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Abstract

The aetiology of common diseases is shaped by the effects of

genetic and environmental factors. Big efforts have been devoted to

unravel the genetic basis of disease with the hope that it will help

to develop new therapeutic treatments and to achieve personalized

medicine. With the development of high-throughput genotyping

technologies, hundreds of association studies have described many

loci associated to disease. However, the depiction of disease

architecture remains incomplete. The aim of this work is to perform

exhaustive comparisons across human populations to evaluate

pressing questions. Our results provide new insights in the allele

frequency of risk variants, their sharing across populations and the

likely architecture of disease.

Resumen

La etiología de las enfermedades comunes está formada por

factores genéticos y ambientales. Se ha puesto mucho empeño en

describir sus bases genéticas. Este conocimiento será útil para

desarrollar nuevas terapias y la medicina personalizada. Gracias a

las técnicas de genotipado masivo, centenares de estudios de

asociación han descrito una infinidad de genes asociados a

enfermedad. Pese a ello, la arquitectura genética de las

enfermedades no ha sido totalmente descrita. Esta tesis pretende

llevar a cabo exhaustivas comparaciones entre poblaciones para

responder diversas preguntas candentes. Nuestros resultados dan

pistas sobre la frecuencia de los alelos de riesgo, su presencia entre

poblaciones y la probable arquitectura de las enfermedades.
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Preface

The central dogma of molecular biology describes that genetic

information in biological systems is mostly transferred in a single

direction that goes from DNA to RNA and proteins. It was

established in the 60s (20th century!) but still prompted me and

many of my lab fellows to make research in biology. It will be so

forever. Yet, young people do not join anymore because of an easy

dogma but the beauty of an ever filling puzzle.

Complexity is not the only trend in biology. The development of

high throughput technologies such as those used in genomics is

producing increasing amounts of biological data. Since a while ago,

not data but making sense of it is the main priority for biologists.

One of the deepest reasons behind the abovementioned revolutions

is related to a special kind of phenotype: pathology in humans. It is

hoped that unveiling the factors that shape disease will permit to

develop new disease treatments and large amounts of money are

devoted, for instance, to medical genetics.

This thesis represents a small work within the efforts to make sense

of publicly available data to understand disease complexity. No

new data are provided. Nonetheless, a few inferences on the

genetic architecture of disease are made. While the answers we

provide will certainly age fast, they might prove helpful to anyone

interested in the current debates in the field of genetics of disease.
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Cæteris paribus…

All other things being equal...

1.1. Epidemiology and the genetics of disease

The work in this thesis focuses on the genetic architecture of

complex disease across populations. Concepts from such disparate

fields as epidemiology and quantitative genetics should be

introduced. I prioritized an introduction about disease in

populations, the role of genetics in disease, the types of risk variants

and an introduction to Mendelian disease.

1.1.1. Epidemiology and Genetic Epidemiology

Epidemiology studies the occurrence and determinants of disease

in populations (Rothman 2002). Usually, causation is multifactorial

and variable across individuals. Epidemiology goes beyond the

description of causes and measures their strength in populations.

These calculations allow comparing disease in different groups;

thereby giving perspectives in public health (Figure 1).

A key step in any epidemiological study is the definition of the

population at risk, the group of individuals from which

conclusions on disease occurrence can be extracted. The two main

descriptive measures of disease occurrence are incidence (rate at

which new cases occur during a specified period) and prevalence

(the proportion of a population that are cases at a point in time).
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Two main types of study are used in epidemiology: cohort and

case-control studies. Individuals from a cohort are initially disease-

free and ascertained because of a shared characteristic or risk

exposure (e.g. the 1958 British Birth cohort). These individuals are

followed over a period of time, and the estimates of relative risk

(RR) can be drawn. Relative risk measures the ratio of disease

probabilities in exposed over unexposed persons. These measures

serve to weight the attributable risks in populations.

Figure 1. Map by John Snow showing London cholera cases in 1854.
The clustering of cases around Broad Street’s pump (in current Soho)
served to avoid new cases and helped to eradicate the epidemics of
cholera in London.
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Although the gold standard in the field, cohort studies are lengthy

in time because only a fraction of individuals will develop disease.

The case-control approach is an immediate alternative, in

particular for rare conditions (Rothman 2002). In this design,

disease patients are identified and their suspected exposures are

compared with those of healthy controls. Ideally, control

individuals must be unbiased representatives of the same

population that gives rises to the cases; special efforts are devoted

to statistical adjustment to avoid confounding. From a contingency

table, the association of exposures and case-control status is

measured by means of the odds ratio (OR), the ratio of the odds of

exposure in cases to the odds in the controls (Rothman 2002).

Given their observational nature, epidemiological studies must

deal with all kind of possible biases. For instance, selection bias

may occur if the selected individuals are not good representatives

of the population at risk. Any difference in variables other than the

exposure among the source under study may lead to a

confounding. Epidemiologists devote especial efforts to avoid any

such confounding (i.e. matching samples for known confounders).

Genetic epidemiology focuses in the study of the role of genetic

and environmental factors in disease prevalence (Thomas 2004;

Ziegler et al. 2010). Its primary focus lies in inherited variation

through comparisons among relatives. Genetic epidemiology aims

to study if a given disease “runs in families” and the role of

genetics in its inheritance patterns. Together with cohort and case-
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control studies, family-based designs are the cornerstones of the

field.

Figure 2. Progression steps in genetic epidemiology.
Summary of main tasks done in genetic epidemiology, from the initial
hypothesis on a role for genetics underlying familial aggregation to fine
mapping (Thomas 2004).

The process of genetic epidemiology has been equalled to a

progressive task whose final aim is the unravelling of the genetic

basis of disease (Figure 2). Eventually, the full description of the

genetic architecture of a given disease consists in the mapping of

all genetic variants associated to it, along with their effect sizes and

interactions with other genetic and environmental factors. Such a

description would complement other evidences (e.g. migrant

studies) to understand the role of genetics in the differential
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prevalence of disease across populations and would help in the

study of the evolutionary history of disease.

1.1.2. Familial resemblance and heritability

The study of patterns of familial aggregation constitutes the first

step to ensure that genetic variants shape disease aetiology.

Familial resemblance refers to the increase in phenotypic

correlation (e.g. disease prevalence) of relatives compared to

unrelated individuals (Ziegler et al. 2010). A comparison of familial

resemblances estimated from different relationships among

relatives (e.g. siblings, cousins, 2nd cousins) permits an initial

exploration of the range of possible genetic architectures of disease.

Nevertheless, recurrence ratios among relatives can arise due to

either genetic or environmental factors and thus further methods

are needed to ensure that genetics plays a role in disease.

75
30
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4
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Autism
Crohn's disease

Multiple sclerosis
Osteoarthritis

Bipolar Disorder
Schizophrenia

Psoriasis
Hypertension

Alcoholism
Asthma
Leprosy

Figure 3. Sibling risk ratios for several disease traits (Ziegler et al. 2010).
Recurrence risk ratios measure the prevalence of disease in relatives of
cases compared to that in general population. The ranges of values risk
ratios can take depend on disease prevalence.
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Heritability is a population parameter that permits to weight the

extent to which variation in a trait is due to genetic factors

(Visscher et al. 2008). Specifically, variation observed across

individuals is partitioned into unobserved genetic and

environmental categories. Each of these partitions captures part of

the variance, and the ratio of variances weights the influence of

genetic variability in the observed sum of variances (H2, broad-

sense heritability). Further partition of the genetic category into

additive, dominant and interaction effects permits to measure h2

(narrow-sense heritability): the fraction of variation attributable to

additive genetic factors that serves to predict similarities between

parents and offspring. However, the incorporation of complex

phenomena such as gene-by-environment interactions to the

statistical model difficult these calculations.

To estimate heritability in humans, the correlation among relatives

in families can be used to compare observed vs. expected

resemblance (Visscher et al. 2008). The most commonly used

classical methods are the regression of the offspring on the parental

phenotypes, or the difference in correlation between monozygotic

(MZ) and dizygotic (DZ) twins. Yet, estimations can be biased if

non-genetic factors (e.g. increased environmental correlations in

MZ twins) are not accurately modelled (Boomsma et al. 2002).

Notably, the availability of genetic markers and re-sequencing data

permits to refine the estimates from pedigrees with those

calculated by means of distantly related individuals (Yang et al.

2010).
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The interpretation of heritability can suffer from several

misconceptions (Visscher et al. 2008). It is easily forgotten that

estimates of heritability are population-specific and can vary across

sex and age. Additionally, they are point estimates in time: traits

with large heritability can be heavily affected by changes in the

environment (e.g. secular rise in human height in modern

societies). Hence, differences in environment must be ruled out to

conclude that differences among populations are genetic in origin

(Feldman and Lewontin 1975). Moreover, the comparison of

heritability estimates across diseases and populations can be

heavily affected by differences in incidence. Thus, heritability for

categorical disease traits is better estimated through the threshold

liability model (Visscher et al. 2008). Specifically, an underlying

distribution of risk factors is assumed to assign a genetic score of

risk to each individual, and prevalence is then used to set the

threshold score of disease status.

Positive estimates of heritability predict a role of genetic variants in

disease prevalence. Indeed, how easily large-effect alleles are found

increases with heritability (phenotype predicts genotype).

However, large estimates of heritability do not inform about

disease architecture and are not at odds with the observation that

abundant cases are sporadic and have no diseased relatives.

1.1.3. Types of genetic variation in disease

Disease forms a category of abnormal phenotypes characterized by

pathology that appear from the expression of DNA under the
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influence of environmental factors. A consideration of the types

and forces shaping polymorphism is needed to deepen our

knowledge of the genetics of disease.

Permanent changes in the DNA molecule arise by mutation

(Balding et al. 2007; Crow 2000; Eyre-Walker 2010). Broadly

speaking, two kinds of variation can be distinguished in our

genomes according to their size: point mutations and structural

variation (Frazer et al. 2009). The former are substitutions of a

single base known as single nucleotide polymorphisms (SNPs) that

form the most prevalent change in human genomes (>53 million

SNPs are deposited in the dbSNP repository, release 137). Human

genomes carry 10 to 200 de novo single-base mutations and the two

haploid genomes in individuals harbour 3x106 differences, or 1 in

1,000 nucleotides (Conrad et al. 2011; Reich et al. 2002).

Each form of a SNP is called allele. Most SNPs are bi-allelic (Slatkin

2008) and their frequency permits to distinguish between major and

minor alleles, the frequency of the latter being the minor allele

frequency (MAF). The sequence in origin of alleles permits to

distinguish between ‘ancestral’ and ‘derived’ allele, the latter being

those that have arisen more recently. Moreover, the position of

SNPs in the genome permits a classification based on functionality

(Cargill et al. 1999). Given the low density of genes in the genome,

most SNPs are intergenic (Sachidanandam et al. 2001). This feature

does not preclude a functional effect, as intergenic SNPs may have

regulatory roles (Cooper and Shendure 2011). Genic SNPs are
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further classified into non-coding (intronic and 5’ and 3’ UTR) and

coding (synonymous, missense and nonsense). The action of natural

selection varies across functional categories of SNPs and shapes

their allele frequency in human populations (Barreiro et al. 2008).

Structural variants (SVs) are the second class of genetic variants.

SVs range from small indels to large chromosomal rearrangements

(Frazer et al. 2009). Each type has distinctive rates of mutation and

variable genome dynamics (Zhang et al. 2009). Examples of SV role

in disease are abundant (Eichler et al. 2010; Zhang et al. 2009).

Figure 4. Nomenclature and representation of human genetic variation.
Single nucleotide variants are DNA polymorphisms in which a single
base is altered. Insertion-deletion (Indels) variants occur when one or more
base pairs are present in some genomes but absent in others. Block
substitutions describe cases in which a string of nucleotides varies
between two genomes. An inversion variant is one in which the order of
the base pairs is reversed in a defined section of a chromosome. Copy
number variants occur when nearly identical sequences are repeated in
some chromosomes but not others. Adapted from (Frazer et al. 2009)

Population geneticists study the forces that affect the evolution of

polymorphism in natural populations (Hartl and Clark 2007).
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Besides mutation, recombination also increases genetic variability

(Slatkin 2008). Instead of creating new variants, it does so by

placing different variants in the same chromosome. The

homologous chromosomes of maternal and paternal origin align

and exchange segments during meiosis. Thus, recombination

creates new combinations of alleles via germ-line mosaics that are

passed to the next generation (haplotypes). Recombination rates

vary across the genome and hotspots of 1-2 kb length with >100-

fold increased rates can be distinguished (Myers et al. 2005).

Figure 5. Differences between metrics of Linkage Disequilibrium.
Left: Two markers with 0.5 allele frequency are not linked and each
resulting haplotype has a frequency of 0.25. Middle left: Alleles at one
marker correlate partially with alleles at the other marker. Middle right:
The two alleles are tightly linked. Right: An allele at one marker predicts
perfectly the allele at the other marker (only in this situation r2=1).
Adapted from (Raychaudhuri 2011)

Haplotypes are directly related to Linkage Disequilibrium (LD). In

populations, LD occurs when combinations of alleles are found as

haplotypes more often than expected by their allele frequencies

(Balding et al. 2007). The appearance of new alleles through

mutation creates LD, and genetic drift and natural selection help in

its maintenance. In contrast, the reshuffling of present haplotypes
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by gametic recombination forces the decay of LD. The evolutionary

history of populations and the presence of recombination hotspots

determine the structure and size of segments that are in LD

(haplotype blocks) and its variation across populations (Reich et al.

2001).

Genetic drift is another force that governs the fate of genetic

diversity (Hartl and Clark 2007). Living populations are of finite

size, and individuals have different number of offspring. Hence,

each generation represents a sampling of the allele frequencies in

the previous generation. The succession of random changes in

allele frequencies diminishes genetic variation, as alleles are either

lost or fixed. The effects of genetic drift depend on population size,

being more extensive in small populations (Hartl and Clark 2007).

Importantly, the estimation of effective population size permits to

enclose the effects of genetic drift in populations (Fisher 1930;

Wright 1931). Genetic drift plays a major role driving

differentiation across populations (Nagylaki 1985). Populations are

hierarchically structured because individuals breed with partners

from close habitats (Balding et al. 2007). After divergence, allele

frequencies fluctuate and thus drift decreases diversity within

populations whilst differentiating them.

The presence of genetic variants that alter the survival and

reproduction of individuals (fitness) opens room for the action of

natural selection. Different modes of selection are distinguished

(Hartl and Clark 2007). Purifying selection decreases the frequency
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of variants that diminish the fitness of the individual, whilst

positive selection increases the frequency of those improving

fitness. Both types of selection result in a decrease of genetic

diversity. Finally, balancing selection acts prioritizing the

maintenance of different alleles at the same locus and leads to

increased levels of heterozygosity.

1.1.4. Mendelian disease

Mendelian diseases constitute the simplest category of genetic

disease and are usually monogenic (there is a single gene

harbouring deleterious mutations that cause pathology). These

disorders run in families through classical Mendelian inheritance.

The phenotypic analysis of affected individuals (probands) permits

an exploration of the likely architecture of disease (e.g. recessive -

dominant segregation (Weiss 1999)).

Genetic mutations that cause Mendelian disorders evolve under

strong purifying selection due to their severe effects on the fitness

of individuals and are maintained at low frequency in populations

(Reich and Lander 2001). Their prevalence is usually maintained by

a mutation-selection balance; thereby new disease-causing

mutations are culled by natural selection (Di Rienzo and Hudson

2005). This equilibrium model leads to high allelic heterogeneity,

whereby mutations with different evolutionary histories in the

same gene produce the same phenotype (e.g. 302 different

mutation events were found in 424 families with Haemophilia B
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from UK). Importantly, the effective mutation rate for Mendelian

disease correlates with gene length (Weiss 1999).

Figure 6. Phenotypic heterogeneity in Mendelian disease.
Example from a pedigree in which different combinations of ABCA4
alleles determine the age-of-onset and severity of Stargardt macular
dystrophy (Lupski et al. 2011).

In last 30 years, linkage analysis has succeeded in unveiling the

genetic causes of hundreds of monogenic diseases. Nonetheless,

the analysis of Mendelian diseases is usually not so

straightforward (Figure 6). Instead, several complications such as

imprinting, age-dependant penetrance and phenotypic

heterogeneity can obscure the phenotype-genotype map and alter

their inheritance patterns (Ziegler et al. 2010). These phenomena

blur the distinction between Mendelian and Complex diseases.
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There are known knowns and known unknowns.

But there are also unknown unknowns:

 things we do not know that we don’t know…

Donald Rumsfeld, 2002 (adapted)

1.2. Complex diseases

Complex diseases are caused by the effects of genetic and

environmental factors. The modern increase in prevalence of these

diseases fuels the research to unravel their genetic architecture.

1.2.1. Introduction and prevalence

The word complex fits perfect to label diseases such as diabetes or

schizophrenia. These diseases arise through intricate and variable

interplay between environmental and genetic factors (Botstein and

Risch 2003). Complex diseases show familial clustering, but follow

non-Mendelian inheritance patterns (Ziegler et al. 2010). Complex

diseases are usually acquired at late ages, but the age of onset is

highly variable (Wright et al. 2003). Complex diseases present

shared morbidities that can be classified in medical handbooks, but

their manifestations differ across individuals (Weiss 1999). These

inherent complexities difficult the task of uncovering risk factors

and the understanding of the ultimate reasons that transform

healthy individuals into patients.

Several goals underlie the interest to study the genetics of disease.

Two of the main aims consist, first, in gathering biological
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knowledge about the pathways involved in aetiology that can lead

to targets for drug design (Visscher et al. 2012) and, second, using

this knowledge to develop personalized medicine and identify

healthy individuals at increased risk of disease (Wray et al. 2010).

The prevalence of most complex diseases has exploded in the last

two centuries (Gibson 2009). This major shift in human pathology

has coincided with the decrease in prevalence of communicable

diseases and the ongoing lengthening in life expectancy in

developed societies (Di Rienzo and Hudson 2005; Wright et al.

2003). As shown in Figure 7, Several of the diseases linked to

“affluence”, such as coronary disease, have substituted trauma and

infectious disease as the first causes of death (Pollard 2008).

Figure 7. Change in death cause profile in Chile between 1909 and 1999.
A century ago, almost half of deaths were caused by infectious disease
and the number of deaths caused by cancer or cardiovascular disease
constituted a minority. This situation has reversed. From (Pollard 2008).

Over the last decades, this epidemiological transition has extended

into developing countries, emerging worldwide. For instance, type

2 diabetes presents epidemic prevalence in populations that are

undergoing rapid lifestyle shifts such as in urban India (Diamond
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2003). Several evolutionary hypotheses have been put forward to

explain current prevalence of complex disease and the differences

observed across human populations. Indeed, an evolutionary

perspective of disease may help to choose appropriate methods to

unravel their genetic architecture (Di Rienzo and Hudson 2005).

Figure 8. Disease prevalence varies across genetic ancestries.
Relative frequencies of cancers in African and European Americans are
shown. Cancer types that present significant differences in prevalence
(marked in red and green) can be due to genetic, environmental or gene-
by-environment variability. From (Winkler et al. 2010).

1.2.2. Early models and inferences of disease architecture

Genetic architecture refers to the underlying basis of a phenotypic

trait, composed by the distribution of causal variants, allele

frequencies, effect sizes and the patterns of pleiotropy, dominance

and epistasis they maintain (Visscher et al. 2010). These parameters
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are modelled by the evolutionary processes that act on the

phenotype. Importantly, current efforts in modelling disease

evolution focus on the fitness effects of susceptibility variants in

ancestral environments rather than on current clinical parameters

(Di Rienzo and Hudson 2005). Nevertheless, factors such as the late

age of onset, the incomplete penetrance of causal variants and the

myriad of environmental contributions difficult the modelling of

fitness and disease evolution (Di Rienzo and Hudson 2005).

First experimental studies in early 50s and 60s found strong

associations (e.g. OR>100) between common variations in ABO and

HLA and several types of cancer and autoimmune diseases

(Bodmer and Bonilla 2008). Interestingly, these alleles present both

high allele frequencies and large effect sizes (e.g. HLA-B27 allele in

Ankylosing spondylitis).

The high frequency of these variants hinted at a role of fluctuating

selection between Palaeolithic and Neolithic times (Pritchard and

Cox 2002). Initial hypotheses put forward to explain prevalence

focused in the large difference between current lifestyles and those

in the times when modern humans evolved. James V. Neel

proposed the ancestral thrifty genotype hypothesis model for type 2

diabetes (Neel 1962). This author aimed to explain the paradox of

diabetes prevalence given its detrimental effects on fitness. This

hypothesis suggests that alleles predisposing to rapid releases of

insulin in humans would be adaptive under ancient cycles of feast

and famine but maladaptive in modern societies. The recent
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environmental shift and the increase in life expectancy would have

unmasked the latent genetic susceptibilities to disease (Di Rienzo

and Hudson 2005). Evolutionary visions have been proposed to

explain the differential prevalence of diabetes and obesity across

populations (“New world syndrome”), the higher prevalence of

hypertension in African Americans (“sodium retention

hypothesis”) or of inflammatory and allergic diseases in urban

peoples (“hygiene hypothesis”). Several of these hypotheses are

disaccredited, but the tension between ancestral and current

environments frames the necessity of non-equilibrium models for

complex disease.

Figure 9. The nebulous architecture of complex disease.
Complex diseases arise due to interactions of genetic and environmental
factors that control the underlying causal traits and emerge from the
range of normal variation in healthy individuals. The figure (Burmeister
et al. 2008) for psychiatric diseases serves to illustrate this point.
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The study of complex disease genetics with positional cloning

methods exploded in the 80s thanks to the availability of genomic

maps through restriction fragment length polymorphism (Botstein

et al. 1980). It is striking that most successful findings were later

revealed as false positives (Botstein and Risch 2003), with the main

successes being restricted to familial forms of disease (e.g. BRCA1

for breast cancer in young cases). Overall, a scant number of

common variants (MAF>10%) such as APOE-ε4 for Alzheimer’s

disease and PPARγ for type 2 diabetes were available by mid-90s.

1.2.3. The “Common Disease/Common Variant” hypothesis

The somewhat failure of linkage methods, that had been successful

for Mendelian diseases, prompted the debate on the methodology

necessary to discover variants for complex disease. The few such

variants available at the turn of the century evidenced the absence

of high-risk alleles and suggested that different variants must

account for disease aggregation in relatives.

In the late 90s, several landmark studies explored the

methodological challenge to unravel disease-associated variants of

low risk (Chakravarti 1999; Lander 1996; Reich and Lander 2001;

Risch and Merikangas 1996). For instance, Risch and Merikangas

(Risch and Merikangas 1996) compared linkage to association

methods and showed the latter would be powered to find low-risk

alleles in the absence of allelic heterogeneity. Importantly, the

authors acknowledged the strict thresholds necessary to avoid false
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positives inflation due to the large number of polymorphism that

ought to be tested.

Meanwhile, a variety of papers explored disease architecture from

a simulation perspective (Pritchard 2001; Pritchard and Cox 2002;

Reich and Lander 2001). These studies explored ranges of selective

effects for risk variants to answer questions on the frequency and

number of alleles expected in disease loci. Overall, only a few of

the loci eventually associated to disease would harbour disease

mutations. With the caveat of the difficulty to guess in advance

which of the disease loci are polymorphic for these variants, the

predicted values of allele identity were encouraging for the

successful completion of association studies.

These works showed that a regime of weak purifying selection

would prevent the fixation of disease variants, leaving them at

intermediate frequencies. Given the correlation between genetic

variance and heterozygosity (Visscher et al. 2012), these

intermediate-frequency alleles would contribute most to the

genetic variance of disease, i.e. heritability. Finally, simulation

studies suggested that it was possible, at least in principle, that a

relatively reduced set of common variants could account for most

of the individuals with disease mutations in populations.

The works mentioned above, amongst others, contributed to the

establishment of the “Common Disease/Common Variant”

(CD/CV) hypothesis. This paradigm states that common variants
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in susceptibility genes account for complex disease genetic risk.

The slight deleterious effects of these variants in individual fitness

explain their high allele frequencies. Their frequency would

counterweight the low relative risks of these variants, thus

explaining the large prevalence of complex disease. In spite of

criticisms (Terwilliger and Weiss 2003; Weiss and Terwilliger 2000),

the CD/CV hypothesis was established as the paradigm in human

genetics and paved the way for the wave for LD-based association

studies.

Figure 10. The difficult quest for the genetic causality of complex traits.
An inverse map of the Mississippi river serves as a fluvial equivalent of
complex disease: cases are the end-point of a complex network of causal
factors. The contributory streams form a buffered structure that can
change from flood to flood. This complexity makes difficult the
assignment of marginal effects to each stream and thus the ascertainment
of the major contributing rivers (Weiss 2008).
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I have nothing to offer but blood, toil, tears and sweat.

Winston Churchill

1.3. LD-based association mapping

The establishment of the CD/CV hypothesis fuelled the

characterization of human common variation and the patterns of

LD through the HapMap project. These data served to establish

association mapping as the choice method to unravel the genetic

bases of complex disease. The HapMap project, an introduction to

methodology and pitfalls of candidate gene association studies and

the current wave of genome-wide studies are described below.

1.3.1. The HapMap project and the patterns of LD

SNPs revealed as the marker of choice in population-based

association studies due to their abundance, but a proper

understanding of the strength of LD in human genomes was

necessary for the proper design of studies (Wright and Hastie

2007). A seminal simulation study estimated that LD would not

extend beyond 3 kb (Kruglyak 1999). Conversely, posterior studies

based on real data established the existence of discrete haplotype

blocks that extend for several tens of kilobases (Daly et al. 2001;

Jeffreys et al. 2001; Patil et al. 2001). The possibility of

characterizing haplotype blocks by the genotyping of a low

number of SNPs that may be shared across populations (Gabriel et

al. 2002) prompted the launching of the HapMap project in October

2002 (Figure 11).
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The primary object behind the HapMap Project was to develop a

“haplotype map” of the human genome to study common patterns

of human DNA sequence variation (The International HapMap

Project 2003). The unravelling of the haplotype structure across

populations was aimed to provide the basis for SNP selection in

LD-based association studies (de Bakker et al. 2005; The

International HapMap Consortium 2005). Four populations were

chosen for high density genotyping: 30 parent-offspring trios of

Yoruba ancestry (Ibadan, Nigeria); 30 trios of northern and western

European ancestry from Utah (USA); 45 unrelated individuals from

Tokyo (Japan); and 45 unrelated individuals from Beijing (China).

After the second phase, genotype data for >3 million SNPs were

characterized in 270 individuals (Frazer et al. 2007; The

International HapMap Consortium 2005). The latest release

“HapMap III” provided 1.6 million SNPs genotyped in >1,100

individuals from 11 populations.

HapMap data served to develop a catalogue of human common

SNP variation and the patterns of correlation among variants. The

latter is very relevant to ascertain the tagSNPs that best cover

genetic variation within LD blocks (de Bakker et al. 2005).

Of note, the design of the SNP discovery process had important

consequences on the allele frequency spectrum of SNPs genotyped

by HapMap. Markers were identified by direct sequencing of a

small panel of individuals and subsequently genotyped in the

larger panel of individuals. This procedure introduced an
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ascertainment bias in SNP discovery in which rare variants are

easily messed and common variants in Europeans are prioritized.

Figure 11. Haploview plot showing the LD relationships of SNPs.
The strength of LD between pairs of SNPs is denoted by colouring, from
white (weak) to red (maximum). Two LD blocks are distinguishable
(Canzian et al. 2009).

1.3.2. Candidate gene association studies

The widespread availability of SNP markers after HapMap

expedited the publication of candidate gene association studies

using case-control designs (Hirschhorn et al. 2002). Genetic

association aims to establish statistically supported correlations

between genetic markers and the phenotype of interest (Wright

and Hastie 2007). In contrast to linkage, association mapping looks

for the transmission of disease status with alleles instead of with

loci. Genetic associations are detected when specific alleles are

more frequent in groups of affected than of non-affected

individuals (Ziegler et al. 2010). Association mapping does not
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require pedigree sampling as it can take profit from unrelated

individuals gathered from the general population.

Associations between alleles and disease arise both when the tested

marker is either causal (direct association) or when it is in strong LD

with the marker that in turn causes disease (indirect association). In

consequence, association studies present two requirements

regarding genetic variation. First, prior biological knowledge is

necessary to select loci that “make biological sense” (Thomas 2004)

and contain clues of participation in disease aetiology (e.g. signals

in previous linkage studies). Second, dense spacing of markers is

necessary to cover extensively the ascertained candidate loci.

Figure 12. Explosive growth of published genetic association studies.
The availability of SNP markers expedited the publication of candidate
gene association studies (HuGE Navigator database (Yu et al. 2008)).

In the case-control design, frequencies of variants at the ascertained

SNPs are compared in populations of cases and controls. A
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fundamental assumption of this method is that the ascertained

individuals must provide unbiased estimates of the true allele

frequency of the populations of interest (Clarke et al. 2011). In case-

control studies, the penetrance and relative risks are approximated

by calculating the strength of association (Odds Ratio) under

different models. Conditions that are better approximated as

quantitative traits (e.g. high blood pressure for hypertension) are

usually assessed through linear regression. Alternative analysis of

haplotypic and epistatic effects permit to test more complex

patterns of association (Clarke et al. 2011; de Bakker et al. 2005).

1.3.3. Lack of replication of the candidate gene approach

The identification of several associations through candidate gene

approaches created great hopes in the community and considerable

hype in the media (e.g. CTLA4 and type 1 diabetes, NOS2 and

Crohn’s disease or ADAM33 and asthma). However, the non-

replication of significant findings has constituted a major challenge

of candidate gene studies. A comprehensive review of >600 studies

found that only 6 out of 166 putative associations had been

consistently replicated (Hirschhorn et al. 2002). Other meta-

analysis described large heterogeneity in the reported effect sizes

and found clues of publication bias (Ioannidis et al. 2001;

Lohmueller et al. 2003).

Typically, as shown in Figure 13, an initial positive report is

followed by replication studies reporting little or absence of

association (Ioannidis et al. 2001). A wealth of statistical, biological
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and sociological reasons has been put forward to explain

replication failures (Hirschhorn and Altshuler 2002).

Figure 13. First studies tend to report unsupported strong effect sizes.
Odds Ratio found in first and following studies for 36 associations
(Ioannidis et al. 2001). Blue diamonds denote significant discrepancies.

The initial report “discovering” the association between disease

and particular alleles can constitute a false-positive finding. Indeed,

several quality-control aspects can result in false reports when

poorly addressed (Wright and Hastie 2007). Population

stratification, an artefact that arises when cases and controls do not

match as regards of genetic ancestry, is one of such challenges. The

confounding may appear when the underlying populations that

are represented in the studied cohorts differ in allele frequencies.

Even subtle correlations of genetic ancestry and disease status can

inflate association test statistics. Several methods have been

developed to avoid type I errors due to stratification (Devlin and



INTRODUCTION

31

Roeder 1999; Pritchard et al. 2000a; Pritchard et al. 2000b).

Statistical errors can also lead to false positives (Risch and

Merikangas 1996). The significance level to reject the null

hypothesis of no association (usually α=0.05) has to account

properly for the number of independent tests (e.g. number of

SNPs) to avoid “multiple testing”. Finally, circumstances that

enhance the probability of being reported depending on the

outcome of the study result in publication bias (Pan et al. 2005).

Ironically, an excessive zeal to harden significance thresholds

together with the presence of widespread publication bias does not

cancel but inflates false positive rates (Ellis 2010; Ioannidis 2005).

True findings can also fail to replicate due to lack of statistical

power in replication studies. The typical sample sizes used in

candidate-gene association studies (in the hundreds of samples)

may not render enough power to statistically distinguish the low

effect sizes of variants associated to complex disease (Chanock et

al. 2007). Winner’s curse, the inflated effect size typical of discovery

studies, can also affect the ability of replication trials by the over-

estimation of statistical power.

Finally, several factors associated to true biological heterogeneity

are involved in the abundant lack of replicability problem.

Heterogeneity at the phenotypic (e.g. clinical severity) and genetic

levels (i.e. variation in LD patterns), as well as differences in gene-

by-environment interactions (i.e. FTO effects in diabetes (Timpson

et al. 2009)) explain replication failures.
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The plethora of questionable associations could have ruined the

prospects of ever discovering the genetic bases of disease. This

perspective prompted the constitution of the NCI-NHGRI Working

group on replicability (Chanock et al. 2007). Among other criteria,

the consensus list included that replication studies should (i) have

enough sample size, (ii) test the same phenotype, (iii) use

independent samples from the same or similar population, and (iv)

find a similar effect using the same genetic model. If associations

are true, the combination of results across studies by means of

meta-analysis should lead to a better p-value (Chanock et al. 2007).

Interestingly, several meta-analyses of candidate gene associations

checked for the role of ethnicity in disease. In general, most risk

variants show consistent patterns in their effects in Europeans and

East Asians, albeit a few number of associations present significant

differences in effect size (Ioannidis et al. 2004). Interestingly,

disease-associated variants harbour levels of population

differentiation that do not depart from the genomic average, but

show substantial variation in allele frequencies that might help

accounting for the differences in disease prevalence (Adeyemo and

Rotimi 2009; Lohmueller et al. 2006; Myles et al. 2008).

1.3.4. Genome-wide association studies

The development of genotyping techniques improved the

availability of polymorphism to a density of up to several SNP per

kilobase (Hinds et al. 2005; Sachidanandam et al. 2001; The

International HapMap Consortium 2005). Additionally, the
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unravelling of LD patterns allowed, in principle, to capture ~80%

of the predicted >10 million common SNPs with a scattered

selection of 0.5 to 1 million SNPs (Visscher et al. 2012). Eventually,

HapMap permitted the development of commercial genotyping

arrays that did capture >95% and 80% of common variation in

Eurasian and African populations, respectively (The International

HapMap 3 Consortium 2009). Thus, technological development of

commercial chips for high-throughput genotyping made it feasible

to look for common risk variants by means of genome-wide

association studies (GWAS).

The first GWAS were published in 2005 and 2006 (Dewan et al.

2006; Klein et al. 2005). Even if using few markers and samples

(~100K SNPs and <200 individuals), both studies managed to find

common variants associated to age-related macular degeneration

due to their large effect sizes (OR>2). In 2007, the Wellcome Trust

Case Control Consortium published a GWAS for 7 different

diseases (The Wellcome Trust Case Control Consortium 2007). The

WTCCC paper became a landmark due to the large number of

samples used, the use of shared control cohorts across disease, the

confirmation of the low stratification present in Europeans, the

setting of significance thresholds and the replication of previous

signals. Dropping costs of commercial arrays helped in the increase

of published GWAS (Clarke et al. 2011; Hindorff et al.).

GWAS present two key differences with respect of candidate gene

studies. First, there is an inherent issue related to numbers.
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Previously, a few tens of markers and, at most, a few hundreds of

individuals were analyzed. In contrast, GWAS studies routinely

test millions of markers (after imputation) in thousands of

individuals gathered from diverse cohorts. Second, GWAS are said

to be “hypothesis-free”: they certainly look for common risk effects,

but they do so looking at SNPs scattered across the genome and

without any a priori list of candidate loci (Ziegler et al. 2010).

Figure 14. Display of WTCCC genome-wide results for two diseases.
Top: Q-Q plots showing the genome-wide distribution of association
statistic (y-axis) and that expected under the null hypothesis (x-axis and
grey band). Bottom: Manhattan plots show the –log of p-values for all
SNPs sorted by position. CAD shows a clear peak in 9p21 that accounts
for the deviation in the Q-Q plot. The differences can be due to quality
control problems (e.g. phenotype heterogeneity in bipolar disorder) or,
alternatively, point at true differences in genetic architecture.

The standard approach in GWAS consists in testing the association

of every single SNP to the phenotype of interest. The large number

of markers difficult the examination of results and the distribution

of association statistics must be inspected visually through
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Manhattan and Q-Q plots (Figure 14). These tools permit to check

the presence of genome-wide enrichments of low p-values and of

clusters of p-values in regions that merit further interest (towers in

Manhattan plots). The adjustment for multiple testing constitutes

an important decision in GWAS. The two most used cut-offs are

5x10-7 (WTCCC) and 5x10-8 (strict Bonferroni), but there are several

available methods available to select proper significance thresholds

(McCarthy et al. 2008; Pe'er et al. 2008).

There is large variation in GWAS design as regards to the

methodological approach selected to accumulate enough evidence

of association (Skol et al. 2006). One of the most common practices

consists in the design of multi-stage GWAS in which the results

from the initial genome-wide stage are followed up through the

genotyping of a few selected SNPs in a much larger sample of

individuals (Visscher et al. 2010; Ziegler et al. 2010). This approach

saves costs by the use of lower number of individuals in the initial

stage and the enrichment of SNP coverage only in interesting

regions. This procedure also permits to estimate the effect size of

associated SNPs without the inflation due to the winner’s curse

phenomenon (Ziegler et al. 2010).

At the time of writing, more than 1,380 published studies are

recorded in the catalog of GWAS maintained by the NIH Office of

Population Genomics (Hindorff et al.). Similar to the situation faced

in candidate gene studies, most of GWAS use exclusively

individuals of European genetic ancestry. In 2010, a survey of

GWAS publication patterns found that >80% of studies did not use
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any cohort of non-European ancestry (Rosenberg et al. 2010). Yet,

the bias towards Europeans has relaxed in the very last two years

(up to 84 GWAS on East Asians by May 2011 (Fu et al. 2011)).

Figure 15. Evolution of populations studied in published GWAS.
Most GWAS use exclusively individuals of European ancestry, but there
is a slight trend over time favouring the study of non-European
populations. Numbers within columns indicate the absolute number of
GWAS publications per period (Rosenberg et al. 2010).

Non-European GWAS present challenges related to imputation

ability, genomic coverage (tagSNP portability) and statistical

power (due to SNPs ascertainment in arrays). The ability to detect

disease variants can vary if they have different effect size or

present disparate allele frequencies across populations (Adeyemo
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and Rotimi 2009). However, several reasons fuel the case for

GWAS generalization across populations to better achieve the

objectives of complex disease mapping (Rosenberg et al. 2010). To

mention only one, the use of diverse populations permits to take

profit of the variation in LD across populations and thus help in

the fine mapping to narrow down the location of causal variants

(Visscher et al. 2012; Zaitlen et al. 2010). In any case, preliminary

comparisons of GWAS replicability observed high rates of

concordance across populations (Shriner et al. 2009; Waters et al.

2010).
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Crisis? What crisis?

The Sun, 10 January 1979, Winter of Discontent

1.4. Beyond GWAS

After “five years of GWAS” (Visscher et al. 2012), geneticists work

on several hundreds of robust associations between variants and

disease. This wealth of data informs about functional aspects of

disease and may have immediate clinical impacts. However, most of

the heritability remains unfound and the degree in which causality

is shared across populations should be illuminated for disease

testing. A discussion of these aspects is presented.

1.4.1. Knowledge gained through GWAS

There are over 2,000 loci robustly associated to disease (Visscher et

al. 2012). Interesting facts can be extracted from the analysis of the

regions and variants unravelled by GWAS. The number of loci

identified for each disease has increased exponentially if compared

to associations discovered and replicated through the candidate

gene approach (Figure 16). This observation emphasizes the

limitations of an approach based on biological candidates

compared to the “hypothesis-free” GWAS. There is also variation

in the number of loci discovered per disease, but it appears to be

correlated with study sample size (Visscher et al. 2012).

Pathway analysis of the discovered loci shows unsuspected

insights into disease mechanisms (Visscher et al. 2012). New
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understanding has been obtained for a wide range of problems,

from specific diseases (e.g. the role of IL23R in ankylosing

spondylitis), to shared aetiology across disease (e.g. loci associated

to disparate autoimmune diseases) and to new mechanistic

connections across disease (e.g. cancer and diabetes). Interestingly,

the enrichment of “druggable” hits provides targets for the

translational application of GWAS (Collins 2011; Lander 2011).

Figure 16. New disease loci discovered by GWAS for several
autoimmune and metabolic conditions (Visscher et al. 2012).

The analysis of SNPs associated to disease also shows three

interesting patterns related to functionality and the explained

heritability. First, the vast majority of risk SNPs locate outside

transcriptional units (~43% are intergenic (Hindorff et al. 2009)). In

some cases, association signals map into gene-poor regions (e.g.

8q24 associations for several cancers). These observations confirm

the role of non-coding variants in complex disease, but the exact

numbers of these proportions are difficult to calculate (Hindorff et
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al. 2009). Second, disease-associated SNPs are enriched for eQTLs

and clues of pleiotropy have been described (Nicolae et al. 2010;

Sivakumaran et al. 2011). Finally, and in spite of contradictory

evidence (Lachance 2010), the distribution of allele frequencies of

GWAS variants contain an excess of common variants (MAF>20%)

when compared to genotyped SNPs. Indeed, these variants explain

substantially large proportions of disease risk when compared to

SNPs at intermediate frequencies (Park et al. 2011).

After the wave of published GWAS, we have gained strong

knowledge on the functional aspects of risk variants and valuable

insights into the genetic architecture of disease. However, the

disappointingly low amount of explained heritability constitutes

the most debated issue in the GWAS era.

1.4.2. “Missing heritability” and alternative models

The integration of statistical power in the distribution of effect sizes

from GWAS has allowed estimating the number of discoveries that

may be expected in future studies. That is, the number of risk

variants that ought to be discovered if the study sample size is

known in advance (Lango Allen et al. 2010; Park et al. 2010). This

exercise lends support to the hypothesis that a large number of risk

variants wait to be discovered (Park et al. 2011; Park et al. 2010).

However, the bulk of genetic risk variance remains unexplained

after the “low-hanging fruits” found by GWAS have already been

reported. For height, the ~50 trumpeted variants described after
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having studied more than 30,000 people in 2008 account for less

than 10% of heritability (Visscher 2008). In spite of the knowledge

gained about new disease loci, GWAS results add very little to the

prediction power necessary for personalized medicine. This

phenomenon was coined as the “case of the missing heritability”

(Maher 2008).

Several hypotheses have been put forward to explain the missing

heritability problem (Eichler et al. 2010; Goldstein 2009; Maher

2008; Manolio et al. 2009). The stringent correction for multiple

testing necessary to avoid false positives could swamp the signal of

alleles with very small effect sizes. Alternatively, most heritability

could be explained by rare variants of large effect that are not

captured in commercial genotyping arrays (Figure 17).

Figure 17. Feasibility of identifying genetic variants by risk allele
frequency and effect size (odds ratio).
Interest lies in associations within the dotted lines (Manolio et al. 2009)
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Other explanations champion the unexplored role of epistatic

interactions (GWAS usually assume additive effects), the hidden

effects of gene-by-environment interactions, the responsibility of

Copy Number Variants and the presence of parent-of-origin effects

(that could explain up to 14% of type 2 diabetes heritability (Eichler

et al. 2010)). Inherent phenotypic heterogeneity among patients

such as that faced in psychiatric disorders could recipe for GWAS

failure (Burmeister et al. 2008; Terwilliger and Weiss 2003). Finally,

the possibility that the heritability explained by known variants is

much larger after accounting for epistatic interactions has been

recently proposed (Zuk et al. 2012). The “infinitesimal model” and

the “rare allele model” are the two most cited alternatives to the

refuted CD/CV model of heritability (Gibson 2012).

The infinitesimal model is the classical quantitative genetics idea

posing that a myriad (hundreds or thousands) of genome-wide

scattered common variants account for disease risk in populations,

each explaining very small bits of genetic variance (Gibson 2012).

For instance, the fitting of an exponential distribution using the

effect size of the ~50 height alleles known in 2008 predicts that

93,000 SNPs would be required to explain 80% of the heritability

(Goldstein 2009). A model of very low-risk effects could account for

the low sibling risk explained by GWAS variants (Gibson 2012;

Hemminki et al. 2008). Thus, due to the stringent correction for

multiple testing, most of the low-risk susceptibility variants would

remain buried along with non-associated alleles. The early

departure from chance and the excess of low p-values observed in
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Q-Q plots for most diseases supports the infinitesimal model (Park

et al. 2011). The GWAS published by the International

Schizophrenia Consortium also supports this model (Purcell et al.

2009) by showing that the relaxation of p-value thresholds to

include SNPs increases the predictive ability of individual risk

scores to distinguish between cases and controls (Figure 18).

Variance explained (R2 )

Schizophrenia

Bipolar disorder

Type 1 diabetes

0.01 0.02 0.03

Figure 18. Variance explained in regression of case-control status.
Variance explained by models to distinguish case status in target samples.
The scores are build using SNPs associated to schizophrenia with five
liberal thresholds (p-vakue<0.1 to p-value<0.5). SNPs discovered for
schizophrenia show significant predictive power for case-control status in
GWAS of bipolar disorder (Purcell et al. 2009).

Further evidence pointing at the presence of thousands of very low

effect variants comes from looking at the joint effects of all

genotyped SNPs instead of at individual variants. Liner models

built using all genotyped SNPs are able to explain 45% of height

heritability (Yang et al. 2010). Moreover, and as shown for several

disease-associated traits, the percentage of variance explained by

each chromosome correlates perfectly with chromosome length

and gene content (Smith et al. 2011; Yang et al. 2011). Under the

infinitesimal model, heritability would not be “missing” but

“hidden” by the strict significance cut-offs used in GWAS.

Interestingly, the discrepancy between height heritability (80%)
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and that captured by SNPs from commercial arrays (45%) can be

accounted by incomplete LD between genotyped common SNPs

and causal variants with lower allele frequency.

The major alternative to the infinitesimal model, the rare allele

model, posits that most of the variance for complex disease is due

to rare variants (MAF<1%) of large effect. Evolutionary theory

predicts that variants that reduce the fitness of individuals are

maintained at low-allele frequencies by purifying selection. This

model would fit with recent human demographic history. First, the

explosive growth in census size has resulted in an excess of rare

variants in human genomes (Gravel et al. 2011; Keinan and Clark

2012). Second, the analysis of allele frequency distribution for

different classes of variation confirms that purifying selection

maintains deleterious alleles at low frequencies (Kryukov et al.

2007) that differ across human populations (Lohmueller et al. 2008).

Simulations of mutations with pleiotropic effects on both complex

traits and fitness also predict that most of genetic variance for

complex traits is contributed by derived non-synonymous alleles of

large effect (Eyre-Walker 2010). Additionally, the prediction that

variable selective pressures have shaped the participation of rare

variants could account for the variation in “hidden heritability”

estimates across disease (Yang et al. 2011). The presence of

susceptibility rare variants has been a constant observation in re-

sequencing studies of disease loci (some are listed in (Schork et al.

2009)). The burden of rare copy number variants has also been
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shown to accumulate in cases of neurological disorders (Levy et al.

2011; Pinto et al. 2010). Moreover, GWAS loci overlap significantly

with loci associated to Mendelian disease (Siontis et al. 2010).

Figure 19. The complex frequency spectrum of SNPs for complex traits.
The effect size of height associated SNPs identified in a gene-centric
GWAS as a function of Minor allele frequency. The presence of large-
effect rare variants and low-effect non-significant common alleles is
shown. From (Lanktree et al. 2011)

The further possibility that rare, instead of common, variants

explain the results from GWAS has been put forward (Dickson et

al. 2010). Simulation data show that the accumulation of rare

variants in certain haplotypes can give signal through common

SNPs in LD with such variants. Under the presence of “synthetic

associations”, the effect size of susceptibility variants might be

much larger than the reported associations. The “synthetic” model

has been confirmed for several associations (e.g. NOD2 for Crohn’s

disease) but empirical and population genetics data refute any
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widespread participation of rare variants in extant GWAS results

(Anderson et al. 2011; Orozco et al. 2010; Wray et al. 2011).

The prospect that rare variants explain the “missing heritability”

was one factor encouraging the 1,000 Genomes Project (sequencing

>2,500 individuals from 27 populations). The goal lies in the

description of all variation with at least 1% of allele frequency and

its sharing across human populations (Gravel et al. 2011).

1.4.3. Disease architecture across populations

The availability of genetic data has shed light on human origins.

The out-of-Africa (OOA) model predicts diversity being highest in

African populations and structured at increasing distances from

Africa (Goldstein and Chikhi 2002). Two early results validated this

model; namely (i) the common ancestor of human mtDNA dates at

200 kilo years ago (kya) and locates in Africa and (ii) non-Africans

present subsets of African diversity (Cann et al. 1987).

Microsatellites and autosomal markers have validated the single

origin hypothesis (Li et al. 2008; Rosenberg et al. 2002).

Nonetheless, the publication of two extinct hominin genomes

confirmed that archaic genes segregate in modern humans (Green

et al. 2010; Plagnol and Wall 2006; Reich et al. 2010).

Humans appear to have settled Eurasia and Oceania around 60 kya

(Goldstein and Chikhi 2002). The Eurasian divergence is estimated

around 17 kya, and recent gene flow occurred between Africans

and Europeans (Keinan et al. 2007; Moorjani et al. 2011). America
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and Pacific archipelagos were colonized around 20 and 4 kya.

Recently, most populations have undergone explosive expansions

in Neolithic times (Coventry et al. 2010; Keinan and Clark 2012). As

a result, humans live in an extraordinary diverse range of habitats

and present wide phenotypic and cultural variation.

The complex demographic history of human populations has

shaped the presence and frequencies of genetic variants. Most

common variants predate human expansion across major

landmasses and are shared across populations (The International

HapMap 3 Consortium 2009). Nonetheless, the effects of genetic

drift within each population has created major differences in allele

frequencies at common variants (Bamshad et al. 2004). On the other

hand, the explosive expansion in census size has resulted in the

vast majority of human polymorphism being rare (MAF<0.05) and

confined to continental populations (Gravel et al. 2011).

Figure 20. Average genetic distances among several human populations.
Population structure can be studied through the fixation indexes (Wright
1922, 1969). F-statistics describe the departure from expected
heterozygosity in panmixia due to inbreeding. The average genetic
differentiation shown in the figure was calculated by means of the FST

from the polymorphic sites identified in a survey of 20 autosomal regions
(Wall et al. 2008). A null FST indicates there are no differences in allele
frequencies among populations, and the maximum value of one is
reached when differential alleles have fixed in each population.
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The architecture and adaptive significance of several traits such as

skin pigmentation and body size are being unravelled. The extent

to which demographic and selective events have shaped the

frequency and prevalence of causal variants and disease across

populations remains unknown.

1.4.4. The prospects for personalized genetic medicine

The hype about the recent publication of the ENCODE results

(Bernstein et al. 2012) reveals the need to deepen in our knowledge

about genome functional organization. We are in a similar position

regarding the knowledge about the functional basis of disease

associations. For instance, the biological underpinning of 9p21

alleles to cardiovascular disease and diabetes remains as one of the

few functional validations of GWAS (Harismendy et al. 2011).

The immediate application of GWAS results to the clinical setting

lies in the development of genetic profiles based on risk markers

that has already begun through the availability of commercial

consumer testing (Jakobsdottir et al. 2009; Kraft et al. 2009; Lee et

al. 2008). Potentially, genetic profiles based on risk markers may

distinguish between high-risk and low-risk groups of individuals.

However, the most commonly reported features of GWAS

associations (i.e. p-values and OR) do not translate to clinical utility

(Jakobsdottir et al. 2009). Instead, measures of profile accuracy are

necessary to develop tests with clinical validity (Kraft et al. 2009).

The two most important parameters of clinical utility are sensitivity

and specificity (Ziegler et al. 2010). The former measures the
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percentage of detected individuals that will truly develop disease.

This proportion sizes the total number of individuals that will

benefit from early intervention after diagnosis. Specificity measures

the proportion of individuals that are correctly classified as not

being at risk to develop the disease. This quantity is of enormous

importance as it evaluates the amount of money and personal

suffering that is saved through correct ascertainment of those

individuals that do not need any clinical intervention (Kraft et al.

2009).

The performance of genetic tests can be evaluated through the

receiver operating characteristic (ROC). This curve serves to

visually inspect sensitivity vs. specificity. Overall, the classical

measure to quantify ROC performance is the area under the curve

(AUC) statistic (Ziegler et al. 2010). However, additive models

constructed from GWAS variants present AUC values (~75%) that

are not enough to distinguish individuals that will develop disease

(Jakobsdottir et al. 2009). With few variants per disease, the

achieved high specificity implies low sensitivity and thus few

individuals truly benefit from the early diagnosis (Wray and

Visscher 2010; Wray et al. 2010). The calculation of scores from

training sets using liberal thresholds somewhat improves the

picture (Evans et al. 2009). However, discriminative accuracy

presents great variation across disease. Indeed, the correlation of

genetic predictors and phenotypes has been shown to have an

upper limit that depends on the heritability of the trait (Wray et al.

2010). For instance, the discovery of 50% of the genetic variance for
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schizophrenia would translate to an AUC of 90% due to its large

heritability. Thus, models estimated from genome-wide markers

can improve the prediction of phenotypes based on phenotypes of

close relatives (Lee et al. 2008). A promising aspect of GWAS

results lies in the fact that, even if not causal, associated SNPs can

be useful for clinical prediction if correlated with the causative

alleles. Nevertheless, caution is needed to transport clinical

predictors to other populations because causal markers might not

be shared or might present different LD with associated SNPs

(Visscher et al. 2011).

Current protocols include estimating genetic risk by means of

studying family history, but a large proportion of complex cases

subjects do not have close diseased relatives (Wray and Visscher

2010). Indeed, 50% of genetic variance occurs within families and

thus genetic risk of disease changes across relatives with the same

family history. Current estimations show that genome-wide SNP

data from unrelated people have enough precision to predict

phenotypes when risk estimates are calculated with >100K

individuals (Goddard 2009). However, the current performance of

predictions for individual genomes remains unclear (Burga and

Lehner 2012; Jelier et al. 2011) and only the combination of larger

samples sizes and improved genomic coverage will enhance the

hopes for personalized genetic testing.
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The central objective of this work is to push forward our

knowledge about the worldwide distribution of genetic variants

associated to complex disease. I intend to examine inter-continental

patterns of replication to study what they tell us about the

underlying genetic architecture of disease.

This work aims to:

1. Describe the patterns of replicability of genetic associations

across human populations, for both candidate gene and

genome-wide association studies

2. Determine the role of factors such as allele frequency, genetic

differentiation, linkage disequilibrium and statistical power in

the replication of genetic associations

3. Obtain general inferences about the genetic architecture of

complex disease. Specifically:

a. Gain insight about the role of common/rare variants

b. Quantify the sharing of risk variants across Eurasians

c. Determine the role of synthetic associations in GWAS

d. Model the frequency spectrum of variants discovered in

the immediate future through larger association studies
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ABSTRACT

Background

Genome-wide association studies (GWAS) have illuminated the biology

of disease. However, they tend to explain small fractions of risk, raising

doubts about issues such as the relative roles of rare versus common

variants in the genetic architecture of complex diseases and how findings

in one population translate to the rest of the world. Light on these

problems can be shed by studying the degree of sharing of disease-

associated variants across populations.

Main Findings

We present a comprehensive survey of GWAS replicability across 28

diseases. Most loci and SNPs discovered in Europeans have been

extensively replicated using peoples of European and East Asian ancestry.

We found a strong and significant correlation of Odds Ratios across

continents, indicating that underlying causal variants are common and

shared between European and East Asian populations. As expected if that

were the case, SNPs discovered in Europeans that failed to replicate in

East Asians map into genomic regions with larger between-population

differences in patterns of Linkage Disequilibrium. Finally, we observed

that GWAS with larger sample sizes have detected variants with weaker

effects rather than with lower frequencies.

Significance

Our results settle the issue of the spurious origin of GWAS associations

and confirm that the vast majority of GWAS results are due to common

variants. In addition, the sharing of disease alleles and the high correlation

in their effect sizes show that the underlying causal variants are shared

between Europeans and East Asians and that they must map close to the
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associated marker SNPs. Thus, our results indicate that trans-ethnic fine

mapping of causal variants is feasible.

AUTHOR SUMMARY

Describing and identifying the genetic variants that increase risk for

complex diseases remains a central focus of human genetics and is

fundamental for the emergent field of personalized medicine. Over the last

five years, GWAS have revolutionized the field, discovering hundreds of

disease loci. However, with only a handful of exceptions, the causal

variants that generate the associations unveiled by GWAS have not been

identified, and their frequency and degree of sharing across populations

remains unknown. Here, we present the largest and most comprehensive

comparison of GWAS to date. By examining the results of GWAS for 28

diseases that have been performed with peoples of European and East

Asian ancestries, we show that the vast majority of associations are caused

by common variants that are shared between continents and map close to

the associated markers. These results indicate that the major contributors

to disease risk are shared across continents and imply that trans-ethnic

fine-mapping of causal variants is feasible.
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INTRODUCTION

Genome-wide association studies (GWAS) have detected hundreds of risk

alleles [1], generating novel biological knowledge and widening the range

of diagnostic and treatment tools [2]. However, the reported effect sizes of

these variants are small and their impact in individual risk prediction

remains modest, raising doubts about the relevance of GWAS results [1,3-

6]. Some of the most hotly debated topics are how to account for the

unexplained risk [4]; what may be the role of rare variants as producers of

artefactual GWAS results [7-10]; and up to what extent GWAS results are

portable between populations [11-15]. Answering to these questions is

pressing for two reasons. First, the description of the genetic architecture

of disease is crucial for personalized medicine and, in particular, finding

predictors of individual disease risk that could be applicable to different

ancestries would be a major step forward [1]. Second, if sharing across

populations of risk alleles were common, it would confirm trans-ethnic

mapping as a powered tool that would take profit of population

heterogeneity in LD and allele frequencies to identify the causal variants

underlying disease susceptibility [1,15].

The available reports of the distribution of the allele frequencies of

GWAS risk variants point at an excess of common variants [16] that, at

least for some particular diseases [17], present consistent effects across

populations. If repeated, these observations constitute empirical evidence

against rare alleles as a source of synthetic associations and would point at

common variants that are in LD with the associated tagSNPs in all

populations. However, such studies have not been generalized across

different diseases and, currently, most evidence comes from either re-

sequencing efforts aimed to capture rare variants [18] or multi-ethnic

replication efforts for a few risk variants [13,15,17,19]. Most meta-

analysis of GWAS data, that could shed light on these issues, either have
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ignored population heterogeneity [2,20] or have focused on a limited set

of traits [21] and GWAS [22].

By compiling data from 275 GWAS for 28 different diseases, we build the

largest-to-date database of discovery and replication patterns of SNPs

associated to complex diseases. We evaluate the extent to which risk

variants discovered in Europeans replicate in posterior studies performed

on individuals of European or East Asian ancestry and compare the risk

effect sizes found in both populations. We also examine the extent up to

which statistical power and differences in Linkage Disequilibrium among

populations explain replication failures. Our results serve to establish the

patterns of replicability of GWAS across diseases and populations to

evaluate how transportable these results are and to study the relative roles

of rare and common variants in explaining current GWAS results.

RESULTS AND DISCUSSION

We started by downloading all the associations in the GWAS Catalog [23]

(last accessed in February 2012, see Materials and Methods), which

represents a total of 7,145 associations with P<10-5 reported in 1,171

papers. We focused on diseases (avoiding quantitative traits, such as

height) with at least two GWAS performed with different ethnic groups.

This renders a final dataset of 275 GWAS papers reporting 413

associations to 28 diseases and including peoples from European and East

Asian ancestry (204 and 71 GWAS, Tables S1 and S2). Out of these, we

ascertained 182 SNPs initially reported as genome-wide significant

(P<5x10-7) in European GWAS and for which one or more replication

attempts had been performed in subsequent European and/or East Asian

GWAS (177 and 225 attempts, respectively, Tables S3 and S4). We

studied patterns of replication across studies, using the criterion that a

replication was successful if the same risk allele achieved P<0.05. To
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obtain that information we examined every individual paper, since the

GWAS Catalog records only P<10-5.

Replicability rates and sharing across Europeans and East Asians

Replicability rates are high within Europeans, with 150 successful out of

177 attempts (84.6%), when only 8.8 positive replications (~5%) would

be expected under the null hypothesis of no association (binomial test,

P<10-16). This excess was robust to the significance threshold (i.e. 113

observed vs. 0.18 expected for P<0.001 and 51 vs. 1.8x10-5 for P<10-7,

Table S4). This is expected, since most GWAS already contain an

internal replication phase [1,24]. Interestingly, all diseases presented the

same high replicability patterns, with no traces of heterogeneity in

replicability (Table S5). These results were consistent with previous

partial reports of replication for individual diseases [17,19] and confirmed

that the subset of 182 genome-wide significant SNPs map in loci truly

associated to disease in peoples with European ancestry.

Next, we considered the replication attempts in East Asian populations.

Out of 225 replication attempts, 103 were successful at P<0.05 (45.8%).

This replicability departs from the null expectation (103 vs. 11.3 expected,

P<10-16) and is robust to replication thresholds (i.e. 49 observed vs. 0.23

expected for p-value <0.001 and 19 vs. 2.3x10-5 for p-value <10-7).

Nevertheless, that figure is smaller than for Europeans, which can be

expected since East Asian GWAS tend to have smaller sample sizes [15].

We tested this hypothesis by focusing in the 81 attempts with ≥80%

power to replicate the Odds Ratio (OR) found in Europeans (Table S4

and Materials and Methods). For that subset, replicability increases

dramatically to 76.5% (62 of 81 attempts at P<0.05). Again, we found no

heterogeneity across diseases (Table S6).
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Trans-ethnic replication indicates that risk loci are shared between

Europeans and East Asians. As to the sharing and frequency of risk

variants themselves, it can be explored even if they remain undiscovered.

First, since most rare variants appeared after the split of Europeans and

East Asians [4,12,25-27], they would have accumulated randomly in the

genealogy of each allele of the marker SNPs used in GWAS. Therefore,

risk alleles would not be necessary shared even if discovered through the

same tagSNP. Strikingly, when considering the direction of effects instead

of their significance, we observed the same risk allele than in Europeans

in 85.9% of East Asian replication attempts (100% and 73.6% of attempts

replicated and not replicated at P<0.05, respectively). This proportion

departs from the 50% expectation in a scenario of independent rare

variants (P<10-16, binomial test). Secondly, the idea that the same causal

variants underlie association in the two continents is reinforced by a

strong correlation between ORs in Europeans and East Asians

(Spearman’s r=0.736, P<10-16, Figure 1). This correlation [28], which

also holds even when considering only failed replication attempts in East

Asia (r=0.53, P<6·10-9), is unexpected for population-specific rare causal

variants, as their effect size and Linkage Disequilibrium (LD) with the

associated SNP would be different in each population.

Assessing the potential effect of publication bias

Publication bias could have inflated our replicability estimates [29,30].

Due to the large number of SNPs that are tested in a GWAS, the usual

practice has been to report any new associated SNPs discovered in each

GWAS, plus the replication status of previously associated SNPs.

Therefore, our ability to gather replication attempts depends on how many

of them are explicitly reported, which presents enormous variability

among papers. This opens the possibility of a reporting bias, in which

GWAS authors could prioritize mentioning successful replication
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attempts. If so, our chance of gathering a replication attempt may be

heavily biased towards positive results and might inflate our estimates of

replicability [30].

Figure 1. East Asian GWAS find the same risk allele and similar OR than European

discovery GWAS.

X axis: ORs for the replication stage of the discovery European GWAS. Y axis: ORs for

the initial stage of East Asian GWAS (Materials and Methods). Dots in blue indicate

significant (P<0.05) replication attempts in East Asia; dots in grey indicate non-significant

replication attempts. (A) Using all replication attempts; (B) Using only the largest

replication attempt per SNP; (C) Using replication attempts with ≥80% power to replicate

the OR found in Europeans.

In the most extreme version of this scenario, the 103 replications finding

the same risk allele at P<0.05 in East Asians would be the result of Type I

error with a P=0.05 threshold. In that case, the 103 positive replications

would be just the 2.5% (=5% type I error x 50% probability of the same

risk allele) of a 40 times larger pool of 4,120 replication attempts in East

Asians (95% C.I. =3,418–4,959, assuming a Poisson distribution). In other

words, 4,017 (=4,120-103) associations failing to find the same risk allele

or at P>0.05 would have remained unreported.
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To assess the potential size of that bias, we estimated the maximum

number of potentially failed (P>0.05) but unreported replication attempts

[30]. Specifically, and for each GWAS performed in East Asians, we

counted the number of SNPs recorded in our database as previously

discovered in European GWAS, but for which the East Asian GWAS did

not explicitly mention neither a p-value nor any other information (in the

main text or in the supplemental information). In total, the 416 such

instances we found constitute the maximum number of cases of reporting

bias in our database (Table S7). Most of them may not constitute

reporting bias at all, since the SNPs in question may not be included in the

array used for the East Asian GWAS, may be monomorphic in the studied

population, may have been filtered out during QC and so on. Therefore, a

systematic reporting bias cannot account for our results.

Replicability and differences in Linkage Disequilibrium and

Heterozygosity

A clear prediction can be made if, as our results suggest, most associations

reported by GWAS are due to the same common causal variants with

similar effect sizes in the two ancestral groups: LD patterns and levels of

heterozygosity should be more similar between populations in the

genomic regions that contain successfully replicated SNPs than in the

genomic regions with European-associated SNPs that have not reached

significance in East Asians. To test this prediction, we compared the inter-

continental similitude of LD and heterozygosity patterns in genomic

regions harboring two different groups of disease-associated SNPs: the 47

SNPs discovered in Europeans that have been successfully replicated in

every attempt with East Asians and the 65 SNPs that have never been

positively replicated. We used the VarLD score [31] to measure, for each

SNP, between-population LD differences in a 300-SNP region around it.

We used sliding windows of 50 consecutive SNPs. As predicted,
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differences in LD were significantly larger for the windows centered in

non-replicated (VarLD = 17.64 vs. 12.66, P<0.002). Moreover, these

differences are only significant in the immediate vicinity of the associated

SNP, and they quickly cancel out as the distance for the associated allele

increases (Figure 2 and Table S8). The same result was obtained using

only attempts with ≥80% statistical power and contrasting 13 replicated

and 38 not replicated SNPs (VarLD = 20.42 vs. 12.49, P = 0.045).

Figure 2. Regions harboring not replicated SNPs present larger differences in LD

between Europeans and East Asians.

Measures of difference in LD (VarLD scores) for sliding windows of 50 SNPs with a 5-

SNP step. Measures for replicated and not replicated SNPs are given as blue and black

lines. Shadowed areas represent the standard error of the mean. Vertical red band

indicates that all significant windows (P<0.01) locate near to the associated SNPs.

Similar patterns are observed for the windows comparing the differences

in average heterozygosity between Europeans and East Asians (Figure



RESULTS

87

S1). Windows centered on non-replicated SNPs presented significantly

larger differences in average heterozygosity across populations (0.048 vs.

0.019, P<0.009). Similarly to the analysis with LD, these differences

accumulated in the region nearby to the associated SNPs (Figure S1), and

maintained when using replication attempts with ≥80% statistical power.

Figure S1. Difference in Heterozygosity between Europeans and East Asians.

The x axis represents the distance of each 50-SNP window from the associated SNPs. The

y axis shows the difference in mean heterozygosity, namely the average for Europeans less

that of East Asians (SEM indicated in shadow). The band in bisque indicates the windows

with significant differences (P<0.01).

Shared LD regions and trans-ethnic mapping

Since GWAS results are highly consistent across continents, causal

variants should map in regions of shared high LD with the marker SNP

[1,24]. To provide a rough estimate of the average size of the genomic

region harboring causal SNPs, we computed regions of similarly high LD
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levels that are shared between Europeans and East Asians. Specifically,

and for each replicated SNP, we selected all HapMap SNPs, measured

their r2 with the associated SNP in both Europeans and East Asians and

calculated the maximum range of overlapping LD in both populations.

Considering r2 = 0.8, we estimate that the average shared windows

wherein true risk alleles lie sizes 39.5 Kb (range = 4.3–144.8, Figure S2).

The average overlapping region not extending beyond 40 kb confirms the

feasibility of trans-ethnic fine mapping [32-34].

Figure S2. Average size of shared window with the same LD level.

The x axis represents the average size of the overlapping window in both populations at

different levels of LD (measured by r2). The average of r2 = 0.8 is highlighted in black.

Comparison with previous results

Our results indicate that causal variants underling GWAS results are

common and shared between continents, extending the observation of

reports that focused in single traits [17,19]. This would seem to contradict

results by us and others that highlighted heterogeneity in the genetic

etiology of disease across human populations [14,21,22]. This observation
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contrasts with the large replicability and large correlation in OR that we

observe, as well as with the role of differences in LD in explaining non-

replicated associations. The apparent contradiction between the present

and previous papers can be explained by two facts. First, our previous

results focused on candidate-gene studies, which have been largely

dominated by false positives [14]; and, second, studies that considered

GWAS data had different questions, used different approaches and could

gather only a limited set of traits [21] and/or associations [22].

An examination of previous datasets confirms a general trend to

consistency of GWAS results across continents and emphasizes the

benefits of incorporating as many associations as possible. Fu et al.[21]

focused on associated SNPs discovered in East Asian GWAS. Although

they used only four traits and 47 SNPs (43 loci), they demonstrated the

challenges of multi-ethnic studies, and provided a framework to cope with

these difficulties. As discussed by the authors, caution is warranted as to

whether the disease loci and/or causal variants are population-specific. For

instance, they suggested that the signals for type 2 diabetes located in

PTPRD (rs17584499) and SRR (rs391300) could be population-specific,

as they fail to replicate in a well-powered study in Europeans. However,

we gathered several replication attempts of these signals in posterior East

Asian GWAS (Table S3), and, out of 8 replication attempts, we observed

only 1 at P<0.05 (when 7.44 would be expected by power) and only 4

with the same risk allele. In addition, the inclusion of more recent studies

(Table S4) shows that an apparently European-specific variant tagged by

rs12779790 (CAMK1D) could be associated also in East Asians [35].

These results make it clear that assessing a limited number of GWAS may

have affected the report by Fu et al.[21].

Ntzani et al [22] examined differences in effect sizes, rather than

replicability or the role of rare variants in GWAS results for 12 diseases
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and 4 anthropometric traits. They focused on the relatively short (~20) list

of GWAS that either use samples with different ancestries in the

replication stage or compare their own results with previous papers using

different ancestries. In contrast, we gathered attempts from multiple

GWAS on the same diseases and were able to construct a much larger and

powered database. They found overall consistency in effect direction

across ancestries (~82%, similar to ours of 85%), but with modest

correlations in effect sizes, rho ≈ 0.33, that would seem contradictory with

the rho = 0.75 we observe. Nevertheless, an almost identical correlation in

OR would have been observed if limiting the study to the 22 SNPs that are

shared between Ntzani et al. [22] and our dataset (rho = 0.58 and 0.53,

respectively). Barring possible difference due to the different nature of the

anthropometric traits analyzed Ntzani et al. [22], the previous result

stresses the importance of continuously updating the list of replication

attempts to guarantee powered inferences.

Effective replicability rates of larger GWAS hints at weaker but

common causal variants

Of course, the finding of shared variants underlying GWAS results holds

only for associations that have been published so far. Ongoing efforts to

join cohorts into large consortia [36] ensure steady progress in the field

and guarantee the discovery of new genetic associations to complex

diseases [6,37]. It is tempting to make inferences about what may be the

results of future, much larger, association studies; particularly about the

frequency and degree of trans-ethnic sharing of as yet undiscovered

variants. We approximated this question by considering the patterns of

replicability across time. Specifically, it is clear that if the GWAS with

larger sample-sizes that have been published recently for peoples of

European ancestry had discovered variants with lower frequencies

(variants that should be increasingly population-specific), their results
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should be less likely to replicate across populations. If this observation

were made, it would predict decreased replicabilities in future, even larger

GWAS with increased power to discover lower-frequency risk variants.

Figure 3. Replicabilities against ORs in the discovery study.

For every SNP discovered in Europeans, all the replication attempts in East Asians were

considered and classified by bins of European OR. The OR of SNPs with risk alleles being

major was transformed to ensure OR>1. By windows with step 0.3, the average statistical

power (empty black circles), average replication success (solid black circles) and effective

replicability (the ratio between observed and expected replicability, the two former

quantities, red circles) are shown. Top values of the graph represent the average date of

publication and sample size of discovery GWAS, for bins of 0.1 OR.

As observed in Figure 3, more recent GWAS have gathered larger sample

sizes and unveiled associations with lower ORs. Replicability has

decreased with lower ORs and tends to be lower than what would be

expected out of sheer statistical power, most likely because our power

calculations assume the same heterozygosities and LD patterns in
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different populations, which we have already showed not to be the case.

An interesting inference can be made by observing effective replicability

rates, the ratio between the proportion of positive replications and their

statistical power. Effective replicability would be expected to decrease if

the lower ORs detected by GWAS were due to lower-frequency causal

variants. In contrast, we observed a constant effective replicability rate of

~80% that was independent of the OR reported in the European discovery

GWAS (red line in Figure 3), indicating that larger GWAS detect

common variants with weaker effects rather than rarer variants.

Figure S4. Similar correlation between European and East Asian OR, regardless of

the discovery GWAS sample size.

The same correlation arose when using all replication attempts (as in Figure) or the filtered

(n = 123) set of largest replication attempt per SNP (not shown).

This inference is confirmed by comparing the trans-continental correlation

of ORs between larger and smaller GWAS. We classified the European
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discovery GWAS into two groups, using a threshold of 10,000 individuals

to distinguish between “small” and “large” GWAS. Larger GWAS do

indeed detect associations with smaller ORs (average OR 1.15 vs. 1.28;

P<3x10-7). Nevertheless, the correlation of ORs between European and

Asian GWAS was the same for “small” and “large” GWAS (Figure 4),

showing, yet again, that variants are equally shared across populations,

regardless of the sample size of the discovery GWAS.

The relevance of our findings comes from the fact that, first, they settle

the issue of the spurious origin of GWAS associations [7,8,10], since

trans-continental replicability shows that they do correspond to true

disease loci; second, they clarify the contribution of common variants to

extant GWAS results, since practically all GWAS have delivered

precisely what they were designed to detect [1]: associations with

common variants; third, our results show that causal variants are shared

across populations and that they must lie close to marker SNPs. In a

context were most causal variants have not yet been found, leveraging on

the increasingly varied ancestries of GWAS may help tracking them down

[33,34,38]. Finally, since larger GWAS did not detect rarer variants, our

findings support the infinitesimal model of the genetic architecture of

disease [4]. However, it is not simple to extrapolate our results to

associations that remain undiscovered so far. Whether the heritability that

is not yet explained by GWAS will be partly due to risk variants in

insufficient LD with common SNP markers, as suggested by some authors

[6,39] or whether this heritability exists at all [40] will only be resolved by

further empirical research.
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MATERIALS AND METHODS

Creating a database of SNPs associated to disease

We considered the 1,171 studies indexed in the catalog of Published

Genome-Wide Association Studies as to February 2012

(http://www.genome.gov/26525384, last accessed 14th February 2012) and

classified them according to the trait under study. Each study was

classified according to the genetic ancestry of the samples, considering

only individuals used in the GWAS stage. Studies performed on a mixed

panel were considered only if separate ancestry-specific analyses were

provided and we recorded them as independent studies. We observed a

strong bias towards GWAS performed with “European” (78.4%) and

“East Asian” (14.9%) individuals, while much fewer studies are available

for “African” (4.3%), “Hispanic” (1.2%), “Middle Eastern” (0.5%),

“Native American” (0.4%) and “Oceanian” (0.3%) ancestries. Therefore,

and to increase the reliability of our results, we only included GWAS

performed with peoples of European and East Asian ancestry. We focused

on dichotomous disease traits, avoiding anthropometric traits such as

height. In order to be able to produce replicability estimates for both

studied ancestries, we included in our analysis the 28 diseases for which

two or more GWAS were available for Europeans and at least one in East

Asians (e.g. 11 GWAS for lung cancer in Europeans and 5 in East

Asians).

We built a database with 28 dichotomous disease phenotypes (Table S1),

with data coming from 204 European and 71 East Asian GWAS. Several

features of interest were recorded for each GWAS: first author, journal,

year of publication, genetic ancestry, sample size in GWAS stage, total

sample size in replication stage, array genotyped, genomic control factor

in GWAS stage (if available), use of imputed SNPs (Y/N) and number of

genomic regions achieving genome-wide significance in the initial and

http://www.genome.gov/26525384


RESULTS

95

final stage (Table S2). The publications corresponding to each GWAS

were downloaded from the respective journals.

For each disease, the selected studies were sorted per date of publication

regardless of the population of study. Starting for the first study, we built

a cumulative database of disease-associated SNPs and their replicability in

successive studies. After excluding GWAS with pooled DNAs or focusing

on CNVs, each GWAS publication was visually screened for two kinds of

association data: the report of a new disease-associated SNPs (discovered

SNPs); and the replication status of disease-associated SNPs discovered in

previous GWAS (replicated SNPs). In both cases, we recorded three

features from each association: (i) Odds Ratio (OR) (ii) confidence

interval of the OR and (iii) the p-value.

We used several conservative criteria to include newly discovered SNPs

in our database. First, to avoid the winner’s curse bias, we used the OR

and p-value from the replication stages of the discovery GWAS. Second,

when several replication stages from the same GWAS were available, the

OR from the stage with largest sample size was recorded. Only when no

replication stages were available did we use the OR from the GWAS

stage. Third, SNPs associated uniquely in sex-specific analyses were

excluded. Fourth, ORs coming from allelic tests and additive models were

prioritized over genotypic tests and other genetic models. Fifth, the

genome-wide significance level for a newly discovered SNP to be

included in our analysis was set at P<5×10-7, unless imputed SNPs were

used in the GWAS, in which we toughened up the threshold to P<5×10-8.

Sixth, for genomic regions with several genome-wide significant SNPs

(SNPs less than 200 Kb from each other), we included in the study the

SNP with lowest p-value. Finally, as a further conservative measure,
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disease-associated SNPs from the MHC region and HLA alleles were not

included in the study.

To include replication attempts in our database, several conservative

conditions had to be met. We only recorded attempts in which exactly the

same SNP than in the discovery GWAS had been genotyped. Second, in

all these cases, the p-value considered for the replication report was the

one from the GWAS stage. Finally, the OR for each disease-associated

SNP was referenced for the allele that had been the risk allele in the

discovery study. Thus, OR < 1 means that the minor allele was found as

protective in the discovery study, while OR > 1 means that the minor

allele appeared as the risk allele. For SNPs with different minor alleles

across populations, OR were referenced to the minor allele specific for

each population. Instances of the latter are indicated in column “Shift” in

Table S4 and the shifted OR is represented in all Figures except when

otherwise indicated.

A total of 413 discovered SNPs from 331 genomic regions were found to

be associated to disease, 316 of those SNPs being reported for the first

time in Europeans and 97 in East Asians (Table S3). In total, we gathered

465 replication reports, dealing with 217 out of the 405 discovered SNPs

(Table S4). Out of the 465 replication reports, 205 and 260 corresponded,

respectively, to attempts performed on Europeans and on East Asians.

Since East Asian GWAS are more recent, most of the replication attempts

(400 out of 465, 87%) reported the replication status of discovered SNPs

that had been reported for the first time in Europeans. Therefore, we

focused on the subset of 402 replication attempts gathered for 182

associated SNPs discovered in European GWAS. Out of these, a total of

177 and 225 replication attempts had been reported for Europeans and

East Asians, respectively.
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The 225 replication attempts in East Asians aimed to replicate a total of

131 SNPs associated to disease with genome-wide significance in

Europeans, which results in an average of 1.75 replication attempts per

associated SNP (range = 1–7). Thus, our estimates of replicability could

be biased if replicated SNPs gathered more replication attempts per SNP,

or more associated SNPs in European populations. During the analysis,

and as noted in the text, we applied an additive filtering to ensure no bias

in the estimates of replicability and correlations between European and

East Asian OR. Specifically, we repeated the analysis selecting only the

largest replication attempt per SNP, resulting in a filtered set of 123

attempts. The SNPs ascertained for the filtering are indicated in Table S4.

