

∂t

)2

+ f(r)2
(
∂S

∂r

)2

+

+
~
i

[
−A(r)∂

2S

∂t2
+ f(r)2

∂2S

∂r2
+
f(r)

r3
d(r3f(r))

dr

∂S

∂r

]
= 0 , (3.91)

where we have collected the terms with ~ dependence. The following step is to write

the action as an expansion in a power series of (~
i
),

S(t, r) = S0(t, r) +

(
~
i

)
S1(t, r) +

(
~
i

)2

S2(t, r) + ... . (3.92)
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Substituting the above expansion in (3.91) and neglecting terms of order (~
i
) and

higher, we obtain a non-linear first order partial differential equation which corre-

sponds to the Hamilton-Jacobi equation of motion to the leading order in the action

S,

−A(r)
(
∂S0(t, r)

∂t

)2

+ f(r)2
(
∂S0(t, r)

∂r

)2

= 0 . (3.93)

We are interested in the evaluation of the semi-classical propagator which inform us

about the amplitude for a particle going from r1 at time t1 to r2 at time t2. In the

saddle point approximation we get

K(r2, t2; r1, t1) = N exp

[
i

~
S0(r2, t2; r1, t1)

]
, (3.94)

where N is a normalization constant. Applying separation of variables in (3.93) we

get

S0(r2, t2; r1, t1) = −ω(t2 − t1)± ω

∫ r2

r1

√
A(r)

f(r)
dr , (3.95)

the plus/minus sign corresponds to ingoing/outgoing particles respectively and ω is

the energy of the emitted or absorbed particle.

The integral (3.95) is not well behaved if the horizon r0 is within the region of

integration. This turns to be the case since we are interested in the emission of

particles through the event horizon, so the region of integration runs from inside the

horizon to outside.

First we consider the propagation of an outgoing particle in the inner region

r1 < r0. Applying the usual complex analysis tools, we deform the contour of

integration around the pole r0 in the upper complex half-plane. Obtaining for the

radial part of (3.95)

Se0 =
iπω

2
r0
√
A(r0) . (3.96)

We will call it emission action because we simply consider the emission of an outgoing

particle propagating from inside the horizon to the outside.

In the same way one proceeds with analogous analysis to evaluate the action at

lowest order for absorbed particles. In that case we are considering the propagation

of an ingoing particle in the outer region, r0 < r2. Deforming the contour of in-

tegration in the upper complex half-plane, eventually we obtain the same result as

the emission process up to a change of sign. Now we are obtaining the absorption
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action for a particle that propagates from the region outside of the horizon to the

inside

Sa0 = − iπω
2
r0
√
A(r0) . (3.97)

We are interested in the expressions (3.96) and (3.97) in order to evaluate the prob-

abilities of the emission and absorption processes. Thereby using the definition of

the probability: P = |K(r2, t2; r1, t1)|2, and substituting the expression for the cor-

responding actions, we finally obtain for the emission and absorption probabilities

Pe ∼ exp
[
−π
~
ωr0
√
A(r0)

]
, Pa ∼ exp

[π
~
ωr0
√
A(r0)

]
, (3.98)

where we have omitted the normalization constants. Eventually we are interested

in writing the relation between emission and absorption probabilities,

Pe = exp

[
−2π

~
ωr0
√
A(r0)

]
Pa . (3.99)

At first sight we observe that the absorption process dominates over the emission,

it is easier for the system to absorb than to radiate particles. Also we note some

misleading behavior in the expression for the absorption probability (3.98), because

we could think that one might get a probability absorption greater than 1. However

we only have considered the spatial contribution of the action in order to calculate

the probabilities of emission and absorption processes. Instead of this we must also

have considered the time contribution as proposed in the work [81].

Comparing (3.99) with the same relation in a thermal bath of particles (3.88),

we can identify the temperature of our system (taking ~ = 1 and ms = 1) as

T =
1

2πr0
√
A(r0)

=
1

2π
√
χr20 +N

, (3.100)

that coincides with the value of temperature obtained in (3.24).

So far we have studied NS5/LST systems without backreaction. The next step is

to consider the backreaction of the metric due to the emission process. Our starting

point in the evaluation of the backreaction is the expression of the action for the

emission process (3.96). In our NS5/LST model we have the following relation

between the event horizon and the mass of the black hole: r20 ∼M , where M is the

mass of the black hole and the factors omitted here are not relevant to our study.
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When the metric backreacts in the emission process the energy conservation implies

that r20 → r20 − ω. The shrink of the event horizon rides the tunneling emission

between turning points defined just inside and just outside of the event horizon.

Once the emission has been carried out we perform the previous change in (3.96),

Se0 =
iπ

2
ω
√
χ(r20 − ω) +N . (3.101)

Expanding in low energies we get

Se0 =
iπ

2

(
ω
√
χr20 +N − χω2

2
√
χr20 +N

+O(ω)3

)
. (3.102)

Calculating the emission probability for both models we obtain

Pe ∼


exp

[
−π

~

(
ω
√
r20 +N − ω2

2
√
r20+N

+ ...

)]
if χ = 1 (NS5);

exp
[
−π

~ω
√
N
]

if χ = 0 (LST).

(3.103)

We see higher-order correction terms corresponding to the NS5 emission probability,

which indicate that the emission is not purely thermal. On the other hand the

emission probability expression corresponding to the LST model is exact, which

indicates that the emission is purely thermal.

In this work, we have concluded that the results obtained from the tunneling

formalism in [30] are nothing more than an extension of the Hamilton-Jacobi for-

malism taking into account the energy conservation, which induces the backreaction

of the event horizon. In our particular case we are facing with an anomalous model,

in the sense that it does not fulfill the previous expectations about non-thermal

emission. The LST model emits thermal radiation irrespective whether the energy

conservation holds, or not.

In order to analyze the deviations from the thermal behavior of the NS5 model

it would be relevant to perform the computation of the greybody factors. So that

we must solve the radial part of the equation of motion (3.89). As far as we know

this equation cannot be solved analytically, therefore a numerical analysis is needed

in order to show up the non-thermal character of the NS5 model. Even so, we can

elucidate that the non-thermal behavior of the NS5 model comes from the throat

region. In this region the dilaton grows linearly pointing out that gravity becomes
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strongly coupled far down the throat, and states with large quantum numbers exist.

On the other hand, the near horizon limit of the NS5, i.e. LST, decouples the mode

interactions between the bulk and the brane. The spectrum reduces to less excited

states leading to a thermal behavior with the Hagedorn temperature, see [82] for a

complete discussion.

3.4.2 Anomalies

In this section we will present another successful semi-classical method for the com-

putation of the Hawking radiation from an evaporating black hole. The method is

based on the cancellation of gravitational anomalies in a two-dimensional chiral the-

ory taken as effective theory near the event horizon. This method was first proposed

in [75]. Gravitational anomalies are anomalies in general covariance, i.e. general co-

ordinate transformations (diffeomorphism), and they manifest the non-conservation

of the energy-momentum tensor.

The authors in [75, 76] managed the treatment of gauge and covariant anomalies

deriving an effective two-dimensional theory close to the horizon. They built an

effective action performing a partial wave decomposition in tortoise coordinate and

dropping potential terms which vanish exponentially fast near the horizon. Thus

physics near the horizon can be described by an infinite collection of (1+1) fields

with the metric reduced to the r − t sector. In the aforesaid works the authors

derived the Hawking radiation flux by anomaly cancellation, splitting the space-

time into the near horizon region where the anomaly holds and the outside region

where the conservation law is preserved. They carried out the calculation using the

consistent chiral anomaly form of the energy-momentum tensor, see [83, 84],

∇µT
µ
ν =

1

96π
√
−g

εβδ∂δ∂αΓ
α
νβ (3.104)

and the covariant boundary condition at the horizon. It is the cancellation of this

anomaly which led to the appearance of the Hawking radiation flux.

On the other hand it is known that there are two types of anomalies. Covariant

anomalies, which transform covariantly under gauge or general coordinate trans-

formations but they do not satisfy the Wess-Zumino consistency condition, And

consistent anomalies, which satisfy the consistency condition but they do not trans-
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form covariantly under gauge or general coordinate transformations. In our study

we adopt the procedure carried out in [77] where the author uses a more coherent

frame, working with covariant forms both for the expression of the chiral anomaly

and for the boundary condition. Unlike the previous works it is not necessary to

split the space-time into two different regions: near the horizon and far from the

horizon.

First of all we consider the physics near the horizon of the NS5 and LST models

described by an infinite collection of (1+1) scalar field particles propagating in the

background (3.12). It is not necessary to work with the full metric because only the

r − t sector is relevant to the emission processes, obtaining in this way the same

results for the full theory as for the effective two-dimensional theory. In this frame

we can consider that only the outgoing modes are present. The ingoing modes are

lost into the black hole and they do not affect at the classical level. Nevertheless

the total effective action must be covariant. Thereby the quantum contribution of

these irrelevant ingoing modes will supply the extra term, a Wess-Zumino term, in

order to cancel the gravitational anomaly providing the Hawking flux [76]. The loss

of the ingoing modes behind the horizon of the black hole makes the effective theory

chiral, obtaining consequently a gravitational anomaly [83, 84]. Following [77], we

adopt the expression for the covariant form of the gravitational anomaly

∇µT
µν =

1

96π
√
−g

ενµ∇µR , (3.105)

where R is the Ricci scalar and ενµ is the Levi-Civitá tensor that in our case takes

the values εtr = −εrt = 1 and zero for other contributions. The covariant boundary

condition at the event horizon is

T rt (r = r0) = 0 . (3.106)

Noticing that we are working with a static metric, we evaluate the equation (3.105)

for the effective two-dimensional theory in the r − t sector. Eventually we get

∂r(
√
−gT rt ) =

1

96π
gtt∂rR . (3.107)

The Ricci scalar for NS5 and LST models is
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R =
f ′A′

2A2
− f ′′

A
, (3.108)

where the prime denotes derivative with respect to the coordinate r. Defining the

new function

N r
t ≡ 1

96π
(−ff

′A′

2A2
− f ′2

2A
+
ff ′′

A
) , (3.109)

we can write (3.107) as

∂r(
√
−gT rt ) = ∂rN

r
t . (3.110)

Then integrating the equation (3.110) we obtain

√
−gT rt = b0 + (N r

t (r)−N r
t (r0)) , (3.111)

where b0 is an integration constant that can be evaluated implementing the covariant

boundary condition (3.106). Doing so it yields the value b0 = 0. Hence (3.111)

becomes

T rt =
1√
−g

(N r
t (r)−N r

t (r0)) . (3.112)

The Hawking radiation flux is measured at infinity where the covariant gravitational

anomaly vanishes. Therefore we compute the energy flux by taking the asymptotic

limit of (3.112)

T rt (r → ∞) = − 1√
−g

N r
t (r0) . (3.113)

Evaluating (3.109) at the event horizon, r0, and considering the value of the surface

gravity κ = 1√
N+χr20

, we finally obtain for the energy flux at infinity

T rt (r → ∞) =
1√
−g

κ2

48π
, (3.114)

which it is of course the Hawking radiation flux for a black hole.
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3.5 Validity of the Semi-classical approaches

The previous analyses are based on a semi-classical approaches, and even if top

of them one can implement some extra quantum corrections, the approaches are

not free of assumptions and possible criticisms. For instance an observable effect of

string theory is the very last steps in the black hole evaporation. In the usual picture

the final evaporation process takes place at planckian temperatures and thus the last

radiated particles would carry energy of order of the Planck scale. One wonders if

at these energies the approach of the above section is still reliable. If it does, energy

conservation imposes a constrain in the minimum size of the remnant, because the

energy of the emitted particles can not exceed the remainder mass.

