dc.contributor
Universitat de les Illes Balears. Departament de Física
dc.contributor.author
Jiménez Forteza, Francisco
dc.date.accessioned
2018-05-18T07:07:36Z
dc.date.available
2018-05-18T07:07:36Z
dc.date.issued
2017-09-05
dc.identifier.uri
http://hdl.handle.net/10803/565409
dc.description.abstract
[eng]Throughout history, human beings have received and interpreted information from distant
stars and galaxies through electromagnetic waves (light). Until 2015 this was the
dominant way for observing astrophysical events happening in our cosmos. However, on
September 14'th 2015 a new window to the universe was opened thanks to the rst direct
gravitational wave detection, a goal pursued for several decades by the LIGO/Virgo
scienti c collaboration.
Gravitational waves are tiny space-time oscillations propagating at the speed of light.
They are a prediction of the Einstein theory of gravity and we need the most catastrophic
astrophysical events to detect them. The rst observation of gravitational waves
described the inspiral, merger and ringdown of two black holes with 36 and 29 solar
masses located at 1300 billion light-years, where about the 5% of the total mass was
radiated as gravitational waves and becoming the most powerful astrophysical event ever
observed. The event was called GW150914, consistently with its the arrival date and
was publicly announced on February 11'th 2016 by the LIGO Virgo collaboration. This
has not been the only event observed during this thesis project. Relying on statistical
criteria arguments, we can certify the observation of one additional event also compatible
with the coalescense of a pair of black holes tagged as GW151226 plus a third one
called LVT151012 likely from astrophysical origin but that did not reach the statistical
signi cance required to be con rmed.
The coalescense of binary black hole systems are an optimal candidate for the observation
and study of gravitational waves. The current observations suggest that these
kind of events could dominate the future ground based detections. Then, we need to
optimise the theoretical waveform models to characterise the future observations. In
this thesis we have given the rst steps towards a new upgrading of the nonprecessing
gravitational waves models. These models result from the matching of the well known
post-Newtonian (PN) and e ective-one-body (EOB) analytic formulations to the computationally
expensive numerical solutions of the Einstein equations. They are de ned in
the frequency domain and depend on the ratio of the two black hole masses (mass-ratio)
and some e ective spin e that results from the combination of the components of the
spins orthogonal to the orbital plane thus reducing the physical parameter space to only
two dimensions. Then, although this current prescription have been demonstrated to be
su cient for the searches of the gravitational waves in the data, they are not so optimal
for the statistical inference of the spins of each BH, which is partially caused by the
inherent degeneracy introduced by the e ective spin. The focus of this work has been the extension of the one-spin phenomenological models
to its two-spin version by adding the subdominant e ects carried by the spin di erence
terms = 1 � 2. To that end, we have employed the data of more than 400 simulations
of binary black hole systems generated by four di erent codes (BAM, SpEC, LAZEV,
MAYA), 23 of them generated throughout this thesis by means of the BAM code. This
involved the di cult task of evolving, extracting the waves and the data postprocessing
of each case. Then, we have rede ned the strategy for building higher than two dimensional
ansaetze to add subdominant e ects and where we have also included the results
of the extreme mass ratio limit. All this analysis has resulted in the prescription of new
phenomenological models for the nal mass, nal spin and peak luminosity. The new
models have been shown to improve the old descriptions of these quantities while they
have clearly revealed the possible impact of the subdominant e ects in the near future
phenomenological models.
en_US
dc.format.extent
178 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat de les Illes Balears
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Forats negres binaris
en_US
dc.subject
Ones gravitacionals
en_US
dc.subject
Models fenomenològics
en_US
dc.subject.other
Física Teòrica
en_US
dc.title
Hierarchical data-driven modelling of binary black hole mergers
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.director
Husa, Sascha
dc.contributor.director
Sintes Olives, Alicia M.
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess