Universitat de Barcelona. Departament de Biologia Cel·lular, Immunologia i Neurociències
La malaltia de Huntington és un trastorn neurodegeneratiu progressiu causat per una expansió de repeticions del triplet CAG (més de 37) en l’exó 1 del gen de la huntingtina que genera una proteïna aberrant. Aquesta proteïna modificada és tòxica i provoca una pèrdua selectiva de neurones GABAèrgiques de projecció en el nucli estriat, tot i que també s’han detectat alteracions i degeneració en altres àrees de l’encèfal, generant una simptomatologia complexa que engloba alteracions motores, cognitives i emocionals. Un marcador de la patologia és la formació d’agregats proteics, principalment compostos per fragments N-terminals de la huntingtina mutada que es generen per l’acció de proteases. Un dels processos que condueix a la mort selectiva de les neurones és l’activació de l’apoptosi. L’equilibri entre vies pro-apoptòtiques i vies de supervivència no només és el que regula el destí de la cèl•lula, sinó que també podria participar en la regulació de l’aparició dels primers símptomes de la patologia en un individu afectat. En aquesta Tesi es descriuen tres possibles mecanismes cel•lulars activats en un model murí de malaltia de Huntington, que podrien participar en compensar la toxicitat que genera la huntingtina mutada i així retardar-ne la patologia: (1) la sobreactivació de l’autofàgia selectiva a estadis inicials de la patologia, important per la degradació de la huntingtina mutada; (2) la sobreactivació de la via de senyalització mTOR-AKT, que participa en mecanismes de supervivència cel•lular; i (3) la inhibició de la via de senyalització de la PKCδ, que quan es troba activada genera apoptosis cel•lular en cèl•lules que expressen la huntingtina mutada. Potenciar des d’edats primerenques qualsevol d’aquests tres mecanismes, doncs, podria ser una bona estratègia terapèutica per a la malaltia de Huntington.
Huntington’s disease (HD) is a neurodegenerative disorder caused by a CAG expansion (more than 37 repeats) in the exon 1 of the huntingtin gene, which results in the synthesis of a mutant protein that is toxic for some neuronal types. The striatum is the most affected brain region, although other brain areas, such as the cerebral cortex or hippocampus are also affected. Aggregates are a pathological hallmark of the disease, which are mainly composed by N-terminal mutant huntingtin fragments and are present within the cells in both cytoplasm and nucleus. Apoptotic activation is one of the mechansims by which neurodegeneration occurs. Thus, whether a neuron lives or dies in pathological condition is the result of a complex balance between anti- and pro-apoptotic signals, which is crucial to determine cell fate. Moreover, this balance might strongly regulate the onset of the disease. Here, we have characterized three putative compensatory pro-survival processes that are altered in Huntington’s disease and could be involved in delaying the pathology progression. First, we have studied selective autophagy, a mechanism that degrades toxic mutant huntingtin species. To this end, we analyzed protein levels and intracellular localization of p62 and NBR1 (two selective autophagy receptors that specifically recognize cell components that need to be removed by means of autophagy) in the R6/1 mouse model of HD along the progression of the disease.,. We have observed that at early stages of the disease, p62 and NBR1 protein levels are reduced, indicating increased autophagic activity that could play a role in degrading mutant huntingtin. However, at later stages of the disease protein levels of both proteins have a different pattern depending on the cerebral region analyzed. In the cortex protein levels of both proteins are still reduced, indicating that selective autophagy is overactivated until later stages of the disease. However, in the striatum and in the hippocampus they accumulate due to distinct factors. p62 is sequestered by nuclear mutant huntingtin aggregates, while NBR1 is still in the cytoplasm, thus still taking part in the autophagy process. Its accumulatiion could be due to an inefficient selective autophagy that could get worst with age. We have also studied whether different intracellular signalling pathways, involved in cell survival or apoptosis, are altered by mutant huntingtin expression. We have observed that the mTOR signalling pathway, through the mTORC2 but not mTORC1 complex, is over-activated in the striatum of R6/1 mice, and we think that this overactivation could play a role in the previous reported increased phosphorylation of the pro-survival kinase AKT in the same HD mouse model. An increase in the activity of the mTORC2 complex, could be due to an increase in Rictor protein levels that have been found specifically in the striatum of R6/1 mice and in the putamen of HD patients. Finally, we also analyzed the PKC signalling pathway, since PKCs regulate different processes important for neuronal survival and plasticity. We have observed that protein levels of different PKC isoforms, PKCα, PKCβII and PKCδ, are reduced in the striatum, cortex and hippocampus of R6/1 mice. The most important reduction was observed for the proapototic PKC isoform PKCδ, which started already at early stages of the disease. This suggests that neurons could try to block this signalling pathway in order to reduce mutant huntingtin toxicity. We have obsereved that striatal cells that express mutant huntingtin, but not wild-type huntingtin, are more vulnerable to undergo apoptosis when they overexpress PKCδ. The present Thesis describes the up-regulation of several compensatory prosurvival mechanisms in HD to counteract the mutant huntingtin-induced toxicity. The potentiation of such prosurvival mechanisms could be a good therapeutical approach in HD.
Corea de Huntington; Enfermedad de Huntington; Huntington's chorea; Autofàgia; Autofagia; Autophagy; p62/SQSTM1; NBR1; mTOR; PKCd
616 - Pathology. Clinical medicine
Ciències de la Salut