Common lore assigns to the previous optical approximation treatment a validity

meanwhile the wavelength of the bulk probe is much smaller than the local curvature

of space-time

1

momentum scale
� local curvature length scale . (3.115)

In terms of local coordinates, the curvature length scale, ∆r, can be written as a

function of the scalar curvature as ∆r = 1/
(
grr

√
R
)
. This function is bounded

from below with a single minimum located at r ≈ r0/2, and then (3.115) leads

to p � 2/r0. As the black hole emits and shrinks, the momenta of the space-like

geodesics probe must increase to fulfill the inequality (3.115). At some point the

mass of the emitted probe would be larger than the remaining mass in the black

hole and the semi-classical approach will break down.

Considering the behavior of the radial momenta pr ∼ p0grrṙ = ω

√
N+χr2

r−r0 as a

function of the emitted particle energy, we can see that inequality (3.115) leads to

ω �
√

2N(3Nr2 + r20)(2N + 5χr2)

r(r − r0)(N + χr2)
. (3.116)

Notice that a particle near the horizon needs a large amount of energy in order to

escape up to the boundary.
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3.6 Further thermodynamic relations

One should keep in mind that any observable quantity is computed at the boundary

and receives contributions from both supergravity solutions, (3.5) with χ = 0 and

χ = 1. Usually in a given thermodynamic regime one solution dominates over the

other and most of the bulk of the physical quantity can be computed by considering

only one of them. We shall see in the sequel that this is not the case for these

models.

The basic thermodynamic quantity at play is the Helmholtz free energy, that

can be casted in terms of the action via the relation F = I/β. The action consists

of two terms

I = Igrav + Isurf . (3.117)

The first term on the right hand side of equation (3.117) is

Igrav =
1

2κ210

∫
M
d10x

√
g

(
R− 1

2
∂µφ∂

µφ− 1

12
e−φH2

(3)

)
, (3.118)

being M a ten-dimensional space-time. While the second term of the equation

(3.117) is the surface contribution

Isurf =
1

κ210

∮
Σ

KdΣ , (3.119)

with Σ the boundary that encloses the ten-volume M in (3.118), K is the extrinsic

curvature, Kµν = nσ∂σgµν and nσ∂σ is the outward directed unit normal vector.

If one calculates directly the action (3.117) for the solution (3.76) the result

turns to be divergent. To regularize the solution we use an ultraviolet cutoff Λ that

eventually will tend to infinity. Furthermore, we perform a fiducial renormalization,

subtracting a reference background. It seems natural to choose the later as the

corresponding extremal solution. The calculation is lengthly but straightforward:

the on-shell Euclidean actions of the extremal and non-extremal solutions are given

by

Ie =
Vol(R5)Vol(S3)

2κ210

∫ β′

0

dt

[
3

2
Λ2

(
3N + 4Λ2χ

N + Λ2χ

)
−
∫ Λ

0

dr
N2r

(N + r2χ)2

]
, (3.120)
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and

Ine =
Vol(R5)Vol(S3)

2κ210

∫ βCHS(Λ)

0

dt

[
N(9r2 − 5r20) + 4χr2(3r2 − 2r20)

2(N + r2χ)

−
∫ Λ

r0

dr
Nr(N − χr20)

(N + r2χ)2

]
,

(3.121)

respectively. At the boundary, Λ → ∞, the temperature of both solutions must be

the same. For this purpose the temporal period in the extremal case is adjusted to

be β′ = βCHS(Λ)
√
F (Λ) .

For fixed, but otherwise arbitrary N and r0, we find the renormalized action

I = lim
Λ→∞

[Ine − Ie] = lim
Λ→∞

1

4κ210

Vol(R5)(2π)3

(N + κΛ2)3/2

(
−2Λ(2N + 3κΛ2)(N + κr20)

√
Λ2 − r20

+ N2(4Λ2 − 2r20) + 2κ2Λ2(3Λ2 − 2r20)r
2
0 +Nκ(6Λ4 + Λ2r20 − 3r40)

)
→ 0 (3.122)

implying that the free energy of the system vanishes. This means that none of

the actions dominate over the other, and to obtain an observable one has to add

the contributions from both actions. In order to avoid a divergent behavior of the

renormalized action, we point out that it is crucial to carry out the subtraction of

the reference background before to take the limit in which the cutoff Λ tends to

infinity.

It is also instructive to compute in an independent way some of the thermody-

namic contributions to the Helmholtz free energy, F = E − TS = 0. For instance

the entropy goes as

S =
Area

4G10

=
1

2G10

Vol(R5)π2r20

√
N + χr20 =

1

4G10

Vol(R5)πr20βCHS , (3.123)

and turns to be χ dependent, but the combination entering in the Helmholtz free

energy it is not

TCHSS =
1

4G10

Vol(R5)πr20 = TLSTS . (3.124)

Notice that (3.123) matches the behavior described by (3.84): as χ → 0 the black

hole degrees of freedom, i.e. strings, joint together up to forming a single state. As

a consequence the entropy decreases.

We end this section by noticing that the exponent in (3.75) is just the variation

of the Bekenstein-Hawking entropy. In this precise case the mass and the entropy
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density are proportional, hence it follows that e−βω = e∆SBH . This matches the

statistical picture in which large fluctuations are suppressed and supports the idea

that in this background the Bekenstein-Hawking area-entropy relation, SBH = A/4,

can be obtained by counting the degeneracy states [11].

3.7 Discussion and remarks

We have reviewed briefly some aspects about LST thermodynamics. We have ex-

posed the thermal emission of LST due to the non-energy dependence of the Hage-

dorn temperature. In addition, we have evaluated the temperature experienced by a

scalar particle-like observer, thereby we have verified that the Hagedorn temperature

of LST is a maximum bound. Furthermore we have studied the Hawking radiation

of the NS5 and LST black hole models using two semi-classical emission methods:

the complex path method and the cancellation of the gravitational anomaly. It shall

be stressed that using both methods we have recovered our previous results derived

in [59] where we worked using the tunneling formalism. The complex path method

[38, 74] shows how to evaluate the emission rate in the framework of the Hamilton-

Jacobi formalism. We have proved that imposing the energy conservation, in order

to take into account the backreaction of the metric during the emission process, we

reproduce exactly the same results with those derived in the tunneling formalism

[30, 32]. We would like to point out the advantage of the complex path method

over the tunneling method. First of all, we avoid heuristic explanations about the

tunneling mechanism in the process of the emission. Secondly, we work with the

well-known Hamilton-Jacobi equations plus the imposition of the energy conserva-

tion. Finally, it is not necessary to change the standard coordinates of the metric

into Painlevé coordinates. We conclude that the tunneling method is nothing more

than the complex path method plus energy conservation.

We have verified that another successful method to evaluate Hawking radiation

in NS5 and LST models is that of the cancellation of the gravitational anomaly [75].

However, it is argued that the method fails for non-asymptotically flat space-times

like de Sitter space-time and Rindler space-time. In [85] it is proposed a new method

based on the chiral nature of field theories in the near horizon region of the black

hole, but does not depend on the existence of a chiral anomaly. It defines a new

effective energy-momentum tensor (either in consistent or in covariant form same
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results are obtained) T µ
ν = T µν ∓Nµ

ν that is conserved ∂µT µ
ν = 0. The physics in the

whole part of the manifold external to the horizon can be described without the need

to decompose the background in two pieces, i.e. near horizon and asymptotic. Thus

the new method works even for non-asymptotically flat space-times as de Sitter and

Rindler space-times.

Summarizing, we have shown that all the above methods lead to a non-thermal

emission for the NS5 black hole and to a thermal one for the LST black hole, see

(3.103). The latter can be interpreted as the thermal limit of the former. The entire

process of black hole evaporation, except for the final period when the black hole is

of Planckian size, can be summarized according to the following patterns: Starting

from the NS5 system at a given temperature we checked, in a semi-classical approx-

imation, that the black hole emission is non-thermal (3.80). The black hole contains

many degrees of freedom coupled with its environment. At this point the system is

thermodynamically irreversible, and the entropy of the surrounding increases as the

black hole emits. As the emission takes place the black hole temperature increases

while, both the mass and the emission rate, decrease and the latter becomes pure

thermal at the Hagedorn temperature (3.75). The interference term vanishes at this

point and the black hole system is thermodynamically reversible and consists of a

single state. This single state radiates, while the black hole temperature remains

completely independent of its mass. Thus, as the LST black hole evaporates, its

energy flux is exactly constant.

Once this point is reached, one could think that we deal with a stable remnant

with zero entropy. That this is not the case can be inferred from the stringy cor-

rections to the entropy as a function of the energy. This gives a thermodynamically

unstable system [45] which in turn implies that the probability of emission diverges.

In order to have a rough idea of the latter effect we use the area law relation but

incorporating its first quantum corrections

Sc =
Area

4
+ α log

(
Area

4

)
+

γ

Area
+ . . . . (3.125)

Taking into account the relations of the mass and energy densities, the black hole

emission (3.75) is replaced at leading order by

Γ ∼
(
Area1
Area0

)α
e∆SBH =

(
1− ω

M

)α
e−β0ω . (3.126)

The above expression together with the fact that the value of α is negative –the

system is unstable– shows that the trend in (3.126) is that as the system evolves in
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time the emission increases, i.e. without further considerations at play the system

would fully evaporate without leaving any relic behind it. This fact is clearly driven

by the sign of α, which is negative. For a more complete discussion see [86]. The

above picture relies in a truncation of (3.125) and as one approaches Planck scales

one must consider that subleading contributions in (3.125) are enhanced and they

wash out any solid conclusion.

We also have found that for theories which their ultraviolet completion is LST,

the radiation is also that of a blackbody at a fixed temperature (3.24).

Finally, the cluster decomposition principle is a crucial physical requirement

which states that very distant experiments produce uncorrelated results, thus es-

tablishing the local behavior of the field theory. Cluster decomposition principle

states that if multi-particle processes are performed in N very distant laboratories,

then the S-matrix element for the overall process factorizes. This factorization en-

sures a factorization of the corresponding transition probabilities, corresponding to

uncorrelated experimental results. In the line of the works [87, 88] where the authors

linked the existence of correlations among tunneled particles and the entropy con-

servation of the full system (black hole plus Hawking radiation), we have calculated

the successive emission probabilities for two particles of energies ω1 and ω2 using

(3.103) for each model, respectively. We have found that the NS5 model does not

satisfy cluster decomposition

ln | Γ(ω1 + ω2) | − ln | Γ(ω1)Γ(ω2) |=
ω1ω2

2
√
N + r20

. (3.127)

On the other hand we have found that the LST model satisfies cluster decomposition

as we expected

ln | Γ(ω1 + ω2) | − ln | Γ(ω1)Γ(ω2) |= 0 , (3.128)

where Γ(ω1) and Γ(ω2) are the emission probabilities corresponding to a particle

of energy ω1 and ω2, respectively and Γ(ω1 + ω2) is the emission probability of a

particle with energy ω1+ω2. We have found that Γ(ω1 | ω2) = Γ(ω1+ω2) is fulfilled

at low energies, namely, the emission probability of a particle ω2 conditioned by the

previous emission of a particle ω1 is the same as the emission of a single particle of

energy ω1+ω2. With these results at hand we can conclude that NS5 black hole there

are correlations among emitted particles. This fact is intimately related with the
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non-thermal emission rate (3.103). Regarding (3.127) one hopes that the successive

Hawking emissions could preserve unitarity avoiding in such a way the information

loss paradox. However it is not the case for the LST black hole where the thermal

emission rate (3.103) leads us to cluster decomposition. Therefore the successive

emissions of particles are independent among them, and thus the information of the

initial states remains hidden.

3.8 Spectrum

So far we have calculated the temperature and the emission rate of NS5 and LST

black holes. Nevertheless, in order to obtain a complete study we must evaluate

the emission spectrum even taking into account the back-reaction of the metric.

In [80], the authors calculated the Hawking radiation spectrum corresponding to a

spherically symmetric static black hole. It is our aim to perform a similar analysis

corresponding to NS5 and LST black holes. Our starting point will be the two-

dimensional action (3.11) at leading order (3.95). This action can be written as

S0(r, t) = ω(t± r∗) , (3.129)

where r∗ is the tortoise coordinate defined as

dr∗ =

√
A(r)

f(r)
dr . (3.130)

Then if we consider the outgoing/ingoing null coordinates

u = t− r∗ , v = t+ r∗ , (3.131)

we can define the right/left modes inside and outside of the black hole in the following

way,

φRin = e−
i
~ωuin , φLin = e−

i
~ωvin ,

φRout = e−
i
~ωuout , φLout = e−

i
~ωvout . (3.132)

The Kruskal coordinates corresponding to the inside and outside of the NS5 and

LST black holes are defined, see [1], as

Tin = eκr
∗
in cosh(κtin) , Xin = eκr

∗
in sinh(κtin),

Tout = eκr
∗
out sinh(κtout) , Xout = eκr

∗
out cosh(κtout) , (3.133)
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where κ is the surface gravity corresponding to each model. The two sets of Kruskal

coordinates are then connected: Tin → Tout and Xin → Xout, by the following

transformation relation between the coordinates t and r

tin → tout − i
π

2κ
, r∗in → r∗out + i

π

2κ
. (3.134)

Moreover, the null coordinates are also transformed as

uin → uout − i
π

κ
, vin → vout . (3.135)

Eventually we have obtained a transformation relation between the left/right modes

inside and outside the black hole,

φRin → φRout e
−πω

~κ , φLin → φLout . (3.136)

This last relation is precisely the relation that one obtains between the Bogoliubov

coefficients in the standard study of the emission of Hawking radiation (2.31) and

(3.66).

3.8.1 Blackbody spectrum

We are going to construct the density matrix operator corresponding to an outside

observer for an n number of bosons and fermions. In this way we will be able to

compute the average number of particles (bosons or fermions) emitted by the black

hole. We will see that the emitted spectrum corresponds to the blackbody spectrum

without taking into account the back-reaction of the metric. For a more detailed

calculations see Appendix E.

We construct the physical state associated to a system of n number of non-

interacting virtual pair of particles created inside the black hole,

|ψ〉 = N
∑
n

|nLin〉 ⊗ |nRin〉 . (3.137)

Applying the relations between modes (3.136), we get the physical state measured

by the observer outside of the black hole which is necessary to evaluate the density

matrix operator,

|ψ〉 = N
∑
n

e−
πωn
~κ |nLout〉 ⊗ |nRout〉 . (3.138)
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The normalization constant N is determined using the orthonormalization condition

〈ψm|ψn〉 = δmn ,

N =

(∑
n

e−
2πωn
~κ

)− 1
2

. (3.139)

For bosons (n = 0, 1, 2, ...), and fermions (n = 0, 1), the normalization constant is

respectively

Nb =
(
1− e−

2πω
~κ

) 1
2
, Nf =

(
1 + e−

2πω
~κ

)− 1
2
. (3.140)

Henceforth we will only perform the calculations for the boson state system, and

one can proceed in analogous way for the fermion system.

We write the density matrix operator for the boson system as

ρb = |ψb〉〈ψb|=
(
1− e−

2πω
~κ

)∑
n,m

e−
πω(n+m)

~κ |nLout〉 ⊗ |nRout〉 〈mL
out|⊗〈mR

out| , (3.141)

where |nout〉 and |mout〉 are orthonormalized outside eigenstates. Then tracing over

the left modes we get the matrix density operator in terms of the right eigenmodes,

ρRb =
(
1− e−

2πω
~κ

)∑
n

e−
2πωn
~κ |nRout〉〈nRout| . (3.142)

Now we compute the average number of particles detected at asymptotic infinity

using the relation 〈n〉 = Tr(nρR), where the trace is taken over | nRout〉 eigenstates.
We have obtained for bosons and fermions respectively

〈nb〉 =
1

e
2πω
~κ − 1

, 〈nf〉 =
1

e
2πω
~κ + 1

. (3.143)

Both distributions correspond to a blackbody spectrum with Hawking temperature

defined as TH = ~κ
2π
. We can identify the Bose-Einstein distribution for bosons and

the Fermi-Dirac distribution for fermions.

3.8.2 Hawking radiation flux

Integrating over all energy range the expression for the average number of parti-

cles (3.143), we will give the flux of bosons and fermions, respectively, seen by an

asymptotic observer,

F∞ =
1

2π

∫ ∞

0

〈nb〉 ω dω =
~2κ2

48π
=

π

12
T 2
H ,

F∞ =
1

2π

∫ ∞

0

〈nf〉 ω dω =
~2κ2

96π
=

π

24
T 2
H . (3.144)
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3.8.3 Back-reaction spectrum

During the emission of the Hawking radiation we have not considered the back-

reaction of the metric. In this section our aim is to evaluate it. In [72] we had showed

that the back-reaction effect was introduced imposing the energy conservation in the

framework of the Hamilton-Jacobi formalism. We need to know how the modes are

affected by the back-reaction of the metric. Looking at the transformation expression

between the modes (3.136), we write the new transformation relation between the

modes taking into account the back-reaction as

φ̃Rin → φ̃Rout e
−πω

~κ̃ , φ̃Lin → φ̃Lout , (3.145)

where φ̃R,Lin,out are the back-reacted modes and

κ̃ =
1√

χ(r20 − ω) + N
m2

s

, (3.146)

is the back-reacted surface gravity for the NS5 and LST models. In order to calculate

the emission probability corresponding to a mode that tunnels through the event

horizon and emerges to the outside of the black hole, we use the above relation

between the right (outgoing) modes (3.145), obtaining

Pe = |φ̃Rin|2→ |φ̃Rout e−
πω
~κ̃ |2= e−

2πω
~κ̃ . (3.147)

Therefore if we make an expansion at low energies we obtain for the emission prob-

ability observed by an asymptotic observer

Pe = exp

− ω

TH

1− χω

2
(
χr20 +

N
m2

s

) − χ2ω2

8
(
χr20 +

N
m2

s

)2 + ...


 , (3.148)

where TH is the Hawking temperature (3.24). This result coincides with [59, 72] but

now we have avoided the problem of the temporal term showed in [81]. Moreover,

we have evaluated the absorption probability corresponding to an incoming mode;

in this case the left (incoming) mode that propagates toward the center of the black

hole does not change, see (3.145), whereby the absorption probability will be

Pa = |φ̃Lin|2→ |φ̃Lout|2= 1 . (3.149)

Thus using the principle of detailed balance, Pe = e−βωPa, we see from (3.147) and

(3.149) that β̃ = 2π
~κ̃ . Then we can conclude that there exists an effective temperature
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for the back-reacted NS5 and LST black holes whose value is

T̃ = β̃−1 =
~

2π
√
χ(r20 − ω) + N

m2
s

. (3.150)

Of course the effective temperature (taking into account higher order terms in ω)

that appears in the emission rate (3.148) is nothing more than the expansion at low

energies of the effective temperature (3.150). Eventually we can write the emission

probability (3.148) in a more compact form as

Pe = e−ω/T̃ , (3.151)

which resembles the thermal emission corresponding to a perfect blackbody at tem-

perature T̃ . In the spirit of the work [89], we could think that when we do not con-

sider the back-reaction of the metric the emission is purely thermal, Pe ∼ e−ω/TH ,

with a spectrum corresponding to a blackbody with temperature (3.24). On the

other hand, when we are taking into account the back-reaction, i.e. energy conser-

vation, the emission is not strictly thermal. Nevertheless, we can define an effective

temperature (3.150) and consider that the black hole is emitting as a black body

with this effective temperature, (3.151). We also see that the deviation from pure

thermal behavior of the spectrum is

T̃

TH
=

√1− χω

χr20 +
N
m2

s

−1

. (3.152)

Furthermore the results for the number of emitted particles (3.143) and fluxes (3.144)

are subjected to the back-reaction effect through the factor e
2πω
~κ̃ , in which the back-

reacted surface gravity, κ̃, appears. We may also expand at low energies the equa-

tions (3.143) and (3.144), obtaining higher order energy terms and thus the new

spectrum deviates from the pure blackbody radiation spectrum.

3.9 Greybody factor

In this section we will compute the decay rate of an excited black hole into neutral

scalars,

Γ = σabs ρ
(ω
T

) d4k

(2π)2
, (3.153)



3.9. Greybody factor 71

given in terms of the thermal factor

ρ
(ω
T

)
=

1

eω/T − 1
, (3.154)

and the classical absorption cross section, which corresponds to the greybody factor.

In order to calculate the greybody factor of LST black hole we have basically followed

the works [21, 23, 24]. We start considering the Klein-Gordon equation �φ = 0

describing the propagation of a massless s-wave scalar particle minimally coupled

to the fixed background (3.5). We obtain the absorption cross section as the ratio

of the flux into the black hole at the future horizon to the incoming flux from the

infinity,

σabs =
Fabs

Fin

. (3.155)

Since we are interested in the r−t sector of the metric we must solve the equation

(3.89) in the background (3.12). In terms of the new variable z = f(r), the equation

(3.89) becomes

z
∂

∂z

(
z
∂

∂z
φ(z)

)
+

α

(1− z)2
φ(z) = 0 , (3.156)

with

α ≡ ω2N

4m2
s

, (3.157)

hereafter for simplicity we take ms = 1. There exist two possible approximations: i)

the low-energy regime, ω
√
N � 1 and ii) the dilute gas region, r0 � N , for which

the system resembles the D1−D5 system in the limit r0, r1, rn � r5. Performing a

function substitution of the form φ(z) ≡ zα(1 − z)βF (z), the equation (3.156) can

be reduced to an hypergeometric equation, see e.g. [24]. Provided we choose

α± = ± i
ω
√
N

2
, β± =

1

2

(
1±

√
1− ω2N

)
, (3.158)

the solution of (3.156) becomes

φ(z) = C1z
α+(1− z)β±F (α+ + β±, α+ + β±; 1 + 2α+; z) +

C2z
α−(1− z)β±F (α− + β±, α− + β±; 1 + 2α−; z) , (3.159)

where C1 and C2 are constants. The boundary conditions are

• At the event horizon (z → 0): purely ingoing waves.

• At spatial infinity (z → 1): purely outgoing waves.
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Taking into account the first boundary condition we pick the first term on the right

hand side of (3.159) as solution. Furthermore, both roots of β give the same result,

thus henceforth we drop the subindex.

Expanding the solution for large r (or equivalently z → 1) and neglecting the

divergent solution, we obtain an asymptotic solution in the inner region

φa(r) = Ca
Γ(1− iω

√
N) Γ(−

√
1− ω2N)

Γ
(

1−iω
√
N−

√
1−ω2N

2

)2 (r0
r

)1+√
1−ω2N

, (3.160)

where Ca is a constant. Evaluating the asymptotic solution in the outer region

directly from equation (3.156), and using the Frobenius method it is found, in terms

of the r variable,

φa(∞) =

√
π

2

(
A1 r

−1−
√
1−ω2N + A2 r

−1+
√
1−ω2N

)
, (3.161)

where A1 and A2 are constants. Then if we match both solutions we find a relation

between the constants,

Ca =

√
π

2
r−1−

√
1−ω2N

0

Γ
(

1−iω
√
N−

√
1−ω2N

2

)2
Γ(1− iω

√
N) Γ(−

√
1− ω2N)

A1 , A2 = 0 . (3.162)

Imposing the second constraint one neglects the divergent modes at asymptotic

infinity.

In order to obtain the behavior near the event horizon we expand the ingoing

mode solution (3.159) around r0 (or equivalently z → 0),

φh(r) = Ch

(
1− r20

r2

)−i ω
√
N

2

, (3.163)

where Ch is a constant. Then we match the solutions (3.160) and (3.163) at the

matching point rm, which fulfills r0 � rm � r5 =
√
N , see [21], we thus obtain a

relation between constants,

Ca =
(r0
r

)−1−
√
1−ω2N

(
1− r20

r2

)−i ω
√

N
2 Γ

(
1−iω

√
N−

√
1−ω2N

2

)2
Γ(1− iω

√
N) Γ(−

√
1− ω2N)

Ch . (3.164)

Eventually comparing (3.162) with (3.164), we obtain the desired relation between

the constant in the asymptotic solution and the constant of the near horizon solution,

A1 =

√
2

π

(
1− r20

r2

)−i ω
√

N
2
(
1

r

)−1−
√
1−ω2N

Ch . (3.165)
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Finally, we compute the fluxes per unit solid angle corresponding to the LST

background,

F =
1

2i

(
r3f(r)φ∗(r)

dφ(r)

dr
− c.c.

)
, (3.166)

where c.c. stands for the complex conjugate of the first term. Therefore calculating

the incoming flux from infinity and the absorbed flux at horizon, substituting in

(3.166) the corresponding mode solution (3.160) and (3.163) respectively, we have

found that both fluxes are identical. Then the greybody factor for LST black hole

is

σabs ≡ Γω = 1 . (3.167)

Thus the emission rate of LST will be

Γ =
1

eω/TH − 1

d4k

(2π)2
, (3.168)

where TH is the Hawking temperature of LST, (3.24). This result matches the con-

clusion derived from the preceding sections: LST exhibits a purely thermal spectrum

even taking into account corrections like the back-reaction of the metric.

3.10 Quasinormal modes

When a black hole is perturbed by absorbing a particle field or by emitting radiation,

it starts to oscillates. The mode decay and the corresponding frequencies will be

complex, being this damped modes the quasinormal modes (QNMs). The damping

time is the inverse of the imaginary frequency and depends only on the black hole

parameters, being independent of the initial perturbation. The black hole QNMs

are just the solutions of the perturbation equations with the boundary conditions:

only ingoing modes at event horizon and only outgoing modes at spatial infinity.

Such boundary conditions single out a discrete set of complex frequencies {ωn} that

are usually labeled by an integer n, namely the overtone number. For a complete

review of quasinormal modes see [90].

We find a useful application of QNMs in AdS/CFT correspondence, where a black

hole can be viewed as a thermal state of a field theory. The decay of a scalar field is

related with the decay of a perturbation of this thermal state. Then the QNMs are

useful in order to obtain a timescale for the approach to thermal equilibrium [91].
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It has been argued, [90, 91], that one can compute the QNMs as the poles of the

Green function. In [92] the authors calculated the two-point function corresponding

to the propagation of a massless minimally coupled complex scalar in a LST back-

ground. For the Euclidean version of the action (3.9) corresponding to a massless

minimally coupled scalar particle, it is imposed the following boundary conditions:

• The solution of the equation of motion implied by the Euclidean action must

be regular at the horizon, or at the tip of the cigar in the Euclidean case.

• Imposing a cut-off Λ at some distance along the linear dilaton tube, the solu-

tion must be constant at this surface when the cut-off goes to infinity.

Thus it is found a boundary term on the action evaluated in a solution that satisfy

the above boundary conditions. Then using the solution (3.159) at the asymptotic

limit, it is possible to evaluate the boundary term of the Euclidean action. Differen-

tiating with respect to the sources the authors in [92] found the two-point function

in momentum space,

〈O(p)O∗(−p′)〉 ∼ Γ(−
√
1 + ω2N)

Γ(
√
1 + ω2N)

Γ2
(

1+
√
ω2N+

√
1+ω2N

2

)
Γ2
(

1+
√
ω2N−

√
1+ω2N

2

) δ(p− p′) , (3.169)

where we have neglected modes that are propagating on the NS5-brane, i.e. k = 0.

Therefore the quasinormal can be obtained as

ωn ∼ i 2πTH

(
n+

1

2

)
, (3.170)

with Hawking temperature TH defined in (3.24). This result matches the result for

Schwarzschild black hole obtained in [89] (and references therein).
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Emission of fermions in LST

In this chapter we will study the tunneling of fermions through the event horizon

of the LST background (3.5). We write the covariant Dirac equation in a general

background [93] for a spinor field Ψ,

[γaeµa(∂µ + Γµ) +m] Ψ = 0 , (4.1)

where m is the bare mass of the particle; eµa are the vielbein defined by the relation

gµν = ηab e
a
µe
b
ν with ηab = diag(−1, 1, 1, 1, ...), the latin indexes run for local inertial

flat coordinates (0, 1, 2, ...) whereas the greek indexes run for general coordinates

(t, r, θ, ...). In LST the vielbein take the form

eaµ = diag

(√
f(r),

√
A(r)

f(r)
, r
√
A(r), r

√
A(r) sin θ, r

√
A(r) sin θ sinϕ, 1, ..., 1

)
.

(4.2)

The spin connection is defined as

Γµ =
1

8
[γc, γb]eνc∇µebν , (4.3)

where ∇µebν = ∂µebν − Γλµνebλ is the covariant derivative of ebν and [γc, γb] the

commutator of the gamma matrices. We choose for the gamma matrices [94],

γ0 =

(
−i 0

0 i

)
, γk =

(
0 −iσk

iσk 0

)
, k = 1, 2, 3 ; (4.4)

where the matrices σi are the Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (4.5)

75
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The gamma matrices satisfies the Clifford algebra

[γa, γb] = −[γb, γa] if a 6= b,

[γa, γb] = 0 if a = b ,

{γµ, γν} = 2gµν ,

{γa, γb} = 2ηab . (4.6)

Thus taking into account all the aforesaid definitions and properties we write the

full ten-dimensional Dirac equation for the spinor field in the LST background,[
γ0

1√
f(r)

∂t + γ1

(
3A(r)′

√
f(r)

4A(r)
3
2

+
6
√
f(r)

4r
√
A(r)

+
f(r)′

4
√
A(r)f(r)

+

√
f(r)

A(r)
∂r

)
+

+ γ2
1

r
√
A(r)

(cot θ + ∂θ) + γ3
1

r
√
A(r)

sin θ ∂ϕ + γ4
1

r
√
A(r)

sin θ sinϕ ∂ψ+

+
9∑
j=5

γj∂xj +m

]
Ψ = 0 .

(4.7)

4.1 Emission probability

Henceforth in order to study the probability emission of fermions we will be inter-

ested in the r − t sector of the LST metric, see (3.12). Working with this effective

two-dimensional metric, the Dirac equation corresponding to a spinor field is sim-

plified to [
γ0

1√
f(r)

∂t + γ1

(
f(r)′

4
√
A(r)f(r)

+

√
f(r)

A(r)
∂r

)
+m

]
Ψ = 0 . (4.8)

Taking into account the appropriate choice of the gamma matrices (4.4), we use for

the spin-up and spin-down Dirac fields, respectively, the following WKB ansatz [95],

Ψ↑ =


A(t, r)ξ↑

0

0

D(t, r)ξ↑

 exp

[
i

~
S↑(t, r)

]
, (4.9)
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Ψ↓ =


0

B(t, r)ξ↓
C(t, r)ξ↓

0

 exp

[
i

~
S↓(t, r)

]
, (4.10)

where S is the classical action, whereas A, B, C and D are arbitrary functions of

the coordinates. Measuring the spin in the z direction the eigenvector of σ3 for the

spin-up and spin-down fields respectively are ξ↑ =

(
1

0

)
and ξ↓ =

(
0

1

)
. We will

only solve the spin-up case and the spin-down case is solved analogously. Thus, we

substitute the spinor-up field (4.9) and the gamma matrices γ0 and γ1 into the Dirac

equation (4.8). Next, we apply the WKB approximation neglecting the ~ dependent

terms, and after some algebra we eventually obtain the following set of equations

for the spin-up case,(
− 1√

f(r)
∂tS↑(t, r) +m

)
A(t, r)−

√
f(r)
A(r)

∂rS↑(t, r) D(t, r) = 0 ,

√
f(r)
A(r)

∂rS↑(t, r) A(t, r) +

(
1√
f(r)

∂tS↑(t, r) +m

)
D(t, r) = 0 .

(4.11)

For the spin-down case we would obtain(
− 1√

f(r)
∂tS↓(t, r) +m

)
B(t, r)−

√
f(r)
A(r)

∂rS↓(t, r) C(t, r) = 0 ,

√
f(r)
A(r)

∂rS↓(t, r) B(t, r) +
(

1√
f(r)

∂tS↓(t, r) +m

)
C(t, r) = 0 .

(4.12)

In order to obtain non-vanishing values of the functions A, B, C and D, (4.11) must

fulfill the following condition,∣∣∣∣∣∣∣
− 1√

f(r)
∂tS↑(t, r) +m −

√
f(r)
A(r)

∂rS↑(t, r)√
f(r)
A(r)

∂rS↑(t, r)
1√
f(r)

∂tS↑(t, r) +m

∣∣∣∣∣∣∣ = 0 . (4.13)

Writing the action as an expansion in a power series of (~
i
),

S↑(t, r) = S0↑(t, r) +

(
~
i

)
S1↑(t, r) +

(
~
i

)2

S2↑(t, r) + ... (4.14)

and making use of the WKB approximation (we neglect terms of order (~
i
) and

higher); we finally obtain a non-linear first order partial differential equation which
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corresponds to the Hamilton-Jacobi equation of motion to the leading order in the

action S↑,

−A(r)
(
∂S0↑(t, r)

∂t

)2

+ f(r)2
(
∂S0↑(t, r)

∂r

)2

+ A(r)f(r)m2 = 0 . (4.15)

We point out that this equation for a massless particle is the same as the equation

(3.93) in Chapter 3, Section 3.4.1. Therefore, for the emission of fermions in LST

black holes we will obtain the same results for the emission probability (3.99) and

temperature (3.100) that in the scalar case, even taking into account the back-

reaction. We can conclude that the tunneling emission through the event horizon of

the LST does not depend on the particle spin.

We would like to consider briefly the case for massive particles. If we solve (4.15)

by taking into account the mass term, we obtain the action at leading order,

S0↑(t, r) = ωt±
∫ rout

rin

√
A(r)

f(r)

√
ω2 − f(r)m2 dr . (4.16)

The plus/minus sign corresponds to ingoing/outgoing particles respectively, rin and

rout correspond to a position inside and outside of the black hole respectively and ω

is the energy of the emitted or absorbed massive particle. We will obtain again the

same results for the emission probability and temperature, even taking into account

the back-reaction of the metric.

4.2 Fermion modes and greybody factor

In this section we are interested in finding the fermion modes of the Dirac equation

(4.8) corresponding to the two-dimensional LST background (3.12). Now, in order

to study the Dirac equation, we choose the following basis for the spinor field

Ψ(t, r) =

(
Ψ+(t, r)

Ψ−(t, r)

)
, (4.17)

considering that each term is a two-component spin-up and spin-down spinor, Ψ+ =(
Ψ↑

+

Ψ↓
+

)
and Ψ− =

(
Ψ↓

−

Ψ↑
−

)
. Using this basis for the spinor field and the γ0 and γ1

matrices defined in (4.4), we obtain a two set of equivalent equations corresponding

to the spin-up and spin-down fermion case. We will study the spin-up fermion case,
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equivalently we could also study the spin-down case. Therefore the Dirac equation

becomes(
−i√
f(r)

∂t +m

)
Ψ+(t, r)− i

[√
f(r)
A(r)

∂r +
f ′(r)

4
√
A(r)f(r)

]
Ψ−(t, r) = 0 ,

(
i√
f(r)

∂t +m

)
Ψ−(t, r) + i

[√
f(r)
A(r)

∂r +
f ′(r)

4
√
A(r)f(r)

]
Ψ+(t, r) = 0 .

(4.18)

Next, we consider the following ansatz for the spinor field

Ψ+(t, r) = φ+(r) e
−iωt , Ψ−(t, r) = iφ−(r) e

−iωt . (4.19)

Substituting this expressions into (4.18) and after doing algebra we obtain the fol-

lowing set of equations

∂rφ−(r) +
f(r)′

4f(r)
φ−(r) +

(
m
√

A(r)
f(r)

− ω

√
A(r)

f(r)

)
φ+(r) = 0 ,

∂rφ+(r) +
f(r)′

4f(r)
φ+(r) +

(
m
√

A(r)
f(r)

+ ω

√
A(r)

f(r)

)
φ−(r) = 0 .

(4.20)

We can solve this set of coupled equations. If we define

η±(r) ≡ m

√
A(r)

f(r)
± ω

√
A(r)

f(r)
, (4.21)

we will obtain

η−1
+ (r) φ+(r)

′′ +

(
∂rη

−1
+ (r) + η−1

+ (r)
f(r)′

2f(r)

)
φ+(r)

′+

+

(
∂rη

−1
+ (r)

f(r)′

4f(r)
+ η−1

+ (r) ∂r

(
f(r)′

4f(r)

)
+ η−1

+ (r)

(
f(r)′

4f(r)

)2

− η−(r)

)
φ+(r) = 0 .

(4.22)

In order to simplify the resolution of the above equations, we consider the propa-

gation of a massless fermion through the LST background (3.12). Substituting the

values of f(r) and A(r) given in (3.8), into (4.21) and (4.22), eventually we obtain

the propagation equation for a massless fermion mode,

4r2(r2−r20)2 φ+(r)
′′+4r(r2−r20)(r2+2r20) φ+(r)

′+(4ω2Nr4−4r20r
2+5r40) φ+(r) = 0 .

(4.23)

This equation admits the following solution

φ+(r) =
√
r (r2 − r20)

−1/4

(
C1 (r

2 − r20)
− i

2
ω
√
N +

C2

2iω
√
N

(r2 − r20)
i
2
ω
√
N

)
, (4.24)
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where C1 and C2 are arbitrary constants.

The gravitational potential barrier around the black hole acts as a filter for

the emitted radiation, therefore the spectrum detected at the asymptotic infinity

is not a pure Planckian spectrum. The greybody factor accounts for this deviation

from the purely blackbody spectrum, see (2.39). However LST exhibits a different

behavior; the non-dependence of its temperature on the black hole mass leads to

the fact that the emission is purely thermal, even taking into account back-reaction

effects. Therefore, one expects that the spectrum shall be purely Planckian and the

greybody factor takes the value 1, as we verified in Section 3.9. for massless scalar

particles. But now, we are going to verify this assumption computing explicitly

the greybody factor corresponding to the emission of a massless fermion in a two-

dimensional effective background (3.12). We will follow the method of matching the

solutions at asymptotic infinity of the black hole and near the horizon at a matching

point rm, see references [21, 22, 23, 24]. Basically we must calculate the flux

F =
1

2i

(
φ∗
+(r)r

3f(r)∂rφ+(r)− c.c.
)

(4.25)

near the horizon of the black hole and at the asymptotic infinity. The ratio of the

two fluxes is the absorption cross section, i.e. the greybody factor of the black hole.

The mode solution at the near horizon limit is obtained imposing the propagation

of ingoing modes as a boundary condition. Then if we expand the solution (4.24)

near the horizon, we obtain

φh(r) = Ch (r − r0)
− 1

4
− i

2
ω
√
N , (4.26)

where we have collected all the terms that are independent of the radial coordinate

in the constant Ch. The flux (4.25) calculated at the near horizon limit is

Fh =
|Ch|2

2
ω
√
N
r (r + r0)√
r − r0

. (4.27)

Next we calculate the mode solution at the asymptotic limit. We must take into

account that in this limit the metric function f(r) fulfills the relation

lim
r→∞

f(r) = 1 . (4.28)

Then, we solve equation (4.22) for the massless case using (4.28), and we obtain for

the modes solution at the asymptotic limit

φ∞(r) = C∞ riω
√
N . (4.29)



4.2. Fermion modes and greybody factor 81

Now, the flux (4.25) computed in the asymptotic limit is

F∞ =
|C∞|2

2
ω
√
N r2 . (4.30)

In order to find a relation between the constants Ch and C∞ we match both solutions

at the matching point rm, which fulfills r0 << rm. Hence imposing the matching

condition: φh(rm) = φ∞(rm), we find the following relation between the constants

|C∞|2= |Ch|2√
rm − r0

. (4.31)

Finally, if we calculate the greybody factor as the ratio of the ingoing flux through

the horizon, Fh, to the outgoing flux at the asymptotic limit, F∞, we obtain

Γω ≡ |Fh|
|F∞|

= 1 . (4.32)

This result indicates that for LST we will obtain a pure Planckian spectrum,

ρ(ω) =
1

(eω/T − 1)

dω

2π
, (4.33)

in accordance with the result of Hawking, see (2.36). Effectively, one would expect

this result since we have demonstrated how LST exhibits a purely thermal behavior,

even taking into account the back-reaction of the metric.



82 Chapter 4. Emission of fermions in LST



Chapter 5

Back-reaction and quantum

corrections

In a recent work we have shown how the back-reaction can be treated as a quantum

correction, [96]. The novel semi-classical approach which will be presented here

consists of the introduction of adequate quantum corrections into the r − t sector

of the black hole metric. Thus, we will obtain corrected values for the temperature,

entropy and emission rate, which at leading order coincide with the results derived in

the tunneling approach. Comparing this approach some semi-classical methods as:

the tunneling method, the complex path analysis or the cancellation of gravitational

anomalies; we conclude that we obtain similar results for the emission rate and

Bekenstein-Hawking entropy, however we alsonotice the appearance of new terms.

We also apply this technique to the Little String Theory. Interestingly, we find

similar results for the entropy with those using string one-loop calculations, e.g. we

have found the classical Bekenstein-Hawking entropy plus a logarithmic correction

term.

We have seen in the previous chapters that during the radiation emission of

black holes we enforce energy conservation, thus the metric back-reacts and the

event horizon shrinks. When the black hole radiates the total ADM mass [36] is

conserved, whereas the mass of the black hole decreases by the same amount of

the energy that has been released by emission. According to the heuristic picture

most commonly considered [31], the quantum vacuum fluctuations generate a pair

of virtual particles; one member of the pair, for example the anti-particle, falls into

the black hole while the other member of the pair, i.e. the particle, escapes towards

83



84 Chapter 5. Back-reaction and quantum corrections

the asymptotic infinity. The net effect would be as if the black hole had emitted a

particle at the expenses of slowly decreasing its mass. Accordingly, we must consider

the quantum nature of the emission process; thereby, we have been led to introduce

quantum perturbations into the original static metric of the black hole in order to

evaluate the back-reaction.

In this work we have considered a general metric with some sort of perturbations

of quantum character. Eventually, we want to show that the back-reaction of the

metric, imposing energy conservation, can be viewed as a quantum perturbation.

Furthermore, we have analyzed the same sort of perturbations in LST.

5.1 Quantum correction on the metric

Consider a general metric in conformal-string frame with spherical symmetry defined

in a d-dimensional space-time,

ds2 = −f(r)dt2 + g(r)

f(r)
dr2 + h(r)r2dΩ2

d−2 . (5.1)

The event horizon is found at the radial coordinate position r0 and dΩ2
d−2 defines

the (d− 2)-sphere. Since the radiation emission depends only on the r− t sector of

the metric, we are going to slightly modify those terms of the metric, furthermore

we want that these changes on the metric accounts for quantum effects. In [97] the

authors introduced quantum corrections considering all the terms in the expansion

of a single particle action. Motivated by this work, we introduce the following

perturbations on the radial and time part of the metric (5.1),

δgtt = −f(r)
∑
i

ξi~i

ξi~i + r
(d−2)i
0

, δgrr =
g(r)

f(r)

∑
i

ξi
~i

r
(d−2)i
0

, (5.2)

thus the slightly perturbed metric, ĝµν = g
(0)
µν + δgµν , can be written as

d̂s
2

= −f(r)

(
1 +

∑
i

ξi
~i

r
(d−2)i
0

)−1

dt2 +
g(r)

f(r)

(
1 +

∑
i

ξi
~i

r
(d−2)i
0

)
dr2 +

+ h(r)r2dΩ2
d−2 , (5.3)

where ξi are positive dimensionless parameters. This choice of the perturbations has

been motivated by dimensional analysis. The reduced Planck length (l̃P = lP
2π
) in a
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d-dimensional space-time is defined as l̃d−2
P = ~G(d)

c3
, where G(d) is the d-dimensional

Newton’s constant. In natural units (G = c = 1) we obtain the following dimensional

relation [l̃d−2
P ] = [~]. Since for the black hole metric (5.1) we have only one parameter

with length dimensions, i.e. the event horizon r0; we conclude that rd−2
0 must be

proportional to ~.

The perturbed metric expression (5.3) deserves a few comments. Firstly, we

should verify whether it is a solution of the Einstein equations. In fact, we notice

that this is the case since the perturbations are independent of any of the coordi-

nates. Secondly, we point out the modification of the particles velocity in the region

near the event horizon. Causal propagation is limited to time-like and null particle

trajectories with respect to the background (5.3), therefore in the case of null co-

ordinates we find that the maximum velocity of photons has been shifted to a new

value,

ĉ = c

(
1 +

∑
i

ξi
~i

r
(d−2)i
0

)−1

. (5.4)

In any case, we do not obtain superluminal propagation velocities. Eventually, we

verify that the null energy condition is not affected by the inclusion of quantum

perturbations, thus Tµνe
µeν ≥ 0, or equivalently Rµνe

µeν ≥ 0 for any null vector eµ,

is fulfilled near the event horizon.

Next, we are interested in studying how the Hawking temperature of the black

hole is modified by the above perturbations. As usual, if we introduce the euclidean

time, τ = it, we get the corresponding Euclidean positive definite metric. Fur-

thermore, taking into account the definition of the proper length, dρ2 = grrdr
2,

together with the expansion of the metric function near the event horizon, f(r) =

f ′(r0)(r − r0), we can define a new radial coordinate as

ρ = 2

√
g(r)(r − r0)

f ′(r)

∣∣
r→r0

(
1 +

∑
i

ξi
~i

r
(d−2)i
0

)1/2

. (5.5)

We write the metric in Rindler coordinates,

d̂s
2

E = ρ2

 f ′(r)

2
√
g(r)

∣∣
r→r0

(
1 +

∑
i

ξi
~i

r
(d−2)i
0

)−1

dτ

2

+ dρ2 + h(r)r2dΩ2
d−2 , (5.6)

where we point out the presence of the modified surface gravity due to the correction
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terms,

κ̂ =
f ′(r)

2
√
g(r)

∣∣
r→r0

(
1 +

∑
i

ξi
~i

r
(d−2)i
0

)−1

. (5.7)

We can remove the apparent conical singularity at the event horizon in (5.6) by

identifying the imaginary (Euclidean) time coordinate with the period β = 2π
κ̂
. We

find that the effective temperature corresponding to the perturbed black hole is

T̂ =
~κ̂
2π

. (5.8)

In this equation it is easily seen that the new temperature is just the standard

Hawking temperature

TH =
~
4π

f ′(r)√
g(r)

∣∣
r→r0

, (5.9)

corrected by quantum perturbations.

5.2 Back-reaction viewed as a quantum correc-

tion

We would like to analyze how the metric is affected by the back-reaction, and con-

sequently if we can consider such back-reaction of the metric as a quantum effect.

Motivated by the idea that the emitted particles are quantum fields whose energy,

ω in natural units (~ = 1), is also quantized; our aim is to show if we can treat the

back-reaction of the metric as a quantum perturbation.

In order to interpret properly the quantum perturbation of the back-reacted

metric, it is useful to show the relation between the mass and the event horizon

of the black hole. For that purpose we have calculated the Komar integral, see

Appendix C, associated with the time-like Killing vector Kν . For the background

(5.1) we have found the following relation,

M =
Vol(Sd−2)

8(d− 3)πG(d)

f(r)′√
g(r)

(
r
√
h(r)

)d−2 ∣∣
r→r0

, (5.10)

where Vol(Sd−2) stands for the volume of the (d − 2)−sphere and all quantities

are evaluated at the event horizon. Moreover, we also impose the following three

conditions on the space-time metric:
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1. Spherical symmetry.

2. The background is asymptotically flat.

3. The metric function f(r) is expressed as f(r) = 1 −
(
r0
r

)d−3
, depending on

the mass through the event horizon r0. For future convenience we write the

metric functions g(r) and h(r) as
(
1 +

r2i,j
r2

)
, depending on the charges ri and

rj, respectively, which are different from the mass charge. With this choice for

the metric functions we see from the relation (5.10) that M ∝ rd−3
0 .

Taking into account the above three conditions, and expanding in the energy of the

emitted particle ω, we eventually write (5.1) as

d̃s
2
= −f̃(r)dt2 + g(r)

f̃(r)
dr2 + h(r)r2dΩ2

d−2 , (5.11)

where we have defined the new metric function f(r) as

f̃(r) = f(r) +
1

rd−3

∑
i

ωi

r
(d−3)(i−1)
0

. (5.12)

We motivate this expression for the expansion in the energy ω of the particle based on

dimensional analysis, since we have just seen that rd−3
0 has energy-mass dimension.

Working as in the above section we find the effective temperature, which is

T̃ =
~
4π

f̃ ′(r)√
g(r)

∣∣
r→r0

, (5.13)

and taking the derivative of (5.12) at the event horizon we eventually obtain

T̃ = TH − ~(d− 3)

4πrd−2
0

√
g(r0)

∑
i

ωi

r
(d−3)(i−1)
0

. (5.14)

Since the heat capacity is negative, we can verify that this expression for the tem-

perature works properly increasing its value when the black hole emits a particle

of energy ω. To see this, we can rewrite equation (5.14) using the definition of the

Hawking temperature (5.9) and imposing the above third condition, hence we get

for the effective temperature

T̃ =
~(d− 3)

4π
√
g(r0)

(
1

r0
− 1

rd−2
0

∑ ωi

r
(d−3)(i−1)
0

)
. (5.15)
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Since the event horizon shrinks proportionally to ω1/(d−3), we see from this last ex-

pression that at low energies the temperature increases with respect to the standard

Hawking temperature (5.9).

Finally, if we compare the two expressions for the temperatures (5.8) and (5.14),

we obtain definite values for the dimensionless parameters, ξi, in terms of the released

energy, ω,

ξi =

(
rd−2
0

~

)i
ωi

r
(d−3)i
0 − ωi

. (5.16)

Therefore, looking at the metric (5.3) and its corresponding temperature (5.8), we

conclude that back-reaction can be treated as a quantum perturbation leading us

to the following expressions for the perturbed metric and effective temperature re-

spectively,

d̂s
2

= −f(r)

(
1 +

∑
i

ωi

r
(d−3)i
0 − ωi

)−1

dt2 +
g(r)

f(r)

(
1 +

∑
i

ωi

r
(d−3)i
0 − ωi

)
dr2 +

+ h(r)r2dΩ2
d−2 , (5.17)

T̂ = TH

(
1 +

∑
i

ωi

r
(d−3)i
0 − ωi

)−1

. (5.18)

We are going to specify all the aforesaid expressions in a simple four-dimensional,

static and spherically symmetric background. Therefore we consider a Schwarzschild

black hole which is asymptotically flat, the metric functions are defined as: f(r) =

1− 2M
r
, g(r) = h(r) = 1 and the event horizon is at r0 = 2M in natural units. From

(5.17) we write the perturbed back-reacted metric as,

d̂s
2

= −
(
1− r0

r

)(
1 +

∑
i

ωi

ri0 − ωi

)−1

dt2 +
1(

1− r0
r

) (1 +∑
i

ωi

ri0 − ωi

)
dr2 +

+ r2dΩ2
2 . (5.19)

The Hawking temperature corresponding to a Schwarzschild black hole is TH =
1

8πM
. When the black hole emits a single particle with energy ω, the new effective

temperature at first order in energy expansion is

T̂ =
1

8π(M − ω)

(
1 +

ω

2M − ω

)−1

. (5.20)

Likewise at semi-classical level we calculate the Bekenstein-Hawking entropy using

the area law, SBH = A
4
, in the presence of back-reaction effects, and obtain

ŜBH = 4π(M − ω)2 . (5.21)
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Furthermore we also calculate the emission rate through the relation Γ ∝ e−ω/T ,

[27]. Therefore using the effective temperature (5.20) we obtain

Γ ∝ e−8πω(M−ω)(1+ ω
2M−ω ) . (5.22)

At low energies we notice that the emission rate can be written semi-classically as

Γ ∝ e∆ŜBH , (5.23)

being the initial entropy S
(0)
BH = 4πM2, and the final entropy is given by (5.21).

We point out that this result coincides with the result in [30], where the emission

rate also matches the statistical mechanics picture. We see that deviation from

thermal behavior when a black hole emits particles is due to the energy conservation,

moreover the temperature increases while the entropy of the black hole decreases

properly during the emission process. Thus summarizing, we have seen that all

the semi-classical results concerning the emission of particles are recovered when we

consider the back-reaction as a quantum correction.

On the other hand, instead of calculating the entropy using the area law, we can

evaluate the entropy through the first law of thermodynamics: dM = TdS, in the

presence of back-reaction effects. Thus using (5.20) for the temperature we obtain

Ŝ = 4πM2 − 4πMω − 2πω2log(2M − ω) + πω2 +O(ω3) . (5.24)

The first term is just the semi-classical area law, SBH = A
4
. Nevertheless, we inter-

estingly point out the presence of a logarithmic correction term, which is considered

as a one-loop correction term over the classical thermodynamics.

5.3 An example in string theory

5.3.1 Quantum corrections at action level

Previous to the study of the quantum corrections on the metric related with the

tunneling emission of scalar massless particles, we would like to consider in this

section the study of quantum corrections at the action level [97, 98] of LST. Our

starting point will be (3.91), and the expansion in ~ of the action which we write as

S(t, r) = S0(t, r) + ~S1(t, r) + ~2S2(t, r) + ... = S0(t, r) +
∑
i

~iSi(t, r) . (5.25)
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Substituting the above expansion in the equation (3.91) we obtain a set of equations

at each order of ~,

~0 : −A(r)∂tS2
0 + f(r)2∂rS

2
0 = 0 ,

~1 : −2A(r)∂tS0 ∂tS1 + 2f(r)2∂rS0 ∂rS1 + iA(r)∂2t S0 − if(r)2∂2rS0

−i f(r)
r3

d(r3f(r))

dr
∂rS0 = 0 , (5.26)

~2 : −A(r)∂tS2
1 − 2A(r)∂tS0 ∂tS2 + f(r)2∂rS

2
1 + 2f(r)2∂rS0 ∂rS2 +

+iA(r)∂2t S1 − if(r)2∂2rS1 − i
f(r)

r3
d(r3f(r))

dr
∂rS1 = 0 ,

... .

Interestingly each equation can be simplified using the preceding one, thus after a

little bit of algebra we arrive at the following set of equations at each order in ~:

~0 : ∂tS0(t, r) =
f(r)√
A(r)

∂rS0(t, r) ,

~1 : ∂tS1(t, r) =
f(r)√
A(r)

∂rS1(t, r) , (5.27)

~2 : ∂tS2(t, r) =
f(r)√
A(r)

∂rS2(t, r) ,

... ,

where the metric functions were defined in (3.8). As the functional form of the

above set of equations is identical, the solutions will not be independent, therefore

each action term solution of the expansion (5.25) will be proportional to the leading

order term S0.

In order to write the quantum corrections terms proportional to ~ we will follow

the dimensional arguments of [97], hence the LST corrected action will be of the

form

S(t, r) = S0(t, r)

(
1 +

∑
i

ξi
~i

r3i0

)
, (5.28)

where r0 is the event horizon. Then solving the equation (5.27) at leading order we

will obtain the solution (3.95), thus the quantum corrected solution will be

S(t, r) =

(
ωt± ω

∫ rout

rin

√
A(r)

f(r)
dr

)(
1 +

∑
i

ξi
~i

r3i0

)
, (5.29)

where plus/minus sign corresponds to ingoing/outgoing mode solutions. Taking into
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account the WKB approximation, φ ∼ e−
i
~S(t,r),

φin/out = exp

[
− i

~

(
ωt± ω

∫ rout

rin

√
A(r)

f(r)
dr

)(
1 +

∑
i

ξi
~i

r3i0

)]
. (5.30)

Next we will calculate the emission probability; instead of using the procedure car-

ried out in Section 3.4.1, or in [72], we will use the method that follows. We must

take into account that when a particle crosses the event horizon the nature of the

(r− t) coordinates changes. The time coordinate acquires an imaginary part, hence

there will be a time contribution to the probability of the ingoing and outgoing

particles. Taking into account this temporal contribution we will obtain the cor-

rect expression for the emission probability, see discussion around (3.99). Then we

write the absorption and emission probability for an incoming and outgoing particle,

respectively, as

Pa/e = |φin/out|2= exp

[
2

~

(
ω Im t± ω

∫ rout

rin

√
A(r)

f(r)
dr

)(
1 +

∑
i

ξi
~i

r3i0

)]
.

(5.31)

In the classical limit everything is absorbed without any reflection, thus Pa = 1, and

this fact implies

Im t = −Im

∫ rout

rin

√
A(r)

f(r)
dr . (5.32)

Otherwise when a particle crosses the horizon the time coordinate experiences the

transformation

t→ t− iπ

∫ rout

rin

√
A(r)

f(r)
dr , (5.33)

whose imaginary part is precisely (5.32). Therefore evaluating the integral at the

pole r = r0 and substituting the value of A(r), see (3.8), we eventually obtain

Pe = exp

[
−2π

~

√
χr20 +

N

m2
s

(
1 +

∑
i

ξi
~i

r3i0

)
ω

]
. (5.34)

Finally, if we use the Boltzmann relation between the emission and absorption prob-

abilities, Pe = e−ω/TPa ; we will obtain, comparing with (5.34) and remembering

that Pa = 1, the quantum corrected temperature of the NS5 and LST black holes,

Tc =
~

2π
√
χr20 +

N
m2

s

(
1 +

∑
i

ξi
~i

r3i0

)−1

, (5.35)

which is nothing more that the standard Hawking temperature of NS5 and LST

(3.24) corrected by a sort of quantum perturbations.
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5.3.2 Quantum corrections on the metric

In this section we are going to illustrate the preceding techniques in LST background,

moreover we will elucidate some thermodynamical aspects. Following the above

techniques we introduce the perturbations at first order modifying the function

metric f(r) given in (3.8),

f(r) → f(r)

(
1 +

ω

r20 − ω

)−1

. (5.36)

Now the effective temperature will be

T̂ = TH

(
1 +

ω

r20 − ω

)−1

, (5.37)

and also from (5.10) we have computed the ADM mass corresponding to the NS5

and LST black hole,

M =
Vol(R5)π

4G(10)

(
χr20 +

N

m2
s

)
, (5.38)

where Vol(R5) stands for the volume of the NS5-branes. In [54] and previously

in [45] it was found that the Helmholtz free energy vanishes, F = E − TS = 0.

Therefore the entropy coincides with the semi-classical area law entropy,

SBH =
A

4G(10)~
=

Vol(R5)π2

2G(10)~

(
χr20 +

N

m2
s

)3/2

. (5.39)

Then, for an emission process taking into account back-reaction we shall consider

the effective temperature (5.37). Moreover, considering the relation between the

mass and the event horizon (5.38), we calculate the emission rate Γ ∝ eω/T̂ at low

energies,

Γ ∝ e
− ω

TH
(1+ ω

2M
+O(ω2)) , (5.40)

which is in accordance with the statistical mechanics result, Γ ∝ e∆ŜBH , being

ŜBH ∝ (M − ω)3/2 the Bekenstein-Hawking entropy after the emission. This last

result coincides entirely with the result in [72] for the NS5 black hole, however it is

not the case for LST which disagrees in the factor e∼
ω

2M . In that work we calculated

the emission rate modifying naively the mass factor that appears in the tempera-

ture, i.e. M → M − ω, without taking into account any temperature correction

factor. Meanwhile in this work we have considered the effective temperature (5.37),

obtaining in this way an interesting deviation from the pure thermal behavior found

in [59, 72]. Therefore this result signals some sort of correction over the classical

thermodynamics.
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5.3.3 Discussion

The thermodynamics of the near horizon limit of NS5 presents a Hagedorn behav-

ior, where the statistical mechanics of any string theory breakdown. At very high

energy density, one can see from (3.24) that the Hagedorn temperature of LST is

independent of the mass, thus at leading order the thermodynamics will be com-

pletely degenerate with a constant temperature. Furthermore, the entropy will be

proportional to the energy, E = THS, hence the free energy is expected to vanish.

In [51] the authors implemented string one-loop corrections at the near horizon limit

of the NS5-brane thermodynamics to explain the Hagedorn behavior of LST. These

corrections expand the phase space and introduce small deviations from the constant

Hagedorn temperature. On the other hand, in the high energy regime LST become

weakly coupled, thus being able to perform a perturbative holographic analysis, see

[45]. In this work it is shown that LST has a Hagedorn density of states that grows

exponentially: ρ = eS(E) ∼ EαeE/TH , then the authors computed the genus one

correction to both the temperature and the density of states. As in [51] they found

an entropy-energy relation with logarithmic corrections.

In our preceding study we have introduced, at semi-classical level, some sort of

quantum energy corrections into the temperature for back-reaction processes. Now,

our aim is to calculate the corrected entropy for the LST black hole. If we calculate

the ADM mass-energy in Einstein frame: ds2E =
√
gse−Φds2, see Chapter 6, we

find the relation between the mass and the event horizon. Hence we can write the

corrected Hawking temperature corresponding to LST as

T̂H =
~

2π
√

N
m2

s

(
1 +

ω
4G(10)M
Vol(R5)π

− ω

)−1

. (5.41)

We note that this temperature decreases when the LST black hole emits radiation,

thereby the specific heat will be positive. Moreover, we verify that the Hagedorn

temperature is the maximum temperature reached by the system and cannot be

crossed. Now, integrating dM/T̂H we obtain the corrected entropy,

Ŝ(M) ≈ M

TH
+

Vol(R5)π2ω
√
N

2G(10)~ms

log(M) +O
(

1

M

)
. (5.42)

Thus, we have obtained the classical Bekenstein-Hawking term plus logarithmic

corrections to the entropy of LST. As in [45] and [51], we have found that the

logarithmic term is Vol(R5)-dependent.
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Finally, we would like to make a last comment on the thermodynamics of LST.

Looking at the temperature (5.41), we are tempted to modify the plus sign of the

correction factor by a minus sign. The purpose of this change of sign is to fit the

usual behavior of classical black holes, e.g. Schwarzschild-like black holes increase

their temperature when they emit radiation, and have a negative specific heat. In

this case, we point out that, in accordance with [45], the logarithmic correction

term of the entropy (5.42) will be negative, the temperature (5.41) will be above the

Hagedorn temperature and the specific heat will be negative, therefore the thermo-

dynamics will be unstable. Thus, if we perform a semi-classical analysis introducing

quantum corrections on the metric, we are able to obtain similar results as working

with string loop corrections.



Chapter 6

Einstein and conformal frame

In the previous chapters we have calculated some physical magnitudes as the tem-

perature or the entropy of NS5 and LST black holes working mainly in string (or

conformal) frame. However, in some cases, we have specified that we were working

in Einstein frame. Actually we understand that physics must be frame independent,

thus we guessed that some sort of scale factor should relate the two frames. In this

section we have obtained the precise scale factor that relates the two frames.

A conformal transformation is a local change of scale (or geometry but not a

change of coordinates) that leaves light cones invariant. Such transformations are

defined as

g̃µν = Ω2(x)gµν , (6.1)

where Ω(x) is a space-time non-vanishing function. We then say that the physical

quantities are expressed in the conformal frame.

So far we have worked in string frame (3.5). On the other hand there exists a

conformal transformation that relates the string action with the standard Einstein-

Hilbert action [10]. The low energy action for ten-dimensional type IIB string

theory can be written as

I =
1

16πG(10)

∫
M

d10x
√
−g
[
e−2Φ(R + 4(∇φ)2)− 1

12
H2

3

]
. (6.2)

Whereas the action in Einstein frame takes the standard Einstein-Hilbert form,

IE =
1

16πG(10)

∫
M

d10x
√
−g
(
R− 1

2
∂µφ∂

µφ− 1

12
e−ΦH2

(3)

)
, (6.3)
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where Φ is the dilaton scalar field, H3 is the NS −NS form along the S3 and φ is

the scalar field. Thus the metric in string frame can be written in Einstein frame

using

ds2E =
√
gse−Φ ds2 , (6.4)

where gs is the string coupling. Both metrics are related by a Weyl rescaling given by

the dilaton. In the string frame the scalar field play the role of a spin-0 component

of gravity, whereas in the Einstein frame the scalar field plays the role of a source

matter field.

The question arises: ’Which frame is the physically relevant frame?’ With the

aim to answer this question we are going to calculate the entropy of the NS5 and

LST black holes in Einstein frame, and compare it with the expression obtained in

string frame, Chapter 3, Section 3.1. We start writing the metric (3.5) in Einstein

frame by using the relation (6.4) and also using the definition of the dilaton (3.7),

ds2E = − f(r)

A1/4(r)
dt2 +

A3/4(r)

f(r)
dr2 + A3/4(r)r2dΩ2

3 +
5∑
j=1

dx2j
A1/4(r)

. (6.5)

If we then calculate the temperature we will notice that it is frame independent.

Next, we are going to calculate the area of the event horizon corresponding to NS5

and LST black holes defined in the induced Einstein metric

dŝ2E = A3/4(r)r2dΩ2
3 +

5∑
j=1

dx2j
A1/4(r)

, (6.6)

for which the determinant is√
−ĝE = r3

√
A(r) sin2(θ)sin(ϕ) . (6.7)

The area of the event horizon is

AH =

∫ √
−ĝE dθ dϕ dψ

5∏
j=1

djx = V5 2π
2r30
√
A(r0) =

Vol(R5) 2π2r20
√
χm2

sr
2
0 +N

ms

.

(6.8)

Comparing with (3.28) we can see that the value of the area of the event horizon is

frame dependent. Then the Bekenstein-Hawking entropy is

SBH =
AH

4G(10)~
=

Vol(R5) π2r20
√
χm2

sr
2
0 +N

2G(10)~ms

, (6.9)

and differs from (3.30) calculated in the string frame.
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In order to calculate the total energy of the NS5 and LST black holes we use

the Komar integral (C.1), see Appendix C. We choose as normal vectors in Einstein

frame

et = −

√
f(r)

A1/4(r)
, er =

√
A3/4(r)

f(r)
. (6.10)

The total energy (mass) is given by

E =
Vol(R5) πr20

4G(10)
, (6.11)

which differs from (C.5), therefore the Komar integral is also frame-dependent. Thus

comparing the expressions of the entropy (6.9) and the energy (6.11) in Einstein

frame with the entropy (3.30) and the energy (C.5) in string frame, we see that they

are related by the metric function A(r0) at the event horizon,

S
(E)
BH = A(r0)

−1SBH ,

E(E) = A(r0)
−1E . (6.12)

Therefore A(r0) acts as a scale factor for physical extensive quantities like entropy,

whereas the temperature is an intensive quantity and its value does not change

under conformal scalings. We can conclude that physical laws are invariant under

conformal scalings. Only the values of extensive quantities change by a fixed scale

factor.
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Chapter 7

Summary, conclusions and outlook

After a brief outline in Chapter 1 about the properties of black holes, where we have

introduced the information loss paradox, we have reviewed in the Chapter 2 how

curved space-time, e.g. black hole backgrounds, creates particles. Hawking demon-

strated that black holes with temperature TH emit thermal radiation, and calculated

its flux without taking into account the back-reaction of the metric. Afterwards we

have presented two semi-classical methods, i.e. the tunneling approach and complex

path method, that somewhat solve the information loss paradox stated by the work

of Hawking. In Chapter 3, we have applied both semi-classical methods plus the

covariant anomaly method in NS5 and Little String Theory (LST) black holes. We

have calculated some thermodynamical quantities as the temperature and the en-

tropy; furthermore, after reducing the ten-dimensional theory to a two-dimensional

effective theory, we have calculated the emission rate and the corresponding fluxes

taking into account the back-reaction of the metric. In Chapter 4, we have calculated

the emission probability of fermions by NS5 and LST black holes obtaining identical

results as for scalar particles. In Chapter 5, we have presented a novel method in

order to introduce quantum perturbations directly in the black hole metric, that

accounts for back-reaction effects. This method has been applied to a general sta-

tionary spherically symmetric metric, recovering similar results with the results of

the semi-classical methods presented in the previous chapters. Moreover, when we

have applied this method in LST’s black hole we have obtained similar results with

those derived in string one-loop theory. Finally in Chapter 6, we have calculated

and compared some thermodynamical quantities as the entropy, using both Einstein

frame and conformal frame.
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In previous sections we have already been discussing some conclusions, now we

will outline the most general salient features for the NS5 and LST black holes. In

general we have seen:

• The Hawking radiation as tunneling approach solves partially the information

loss paradox, since the emission rates obtained for a general class of black holes,

e.g. Schwarzschild, Reissner-Nordstrom, stringy black holes as NS5, etc., are

non-thermal. The lack of thermal behavior in the emission spectrum lead us to

establish some correlations between the emitted particles, recovering at least

all the information stored in the initial configurations that originate the black

hole. This approach takes into account the back-reaction of the metric when

a scalar massless shell particle is emitted by the black hole, imposing energy

conservation. The emission rate is in accordance with the statistical mechanics

results.

• The complex path semi-classical method allow us to calculate the emission

probability of a black hole. Imposing energy conservation in order to imple-

ment the back-reaction of the metric we obtain again a non-thermal spectrum.

This method, compared with the tunneling approach, has the advantage that

avoids any heuristic interpretation of the emission mechanism. Moreover it is

not needed to go to Painlevé coordinates, since one can works directly with

spherical Schwarzschild coordinates.

• The factor that cancels the gravitational anomaly in a two-dimensional effec-

tive black hole metric is exactly the Hawking radiation flux of the black hole.

We have calculated explicitly the spectrum in (3.144) and we have verified that

this result matches the anomaly result (3.114) for massless scalar particles.

• The general clue for obtaining non-thermal spectra, in the vast majority of the

black holes studied in the literature, is the imposition of energy conservation

when one takes into account the back-reaction of the metric.

• We can define an effective temperature Teff , which consists basically of the

standard Hawking temperature of the black hole corrected by a factor de-

pending on the energy of the particle emitted by the black hole when the

back-reaction is taking into account. Then the emission rate will be the stan-

dard Boltzmann factor at a temperature Teff , (3.151).
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• Introducing some sort of quantum corrections in the r− t sector of the metric

we are able to analyze the back-reaction as a quantum perturbation. This cor-

rections are built on dimensional grounds and satisfy the Einstein’s equations,

since are independent of any system of coordinates.

Regarding the concrete case of NS5 and LST we would like to remark the fol-

lowing aspects:

• The NS5 black hole shows the expected non-thermal spectrum, thus all the

above conclusions are verified in this case. On the other hand, LST keeps its

thermal behavior even taking into account the back-reaction of the metric,

hence the greybody factor for LST is 1. NS5 does not accomplish cluster

decomposition, therefore it would be possible to recover the information of

the initial configurations that formed the black hole. This information could

be encoded in the correlations between the emitted particles and would be

released out when the black hole evaporates. Nevertheless LST satisfies cluster

decomposition, and the emitted particles are not correlated. In fact, we point

out the notorious property that the LST Hawking temperature is independent

of its mass, thus this temperature is constant even if the black hole is emitting.

Therefore the information remains hidden behind the event horizon of LST

until it evaporates.

• LST is the thermal limit of NS5. When we explore the region near the event

horizon of an evaporating NS5 black hole the temperature increases until it

reaches the maximum temperature, i.e. the Hagedorn temperature, becoming

then a single pure thermal state. This single state, i.e. LST, radiates a constant

flux of energy at a constant temperature.

• The emission spectrum of fermions and scalar particles is the same either

for NS5 or LST black holes. In general, even for other black holes, working

with an effective theory in the r − t sector of the metric the emission will be

independent of the spin degrees of freedom.

• Introducing quantum corrections that accounts for the back-reaction in the

metric of LST, and then studying the thermodynamics, we have obtained the

same kind of logarithmic entropy corrections that are also found working in

one loop string theory. The thermodynamics of LST presents a Hagedorn
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behavior, its specific heat is negative, hence the thermodynamics is unstable.

Therefore, we can conclude that LST consists of a single unstable state.

We would like to finish with a brief outlook. One decade ago a new theory

proposed a higher dimensional mechanism for solving the hierarchy problem [99].

In that framework the Planck scale can be reduced considerably [100, 101] until

it reaches the TeV scale. There also exists some four-dimensional models which

are able to reduce the Planck mass to the TeV scale [102, 103]. Then considering

the results of the present thesis, where we have presented different semi-classical

methods which lead us to non-thermal spectra results, it should be interesting to

focus our attention to the study of the emission of gravitons at the LHC (Large

Hadron Collider). Furthermore, it should be very interesting the study of quantum

production [104] of small quantum black holes in scattering processes.



Appendix A

Calculus tools and notation

conventions

We use two kinds of tensor indices: greek index (µ, ν, ρ, ...) in general curved space-

times and latin index (a, b, c, ...) in flat space-time. We also use the Einstein notation

of summing over repeated indices.

We choose the metric signature (− + ...+). The expression ηab represents the

components of the Minkowski metric and gµν the general components of a curved

space-time metric. We define the vielbeins as

eµae
ν
b gµν = ηab , eaµe

b
ν ηab = gµν . (A.1)

The expressions ∂
∂xµ

or ∂µ or , µ represent a partial derivative. Whereas ∇µ or ;µ

represents a covariant derivative. A prime over a function means partial derivative

with respect to the radial coordinate: f ′ ≡ ∂f
∂r
, whereas a point over a function means

derivative with respect to time coordinate: ḟ ≡ ∂f
∂t
. And finally D is the covariant

Lorentz derivative. These derivatives are defined over the tensors and spinors ψ as

∇µk
ν = ∂µk

ν + Γνµρk
ρ ,

∇µψ = ∂µψ − 1

4
ωabµ Γabψ ,

Dµk
a = ∂µk

a + ωaµbk
b , (A.2)

where Γab is the antisymmetric product of two gamma matrices. The connections

are related by

ωbµa = Γbµa + eνa∂µe
b
ν , (A.3)
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where the affine connection Γρµν are the Christoffel symbols

Γρµν =
1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) . (A.4)

We use for the anticommutator the relation

[A,B] = AB −BA , (A.5)

and for the commutator

{A,B} = AB +BA . (A.6)

For the majority of the cases presented in this work we use Planck units

~ = c = G = 1 . (A.7)

However in some cases we write the units explicitly for convenience.



Appendix B

N-sphere area

The n-sphere Sn of radius unit is defined as the hypersurface of radius r = 1 in

the (n + 1)-dimensional Euclidean space-time, where r is the radial coordinate in

(n+ 1)-dimensional spherical coordinates (r, ϕ, θ1, ..., θn−1). The induced metric on

Sn in spherical coordinates is

ds̃2 = r2dΩ2
n , (B.1)

where the volume form in Sn is

dΩn ≡ dϕ
n−1∏
i=1

siniθidθi . (B.2)

The volume of the n-sphere Sn is the volume integral over all the sphere

ωn =

∫
Sn

dΩn =
2π

n+1
2

Γ
(
n+1
2

) . (B.3)

Using the properties of the gamma function

Γ (x+ 1) = x Γ(x) ,

Γ(0) = 1 ,

Γ(1/2) =
√
π , (B.4)

for example we obtain

ω1 = 2π ,

ω2 = 4π ,

ω3 = 2π2 ,

... (B.5)
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Appendix C

Komar integral and ADM energy

In this appendix our aim is to show the equivalence between the square of the event

horizon and the mass of the NS5/LST black hole. We will calculate the Komar

integral associated with the time-like Killing vector Kν , for definition see e.g. [105].

For the ten-dimensional NS5 and LST the Komar integral is defined as

E =
1

8πG(10)

∫
∂Σ

d(8)x
√
−g(8) eµeν∇µKν , (C.1)

where the integral is carried out in the boundary ∂Σ of a space-like hypersurface Σ.

We will work in string frame (3.5). We define two normal vectors as

et = −
√
f(r) , er =

√
A(r)

f(r)
(C.2)

with the other components to be equal to zero. They fulfill the normalization con-

dition eµe
µ = −1 and eνe

ν = +1. We therefore have

eµeν∇µKν = eter∇tKr . (C.3)

The Killing vector is Kν = (1, 0, 0, 0, ...), then

∇tKr = gtt∇tK
r = gtt(∂tK

r + ΓrttK
t) =

1

2
gttgrr∂r(−gtt) . (C.4)

Substituting in (C.1) and integrating we obtain the total energy, or equivalently the

ADM mass1 corresponding to the NS5 and LST black holes,

M =
Vol(R5)π

(
χr20 +

N
m2

s

)
4G(10)

. (C.5)

1For the NS5/LST backgrounds the components of the metric are time-independent at infinity,

thus the Komar energy is equivalent to the ADM mass.
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Appendix D

Gamma matrices

In this appendix we have followed the excellent notes in [15]. The 11-dimensional

gamma matrices satisfy

{Γa,Γb} = 2ηab , (D.1)

with the relation

−iΓ11 ≡ iΓ0...Γ9 = Γ10 . (D.2)

They are purely imaginary, thus

Γa∗ = −Γa (D.3)

and anti-hermitian, except Γ0,

Γ0† = Γ0 ,

Γi† = −Γi , i = 1, ..., 10 . (D.4)

Furthermore they are symmetric except Γ0 which is antisymmetric,

Γ0T = −Γ0 ,

ΓiT = Γi , i = 1, ..., 10 . (D.5)

More properties are

εΓa1...anψ = (−1)n+
n
2ψ (Γa1...an)T , (D.6)

which is symmetric for n = 0, 3, 4, 7, 8 and antisymmetric for n = 1, 2, 5, 6, 9, 10 ,

(εΓa1...anψ)† = (−1)
n
2ψΓa1...anε , (D.7)
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and finally

Γa1...an = i
(−1)1+

n
2

(11− n)!
εa1...anb1...b11−nΓb1...b11−n . (D.8)

The ten-dimensional spinors and their definitions are the same in eleven dimen-

sions. Moreover one can define the Weyl spinors as

Γ11 = −Γ0...Γ9 = iΓ10|11−dim , (D.9)

which is hermitian (Γ11)
2 = 1. Weyl positive chiral spinors and negative chiral

spinors are defined as

Γ11ψ
(±) = ±ψ(±) . (D.10)

In ten dimensions, one can define Majorana-Weyl spinors. A useful representation

is that in which the gamma matrices are imaginary and Γ11 can be expressed as

Γ11 = I16×16 ⊗ σ3 = γ0 =

(
I16×16 0

0 −I16×16

)
. (D.11)

In the Majorana-Weyl representation every Majorana spinor can be expressed as a

direct sum of one positive chiral spinor and one negative chiral spinor of 16 compo-

nents,

ψ =

(
ψ(+)

ψ(−)

)
. (D.12)

Finally it is fulfilled the identity

Γ11Γ
a1...an =

(−1)1+
(10−n)

2

(10− n)!
εa1...anb1...b10−nΓb1...b10−n . (D.13)

In four dimensions we are able to use the Majorana or Weyl representations. In

a purely imaginary representation (Majorana), the chiral matrix is

γ5 = −iγ0γ1γ2γ3 = i

4!
εabcdγ

abcd , (D.14)

hermitian, imaginary and antisymmetric. The matrix iγ0 is real and antisymmetric.

The Majorana condition is that the spinors be real ψ = ψ∗. Finally we have the

identity

γa1...an = i
(−1)

n
2

(4− n)!
εa1...anb1...b4−nγb1...b4−nγ5 . (D.15)



Appendix E

Average number of emitted bosons

In this appendix we have explicitly calculated some expressions of the Section 3.8.1.

concerning to the blackbody spectrum of a black hole. We start with a state that

describes a system of n virtual pair of particles inside the black hole,

|ψ〉 = N
∑
n

|nLin〉 ⊗ |nRin〉 . (E.1)

We want to write this physical state in terms of the out eigenstates. The reason

is that outside of the black hole we can carry out observations. Thus taking into

account the relation (3.136) between the modes inside and outside of the black hole,

we obtain

|ψ〉 = N
∑
n

e−
πωn
~κ |nLout〉 ⊗ |nRout〉 . (E.2)

In order to calculate the normalization constant N we make use of the orthonormal-

ization condition between the orthonormalized states

〈ψm|ψn〉 = δmn . (E.3)

Thus considering two states |ψn〉 and 〈ψm| we construct

〈ψm|ψn〉 =

(
N
∑
m

e−
πωm
~κ 〈mL

out|⊗〈mR
out|

)
·

(
N
∑
n

e−
πωn
~κ |nLout〉 ⊗ |nRout〉

)
= N2

∑
m,n

e−
πω(m+n)

~κ 〈mL
out|nLout〉 ⊗ 〈mR

out|nRout〉 . (E.4)

Then taking into account (E.3) we obtain

1 = N2
∑
n

e−
2πωn
~κ . (E.5)
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The normalization constant corresponding to bosons (n = 0, 1, 2, ...) and fermions

(n = 0, 1) is respectively

Nb =
(
1− e−

2πω
~κ

) 1
2
, Nf =

(
1 + e−

2πω
~κ

)− 1
2
. (E.6)

Eventually a state associated to a system of bosons inside the black hole can be

written as

|ψb〉 =
(
1− e−

2πω
~κ

) 1
2
∑
n

e−
πωn
~κ |nLout〉 ⊗ |nRout〉 . (E.7)

The density matrix for a boson system is

ρb = |ψn〉〈ψm|

=

(
Nb

∑
n

e−
πωn
~κ |nLout〉 ⊗ |nRout〉

)
·

(
Nb

∑
m

e−
πωm
~κ 〈mL

out|⊗〈mR
out|

)
=

(
1− e−

2πω
~κ

)∑
n,m

e−
πω(n+m)

~κ
(
|nLout〉 ⊗ |nRout〉

)
·
(
〈mL

out|⊗〈mR
out|
)

=
(
1− e−

2πω
~κ

)∑
n,m

e−
πω(n+m)

~κ
(
|nLout〉〈mL

out|
)
⊗
(
|nRout〉〈mR

out|
)
. (E.8)

Tracing over the left modes

〈mL
out|
(
|nLout〉〈mL

out|
)
|nLout〉 , (E.9)

and taking into account the orthonormalization condition (E.3) we obtain

ρRb =
(
1− e−

2πω
~κ

)∑
n

e−
2πωn
~κ |nRout〉〈nRout| . (E.10)

This expression corresponds to the density matrix for bosons in terms of the right

outgoing modes. This modes will be detected at asymptotic infinity as the Hawking

radiation. Finally, we calculate the average number of bosons detected at asymptotic

infinity using the equation

〈nb〉 = Tr(n · ρRb )
=

(
1− e−

2πω
~κ

)∑
n

n · e−
2πωn
~κ |nRout〉〈nRout| . (E.11)

Tracing over the right outgoing modes

〈mR
out|
(
|nRout〉〈nRout|

)
|nRout〉 , (E.12)

and taking into account the orthonormalization condition (E.3), we obtain the av-

erage number of emitted bosons

〈nb〉 =
(
1− e−

2πω
~κ

)∑
n

n · e−
2πωn
~κ =

1

e
2πω
~κ − 1

. (E.13)
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