Population genetics analysis (VarLD and Heterozigosity)

Polymorphism data was downloaded from HapMap Project Phase 2

(release 24, November 2008). For each ascertained SNP, we downloaded

two data sets: (i) genotypes for the associated SNP and (ii) genotypes for a

600-SNP window centered on the associated SNP. We downloaded all

genotypes for all unrelated samples from the three populations of

European and East Asian ancestry (CEU, JPT and CHB). JPT and CHB

samples were clustered together due to their close genetic relationship.

Population differences in local patterns of Linkage Disequilibrium (LD)

around disease associated SNPs were measured with the VarLD software

(www.nus-cme.org.sg/software/varld.html) [31], using the targeted option

for 50-SNP windows. For each population and genomic region, VarLD

builds a matrix of pairwise signed r2 values among all the SNP pairs and

provides a raw score corresponding to the absolute difference in the eigen-

decompositions between two matrices. This score is a summary measure

of the overall LD levels in a given genomic region between two

populations. We used it to measure the extent of differences in local LD

www.nus-cme.org.sg/software/varld.html
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between two kind of genomic regions: these containing replicated and

non-replicated SNPs. To rule out the possibility that differences in LD

between replicated and not-replicated SNPs are not related to the presence

of the disease associated SNP, we scanned VarLD differences in

consecutive windows of the same size (50 SNP), starting 300 SNPs

upstream of the disease associated SNP and finishing 300 SNPs

downstream, with an step of 5 SNPs. In total, we checked 121 consecutive

windows around the disease associated SNP. On average, we were

examining a window of 503.61 Kb centered on each associated SNP.

We used a similar sliding window approach to summarize the differences

in allele frequencies between Europeans and East Asians. Again, we did it

for each SNP, calculating the average heterozygosity in each window for

replicated and non-replicated SNPs. Differences in heterozygosity are

simply the result of subtracting the average in East Asians from that in

Europeans (Figure S1).

Power and Statistical analyses.

As noted in the text, for some analysis we focused on the attempts that

had >80% power to replicate the effect size found in Europeans. Statistical

Power was calculated with the CaTS Power Calculator

(www.sph.umich.edu/csg/abecasis/CaTS/) [41]. For each replication

attempt we checked the power under a log-additive model to find the same

effect size as in the discovery European GWAS, given the sample size of

the replication GWAS and the allele frequency of the risk allele in East

Asians.

Statistical analyses were performed using standard R procedures. The

significance of the replicability estimates was checked by means of a

binomial test, with an expected replicability rate of 0.05 under the null

www.sph.umich.edu/csg/abecasis/CaTS/
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hypothesis of no shared associated SNPs between Europeans and East

Asians. Similarly, the significance in the risk allele direction was checked

by means of a binomial test, using a null expected ratio of 0.5. As

indicated in the first section, differences in LD between replicated and

non-replicated SNPs were checked by means of Mann-Whitney tests

comparing the distributions of VarLD scores for sliding 50-SNP windows

centered on the disease-associated SNPs. The same procedure was used

for the average difference in heterozygosity and distributions of OR found

by “small” and “large” GWAS.
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Gentlemen, we have run out of money; now we have to think

Winston Churchill, 1945 (attributed)

Mistakes were made

Classic exonerative linguistic construct in Washington

In this section, I will discuss the findings of the two presented

studies that are based on comparing the results from association

studies performed across human populations. The results will be

interpreted in terms of some of the current issues in the field of the

genetics of complex disease. First, I will discuss the current validity

of candidate gene association studies (section 4.1.1) and the role of

genetic heterogeneity in replication failures (section 4.1.2). Next, I

will examine the main lessons on how to address the results from

genome-wide association studies (section 4.2.1) and the main

inferences on the genetic architecture of disease. Finally, I will

check several of the possible directions in the near future.

4.1. Inferences from candidate gene association studies

In the first study (section 3.1.) we analyzed the role of genetic

heterogeneity among human populations in the replicability of

genetic association studies. To address this question, we took

advantage of more than 25 years of candidate gene studies and

measured the degree of population differentiation (as measured by

the FST statistic) in loci that have shown differential patterns of

association to disease. We created two sets consisting in 890
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“Global” and 37 “Continental” gene-disease associations that

pointed at genetic distance being correlated with replicability. In

addition, we observed that genes from highly replicated

associations harbour more derived alleles present as major alleles

in populations. Several risk alleles had already been shown to

present differential frequencies and effect sizes across populations

(Ioannidis et al. 2004; Ioannidis et al. 2001). At any rate, our work

produced the first general study of candidate gene replicability in

the context of population differentiation and confirmed the role of

the recent evolutionary history in disease susceptibility patterns.

At the time of our analysis the predominant vision in the

community was very pessimistic. Few associations showed a

consistent pattern of replication and most meta-analyses pointed at

the pervasive presence of publication bias and lack of statistical

power (Hirschhorn and Altshuler 2002; Hirschhorn et al. 2002;

Lohmueller et al. 2006; Lohmueller et al. 2003; Pan et al. 2005). At

that time, the Genetic Association Database (GAD) we used

informed about the features and results from over 39,000 attempts

to associate genes with disease. However, we had to limit ourselves

to the ~17,000 and ~7,000 attempts that, respectively, informed

about the conclusions and the ancestry of the individuals tested.

The figures on the abundance of candidate results contrast with the

difficulty to extract sound conclusions from these efforts.

Our analysis was based on two premises. First, we hypothesized

that at least some true associations had been unravelled by
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candidate gene methods and, hence, were available in the database.

Further, part of the lack of replication problem of the true

candidate associations could be attributed to genetic variability in

disease architecture across populations.

4.1.1. The reliability of candidate gene results

It is difficult to evaluate our first premise. Only a handful of

disease associations have been validated molecularly in the

laboratory and/or from a clinical perspective. Nonetheless, the

figure of true associations could be somehow approximated

through a comparison to the second study based on GWAS (result

3.2). When translating the 28 diseases analyzed in the second study

into the first study, they account for 462 of the 890 associations and

286 of the 403 genes ascertained for the Global set. Out of these, 19

associations have been “re-discovered” in our GWAS database.

Thus, 4.1% of associations (19 out of 462) and 6.6% of disease genes

(19 out of 286) from the Global set of candidate gene studies have

been found again in GWAS studies. Using a conservative estimate

of 20,000 genes in human genomes and considering that 289

independent genes are recorded in the GWAS database, the figure

of 19 “re-discovered” genes represents a 4.6-fold enrichment

compared to the four overlapping genes expected if GWAS results

randomly overlapped signals from candidate gene studies.

There are few differences across diseases when looking at the

number of candidate gene associations “re-discovered” by GWAS.

A total of 11 out of the 28 diseases account for all the “re-

discovered” loci and the number of such signals per disease
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strongly correlates with the total number of loci described by

GWAS (rho = 0.54; P = 0.004). That is, the more associations

described by GWAS, the highest are the chances of replicating

genes from candidate gene studies.

Three diseases present the highest rate of “re-discovered”

associations: alcohol dependence (2 out of 3, 67%), breast cancer (2

out of 9; 22%) and Parkinson’s disease (3 out of 17; 18%). It is

tempting to speculate about shared genetic basis of Mendelian

forms of breast cancer and Parkinson’s disease and their

counterparts in the form of complex disease. If so, genes found by

linkage in familial versions of disease could have successfully

driven the research by candidate gene methods and, eventually, be

“re-discovered” by GWAS. This scenario would fit historical

practice in candidate gene studies (i.e. testing loci from linkage

regions), but any comparison with Mendelian genes gathered from

OMIM data would lack statistical support.

The correspondent numbers for the Continental set look similar.

The 4 out of 37 “re-discovered” associations represent a larger

enrichment (9-fold) of overlaps with our GAD results, but they

account for only 10.8% of the signals present in the Continental set.

Even if acknowledging the large number of false negatives

expected in GWAS, only a tiny number of associations from the

candidate gene sets appear to be confirmed in the second study.
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Yet, a reassuring aspect of the analyses from our first study based

on candidate gene lies in the different filters we applied to ensure

the reliability of our observations. Specifically, the correlation

coefficients between genetic differentiation and replicability that

we report enhance progressively when filtering out (i) associations

with lowly powered studies and (ii) associations with <50%

replicability. Importantly, the 19 GWAS-confirmed associations

present larger replicabilities than non-“re-discovered” associations

(74.2% vs. 65.8%; P=0.052, permutation test). Indeed, none of the 19

“re-discovered” associations presents a replicability lower than

50%, while this is the case for 100 (22.6%) out of the other 443

associations (P=0.011; binomial test). Moreover, the candidate gene

associations further validated by GWAS have been studied more

times in our database (12.3 vs. 8.8 studies; P=0.016, permutation

test). Thus, the amount of “re-discovered” candidate associations

becomes progressively larger when only the most studied (and

thus reliable) associations are ascertained (i.e. 13/164 and 6/57 of

those with ≥8 and ≥12 studies, respectively). Future work could be

done to enlighten the reasons that lie behind the poor overlap of

candidate gene and GWAS results (e.g. what happens if GWAS

significance thresholds are relaxed?).

The low number of “re-discovered” associations difficult the

statistical validation of our results in this much shorter pool of

associations. Though, the strengthened correlations between

replicability and genetic differentiation when more consistent

associations are selected and the strong enrichment of GWAS
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signals in the more reliable continental set indicate that the results

we report are hardly spurious.

4.1.2. Exploring the scenarios behind candidate associations

We considered several possible explanations for the observed

trends of replicability being correlated with genetic differentiation

across populations, but neither statistical power nor rare variants

account for the role of population heterogeneity in replicability.

A major role for statistical power was discarded because the

inclusion of the average sample size in the regression analysis did

not explain the differences in continental replicability. Still, rare

variants could also affect replicability by giving risk exclusively in

certain ethnicities. We looked for loci with an excess of rare

variants in any continent, but it did not correlate with replicability.

We further discarded a major role for these variants through an

extensive scrutiny of the 444 papers included in the 37 continental

associations. This procedure allowed us to approach the causal

variants by focusing in the reported markers rather than in gene-

based differentiation summaries. However, only 4 of the 54

reported markers (7.4%) presented extreme allele frequencies

through populations (MAF<0.05).

The prospect that disease variants from candidate genes are

common leaves room for other factors shaping their inconsistent

replication patterns. Even if variants were common, and thus likely

to be shared, candidate gene studies could fail to replicate if
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differential gene-by-environment effects or linkage disequilibrium

patterns are present across populations. Additionally, our

observation that highly replicated genes harbour increased

amounts of major derived alleles could be explained if causal

alleles are common. Specifically, phenomena such as allele surfing

and the reduced ability of purifying selection to purge deleterious

alleles during the out-of-Africa event shared by Europeans and

East Asians might have increased the frequency of disease alleles in

these populations. Only the availability of African association

studies and their replicability patterns would help evaluating this

possibility. In principle, we would expect a lower success in

attempts to replicate “Eurasian” associations even if shared to all

humankind, because the more effective purifying selection in

Africans would have maintained them at lower frequencies.

Indeed, genes associated to disease do harbour lower proportions

of major derived alleles in Africans, but this signal could be

entirely due to the ascertainment bias in SNP arrays instead of

stringent purifying selection in Africans.

After tens of thousands of candidate gene studies, the literature on

the genetics of common diseases remained full of uncertainties. The

few triumphs drifted in a sea of failed signals. The possibility that

true ethnic heterogeneity may explain replication failures is the

main contribution of the first study. It truly constitutes a positive

message after decades of frustration. Still, this study only serves to

extract general patterns across disease and does not permit to

ascertain those associations more likely to be true.
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Regardless of the exact value of the thousands of published

candidate gene associations, the increasing capability of

genotyping technologies induced an explosive leap forward. The

wave of published GWAS that started in 2007 has afforded many

associations that really fill the community standards. From 2010 on,

the generalization of non-European GWAS allows using the

patterns of replication across populations to deepen our knowledge

about the genetic architecture of disease.

4.2. Inferences from genome-wide studies

In the second study (section 3.2) we used replicability patterns of

GWAS results across Europeans and East Asians to make

inferences about the genetic architecture of complex disease. We

created a database of 413 genome-wide significant associations

described in 275 GWAS for 28 different complex diseases. This

dataset built on publicly available data was used to work on

several of the questions that are currently most pressing, such as

the potential role of rare causal alleles in GWAS results, the

transportability of disease associations across populations and the

search for alternative models to explain the “missing heritability”.

4.2.1. Collecting data from genome-wide association studies

We gathered 316 and 97 SNPs reported for the first time in

Europeans and East Asians, respectively. Next, we carefully looked

across GWAS to ascertain replication attempts for discovered

associations. In total, we gathered 465 attempts describing the p-

value and effect size of previously associated SNPs. Given that 87%
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of attempts focused in SNPs discovered in Europeans (402 of 465),

we concentrated in the 177 and 225 attempts that aimed to replicate

any of the 182 SNPs discovered in Europeans.

The process of building an extensive database from a large pool of

publications spanned several months. We manually checked ~25%

of the literature (275 of 1,200 GWAS). This figure represented

almost 100% of the literature available for our purpose of focusing

on diseases studied in non-Europeans. Sadly, no studies performed

on Africans were available and diseases prevalent in Africans such

as malaria were not included due to the lack of counterpart studies

in other populations.

