dc.contributor
Universitat de Barcelona. Departament de Química Orgànica
dc.contributor.author
Dyachenko, Andrey
dc.date.accessioned
2013-05-27T07:54:13Z
dc.date.available
2013-05-27T07:54:13Z
dc.date.issued
2013-04-15
dc.identifier.uri
http://hdl.handle.net/10803/113301
dc.description.abstract
In the present thesis we have explored different factors that impede accurate quantitative description of non-covalent protein-protein and protein-ligand interactions and design of new potent and specific binders from the scratch. Firstly, we addressed the role of solvent in the mechanism of non-covalent interactions. Secondly, we tackled the question about the intrinsic conformational flexibility of the protein molecules and the part it plays in weak interactions between proteins.
In the first part of the thesis we studied the interactions of vascular endothelial growth factor (VEGF) protein with five cyclic peptides in solution and gas phase. The results showed that affinities of five ligands to VEGF in solution and gas phase are ranked in inversed order. That is, the that has the highest affinity in solution (as shown by chemical shift perturbation NMR and isothermal titration calorimetry) forms the weakest complex with VEGF in gas phase, and vice versa. We compared gas-phase and solution binding affinities of of five peptides and made qualitative conclusions about the role of the solvent in protein-ligand interactions.
In order to obtain more quantitative information about the gas-phase behavior of non-covalent complexes we have developed a combined experimental/theoretical approach to study the energetics of collisional activation of the ion prior to dissociation. We applied developed strategy to model CID in traveling wave ion guide (TWIG) collision cell. We validated the model on the CID of leu-enkephalin peptide and then applied developed strategy to five non-covalent protein-peptide complexes and found activation energies of their dissociation reactions.
Next we applied ESI native MS to study the allosteric interactions between the molecular chaperonin GroEL and ATP. The obtained data allowed to construct a scheme of conformational transition of GroEL upon binding of ATP and distinguish between two different cooperativity models, providing strong arguments in favor of Monod-Wyman-Changeux (MWC) model.
Finally, be studied the backbone dynamics of VEGF with a combination of NMR relaxation and all-atom force-field based normal mode analysis (NMA). We showed that combination of experimental and computational approach allows to identify flexible zones with higher level of confidence. We also found out that residues, that are involved VEGF-receptor interactions, reside in or close to the flexible zones, suggesting the critical role conformational plasticity plays in the non-covalent protein-protein interactions.
eng
dc.description.abstract
Las biomoléculas de los organismos vivos realizan sus funciones principalmente a través de interacciones débiles reversibles entre ellas. La transducción de señal, la replicación de ADN/ARN, otros procesos enzimáticos y, virtualmente, cualquier otro proceso involucrado en las funciones vitales de cualquier organismo vivo (de las simples amebas, al complejo ser humano), requiere que las moléculas “hablen” entre ellas. Dicho lenguaje se basa en interacciones no covalentes.
La flexibilidad conformacional es una propiedad esencial de las grandes biomoléculas, y muchas de las funciones desempeñadas por proteínas se basan en su capacidad para cambiar de conformación en respuesta a un factor externo. Geométricamente hablando, la presencia de flexibilidad en una proteína obstaculiza el diseño racional de medicamentos porque posibilita la existencia de un número muy elevado de conformaciones de dicha proteína. Por este motivo, cualquier información sobre la flexibilidad de una proteína es sumamente valiosa para la comprensión de PPI y PLI y para el diseño racional de medicamentos. Los capítulos 1-3 de la presente tesis versan sobre la solvatación, mientras que la flexibilidad se estudiara en el capitulo 4.
spa
dc.format.mimetype
application/pdf
dc.publisher
Universitat de Barcelona
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Espectrometria de masses
dc.subject
Espectrometría de masas
dc.subject
Mass spectrometry
dc.subject
Interaccions no covalents
dc.subject
Interacciones no covalentes
dc.subject
Non-covalent interactions
dc.subject
Interaccions proteïna-proteïna
dc.subject
Interacciones proteína-proteína
dc.subject
Protein-protein interactions
dc.subject
Interaccions proteïna-lligand
dc.subject
Interacciones proteína-ligando
dc.subject
Ligand-protein interactions
dc.subject.other
Ciències Experimentals i Matemàtiques
dc.title
Molecular recognition in gas phase: theoretical and experimental study of non-covalent protein-ligand complexes by mass-spectrometry
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.director
Giralt Lledó, Ernest
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.dl
B. 14588-2013