We devised several conservative criteria to avoid any major bias.

To name but a few, (i) we assigned the effect size from the largest

replication attempt available in discovery GWAS to skip the

winner’s curse bias and (ii) we only considered attempts in which

exactly the same SNP than in the discovery GWAS had been

genotyped. The list of selection procedures is available in the

Supplementary Information for study 3.2.

In addition, we followed a very stringent policy to include studies

to our database. Almost 25% of eligible GWAS (67 out of 275) were

discarded. For instance, we avoided any study with pooled DNA

due to their proneness to false positives. Most exclusion events

were based on phenotypic heterogeneity. Researchers try to enrich

the fraction of genetic causality in cases through the inclusion of



GENETIC ARCHITECTURE OF COMPLEX DISEASE

116

individuals with extreme phenotypes or with familial histories of

disease. This is a sensible policy to describe new disease loci, but

makes it difficult to compare effect sizes across studies without

similar selection criteria.

For instance, the first GWAS published for type 2 diabetes used

less than 1,300 individuals but described five different associated

loci (Sladek et al. 2007). In sharp contrast, the next three GWAS on

diabetes found at most four new loci even if using ~10,000

individuals (Saxena et al. 2007; Scott et al. 2007; Zeggini et al. 2007).

Most probably, the success of the first study lied in the inclusion

characteristics of disease subjects: cases ought to be of young onset

(<45 years), non-obese (BMI<30) and with diseased relatives. It is

reassuring that three out of the five described loci have been

replicated again and again in ongoing GWAS. However, the first

study described outstanding effect sizes that are not comparable

with those from ongoing studies (i.e. rs7903146 in TCF7L2 showed

an OR of 1.65 while all following European studies have described

OR<1.4). Of note, exclusions were abundant for GWAS looking for

risk mutations in cancer (i.e. 7 of 16 GWAS on aggressive prostate

cancer were excluded due to phenotypic heterogeneity).

The case of asthma is a clear example of the drastic effects of

phenotypic heterogeneity in replicability. Even if excluding several

GWAS based on occupational versions of the disease, we allowed

studies using childhood versions of asthma. Interestingly, asthma

stands out as the only disease with a low replicability rate in



DISCUSSION

117

Europeans (13 in 26 attempts at P<0.05, while 21.84 would be

expected out of statistical power). Thus, the adoption of strict

GWAS filtration criteria was the key to ensure comparable results

across studies.

One aspect of particular interest lies in the procedure followed to

address the problem of reporting bias. Ensuring the gathering of all

available replication attempts is necessary to guarantee proper

measures of replicability. However, GWAS studies excel in

numbers: hundreds of thousands of SNPs are tested and lots of

false positives are expected. Thus, publications tend to report a

small minority of results and in very few cases all available p-

values are listed. At best, a few hundreds of best SNPs are reported

in the supplementary files. Authors, publishers and readers might

be interested in looking at true new loci, but such policies can

heavily bias our replicability estimates if masking failed replication

attempts. We devised a strategy to calculate the expected numbers

of outcome reporting bias present in our database. We found that

even in the extreme scenario in which all non-reported attempts

were failed and had been masked by the authors, reporting bias

would have negligible effects in the observed rates of replication.

4.2.2. Inferences from genome-wide association studies

In fact, risk variants associated to disease present very large

replicability rates when tested in the same discovery continental

population. Specifically, 85% (150 of 177) of the replication

attempts performed on Europeans for SNPs discovered in that

population find the same risk allele at P<0.05. In fact, intra-
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European replicability rate increases to 94% when using attempts

with ≥90% statistical power to replicate the discovery odds ratios

(109 of 116, while 114.3 would be expected out of statistical power).

Similar proportions are observed for the narrower set of replication

attempts within East Asians (72%, 25 of 35). These figures confirm

that stringent GWAS thresholds (i.e. P<5*10-7) ensure that most risk

alleles present in the database are true signals.

The database of GWAS replicability allowed us to investigate the

effect of setting different thresholds to declare a replication

attempts as significant. At P<0.05, we observe a 17-fold enrichment

compared to the random expectation if all discovered SNPs were

false positives. Interestingly, the enrichment increases

progressively when more stringent thresholds are selected.

Eventually, lots of positive replications are observed when almost

none would be expected. Although certain SNPs could well be

prone to appear as false positives because of high substructure in

allele frequencies across Europeans, these results indicate that

significant evidence from replication GWAS is almost conclusive to

distinguish between true and false positives (Figure 21).

P-value
threshold

Observed positive
replications (P<0.05)

Replications expected
by chance

0.05 150 8.8
0.01 130 1.77

0.001 113 0.177
1E-05 72 1.77E-03
1E-07 51 1.77E-05

Figure 21. Replicability observed in Europeans for different thresholds.
Hardening the significance thresholds lend support to true signals.
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The second result consists in confirming that most risk loci

discovered through GWAS are shared between Europeans and East

Asians. Replicability rates of European SNPs drop to 46% when

tested in East Asians (103 of 225 attempts replicate the same allele

at P<0.05). However, most of the observed decay can be attributed

to the low statistical power of East Asian GWAS. Most SNPs

discovered in Europeans are only significant (thus “discovered”) in

GWAS from consortia that joined efforts to increase power through

larger sample size. In contrast, most GWAS in East Asians belong

to the first wave of studies, and thus present much lower sample

sizes (see (Rosenberg et al. 2010)). Strictly, replicability rates in East

Asians rise from 46% to 72.5% (61 out of 82), 83% (50 out of 60) and

88% (48 out of 55) when using only attempts with 80%, 90% and

95% power to replicate the odds ratio found in Europeans.

These numbers emphasize that GWAS risk loci are shared across

Eurasians. Further, we can explore the allele frequency of causal

variants. Three pieces of evidence discard a major role for rare

variants in GWAS associations and point at common and shared

variants underlying the captured signals. First, we find that the

direction of effects is almost universally shared across populations:

the same risk alleles are found across studies, regardless of the

replication p-value or effect size observed. In fact, even well-

powered (>80%) but failed (P>0.05) East Asian replication

attempts, that are strongly suggestive of European-specific disease

associations, present the same risk allele in 74% occasions (14 out of

19). The concordance in risk alleles is unexpected if population-
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specific rare variants account for the signals of risk loci that are

shared between European and East Asian GWAS. Reassuringly,

similar evidence appears when looking at SNPs “discovered” in

East Asians and its replication attempts performed on Europeans.

Specifically, 89% (24 out of 27) of such attempts find the same risk

allele as in East Asians and the figure jumps to 100% (23 out of 23)

in well-powered attempts that are more likely to get the true risk

allele in Europeans right, if there is any.

Further support to the presence of the same common variants in

shared disease loci comes from paying attention to the odds ratios.

Even if common, if risk variants responsible for the GWAS signals

were different across populations, we would not expect any

correlation in the estimated effects. In contrast, not only cohorts

from Europe and East Asia do show the same risk allele, but do it

similarly: odds ratios are correlated irrespective of the statistical

significance in replication attempts.

Final evidence lies in the patterns of linkage disequilibrium and

heterozygosity in replicated and not replicated associations. If the

same common variants underlie most GWAS associations, the only

biological reason to explain replication failures would lie in linkage

disequilibrium and allele frequency differences across populations.

Specifically, risk variants discovered initially in Europeans could

remain undetected in East Asians if the linkage between the causal

allele and the marker SNP has disappeared in the latter population.

Thus, the policy we have followed to consider replication only
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using the same SNP would not be enough if significant SNPs are

only good proxies for causal variants in certain populations. This

prediction is very difficult to test directly given that very few

causal variants are known. Nevertheless, we tested this prediction

indirectly by measuring differences in LD patterns. The

accumulation of differences in LD in not replicated SNPs lends

support to the hypothesis that replication failures are due to

tagSNPs being bad proxies for causal variants in East Asians.

Overall, these observations suggest a model whereby GWAS have

detected associations that are: (i) common as regards to allele

frequency, (ii) shared across Eurasia, (iii) not caused by synthetic

associations with rare alleles and (iv) presenting very similar

pathological effects across populations.

4.2.2. Immediate implications of the inferences on GWAS

Similar to the first study based on candidate gene association

studies, the aforementioned analyses on GWAS replicability does

not help to assign which are the causal variants but help to

generate immediate useful predictions and tips for human

geneticists working in complex disease:

1. Trans-ethnic mapping should help to unravel the causal

variants behind GWAS associations

2. The incorporation of African individuals will be of the

greatest help to narrow down the location of causal variants

3. Local re-sequencing around the most significant SNPs

should suffice to map risk alleles
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4. The combination of samples from different ancestries could

help to overcome the limited sample size of cohorts from

rare diseases (i.e. ankylosing spondylitis)

5. The effect sizes observed in Europeans are likely to be

portable for genetic testing across ancestries

Figure 22. Known architecture of complex disease (Sullivan et al. 2012).
The figure shows the allele spectrum of all common and rare variants that
have been associated to schizophrenia. Three kinds of risk variants can be
distinguished. First, in the left very rare alleles of large effect found
through individuals with extreme phenotypes are shown. Second, the red
dots in bottom right indicate the allele frequency and risk ratios of 17
SNPs described as genome-wide significant by GWAS. Finally, the blue
line indicates the frequencies for the top 20,000 SNPs found in GWAS.
Two predictions appear straightforward: (i) thousands of low-risk causal
variants will be detected through larger GWAS and (ii) hundreds of low-
frequency variants (from MAF 0.001 to 0.01) remain undiscovered.

A replicability study of extant GWAS results only informs us about

the genetic architecture of disease that has been unravelled so far.

However, available data can provide some hints on the “missing

heritability”. We analyzed the rates of replicability across different

bins of odds ratio to check whether the level of replicability holds

constant or falls as we introduce low-effect risk alleles.
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This exercise aims to work on current tendencies of replicability to

mimic the performance of future and larger GWAS. We did so

using the following reasoning: replicability should only drop when

variants are not shared across continents. Importantly, the decay in

statistical power as we focus on low-risk alleles (i.e. OR<1.1) must

be taken into account. Otherwise, we would wrongly conclude that

increasing amounts of non-shared variants are present in low-risk

associations. Nevertheless, we describe a near constant effective

replicability rate that is independent of the observed risk ratio.

With the caveat of the limited associations that are known so far, it

does not seem that population-specific variants are being captured

through low-risk associations discovered in the largest GWAS

published so far. This result supports an infinitesimal model of

disease thereby a large number of shared (and thus likely common)

variants remain buried as false negatives in current GWAS.

4.3. A few (apparently) easy predictions and the big bet

There are three conclusions that are crystal clear to any individual

that spends five years using publicly available databases to make

sense of (likely biased) data on the genetics of disease. First, the use

of public data will enhance your capabilities to devise projects that

depart from the work in the original publication but eventually

become unrealistic. Second, your happiness will (inversely)

correlate with the length of the supplementary in Nature Genetics

papers. Finally, sooner or later, you will end up showing a picture

of an iceberg in every last slide shown in seminars.
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Beyond such daily nuisances, any individual working in the field

will experience euphoric revelations after reading interesting

papers or attending funny seminars. Usually, the short episodes of

excitement will happen in the middle of long periods of

disappointment due to the “technologically-driven tendencies of my

field” or “we should go back to families” or “I should already know about

this”. Yet, eureka moments may help predicting what is going to be

next fun. I would like to cite a few predictions that may seem

obvious but may also be immediately revealed as plain nonsense:

⇒ Very large studies will describe many new disease loci that

will be shown to harbour lots of pathogenic rare variants

⇒ Re-analysis of already published data with pathway

perspectives will be useful for drug design

⇒ Increasing number of papers will describe examples of

epistasis and gene-by-environment interactions

⇒ Routine genome sequencing will discover an astonishing

number of pseudo-mendelian versions of complex disease

⇒ Sequencing will serve to cure extreme mendelian phenotypes

⇒ Knowledge driven data analysis (i.e. tissue-specific

expression) will be key to understand disease pathology

⇒ A molecular perspective will validate disease associations

and eventually re-conquer the field, but only through a

systems biology approach (not focused in DNA sequencing)

⇒ The bottleneck in the field will still lie in phenotypic data

⇒ People will fancy the increasing capabilities of genomic

medicine (similar to current recreational genomics)
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⇒ Most people working in the field will be employed by

genomics companies still to be born

I plan to keep trying on it, but great troubles lie in the complexity

of human lives: each of us experiences a singular combination of

environmental and genetic variants. After the low hanging fruits

delivered by the last tours de force, it might be that success lies

within efforts capable of limiting the tests to be done…

…but still the big bet is the following one by Leroy Hood in 2002:

“My prediction is that in 10-15 years, we will have identified hundreds of

genes that predispose to disease. We will be able to analyze the relevant

DNA sequences from these genes from a small amount of blood and use

these to predict a probabilistic future health history for each individual.

This is predictive medicine. Since it is an anathema in medicine to predict

without being able to cure or prevent, we will use systems approaches over

the next 15-25 years to place defective genes in the context of their

biological systems and learn how to circumvent their limitations. This is

preventive medicine. The agents for preventive medicine will include

drugs, stem cell therapy, engineered proteins, genetically-engineered cells,

and many others. Because each of us will have different potential disease

combinations, medicine will become highly personalized. My prediction is

that preventive medicine will extend the average lifespan by 10-30 years.”

Leroy Hood

My Life and Adventures Integrating Biology and Technology





But there are also unknown knows…

Slavoj Žižek
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