Active control of surface plasmons in hybrid nanostructures

Author

Randhawa, Sukanya

Director

Quidant, Romain

Codirector

Renger, Jan

Date of defense

2012-12-04

Legal Deposit

B. 26275-2013

Pages

176 p.



Department/Institute

Universitat Politècnica de Catalunya. Institut de Ciències Fotòniques

Abstract

Plasmonics nanostructures are becoming remarkably important as tools towards manipulating photons at the nanoscale. They are poised to revolutionize a wide range of applications ranging from integrated optical circuits, photovoltaics, and biosensing. They enable miniaturization of optical components beyond the "diffraction limit'' as they convert optical radiation into highly confined electromagnetic near-fields in the vicinity of subwavelength metallic structures due to excitation of surface plasmons (SPs). These strong electromagnetic fields generated at the plasmonic "hot spots'' raise exciting prospects in terms of driving nonlinear effects in active media. The area of active plasmonics aims at the modulation of SPs supported at the interface of a metal and a nonlinear material by an external control signal. The nonlinear material changes its refractive index under an applied control signal, thereby resulting in an overall altered plasmonic response. Such hybrid nanostructures also allow for the creation of new kinds of hybrid states. This not only provides tools for designing active plasmonic devices, but is also a means of re-examining existing conventional rules of light-matter interactions. Therefore, the need for studying such hybrid plasmonic nanostructures both theoretically and experimentally cannot be understated. The present work seeks to advance and study the control of SPs excited in hybrid systems combining active materials and nanometallics, by an external optical signal or an applied voltage. Different types of plasmonic geometries have been explored via modeling tools such as frequency domain methods, and further investigated experimentally using both near-field and far field techniques such as scanning near field optical microscopy and leakage radiation microscopy respectively. First, passive SP elements were studied, such as the dielectric plasmonic mirrors that demonstrate the ability of gratings made of dielectric ridges placed on top of flat metal layers to open gaps in the dispersion relation of surface plasmon polaritons (SPPs). The results show very good reflecting properties of these mirrors for a propagating SPP whose wavelength is inside the gap. Another passive configuration employed was a plasmonic resonator consisting of dielectric-loaded surface plasmon polariton waveguide ring resonator (WRR). Also, a more robust variant has been proposed by replacing the ring in the WRR with a disk (WDR). The performance in terms of wavelength selectivity and efficiency of the WDRs was evaluated and was shown to be in good agreement with numerical results. Control of SPP signal was demonstrated in the WRR configuration both electro-optically and all-optically. In the case of electro-optical control, the dielectric host matrix was doped with an electro-optical material and combined with an appropriate set of planar electrodes. A 16% relative change of transmission upon application of a controlled electric field was measured. For all-optical control, nonlinearity based on trans-cis isomerization in a polymer material is utilized. More than a 3-fold change between high and low transmission states of the device at milliwatt control powers ( ~100 W/cm^2 intensity) was observed. Beyond the active control of propagating surface plasmons, further advancement can be achieved by means of nanoscale plasmonic structures supporting localized surface plasmons (LSP). Interactions of molecular excitations in a pi-conjugated polymer with plasmonic polarizations are investigated in hybrid plasmonic cavities. Insights into the fundamentals of enhanced light-matter interactions in hybrid subwavelength structures with extreme light concentration are drawn, using ultrafast pump-probe spectroscopy. This thesis also gives an overview of the challenges and opportunities that hybrid plasmonic functionalities provide in the field of plasmon nano optics.


Las nanoestructuras plasmónicas han adquirido una importante relevancia como herramientas capaces de manipular los fotones en la nanoescala, y pueden llegar a revolucionar un amplio abanico de aplicaciones tales como los circuitos ópticos integrados, la fotovoltaica o los dispositivos biosensores. Dichas estructuras hacen posible la miniaturización de los componentes ópticos más allá del “límite de difracción” de la luz, ya que convierten la radiación óptica en campos electromagnéticos fuertemente confinados en la proximidad de estructuras metálicas de tamaño inferior a la longitud de onda mediante la excitación de plasmones de superficie (SPs). Estos campos electromagnéticos tan intensos generados en los llamados “puntos calientes” plasmónicos brindan perspectivas muy interesantes para la generación de efectos no lineales en medios activos. El área de investigación denominado plasmónica activa busca la modulación de los SPs sostenidos por la intercara entre un metal y un material no lineal mediante una señal de control externa. El índice de refracción del material no lineal cambia bajo la aplicación de la señal de control, lo cual da lugar a la modificación de la respuesta plasmónica. Estas nanoestructuras híbridas también hacen posible la aparición de nuevos tipos de estados híbridos, lo cual proporciona tanto herramientas para diseñar dispositivos plasmónicos activos como mecanismos que permiten re-examinar las reglas convencionales de la interacción luz materia. Por lo tanto, es necesario el estudio de dichas nanoestructuras plasmónicas híbridas de manera teórica y experimental. En este trabajo de tesis se analiza el control de los SPs excitados en sistemas híbridos que combinan materiales activos y nanoestructuras metálicas mediante una señal óptica externa o un voltaje aplicado. Se han investigado distintos tipos de geometrías plasmónicas utilizando herramientas de simulación basadas en métodos en el dominio de la frecuencia, y posteriormente se han caracterizado experimentalmente dichas geometrías mediante técnicas de campo cercano y de campo lejano tales como la microscopía óptica de campo cercano y la microscopía basada en pérdidas radiativas, respectivamente. En primer lugar se estudiaron elementos plasmónicos pasivos, en particular espejos plasmónicos dieléctricos que demuestran la capacidad que tienen las redes periódicas de caballones de material dieléctrico colocados sobre una superficie metálica plana para abrir intervalos prohibidos en la relación de dispersión de los plasmones de superficie propagantes o plasmones-polaritones de superficie (SPPs). Los resultados muestran que dichos espejos poseen muy buenas propiedades reflectantes para SPPs cuya energía está en el intervalo prohibido. Otra configuración pasiva analizada fueron los resonadores plasmónicos basados en anillos de guía de onda plasmónica fabricada a partir de estructuras dieléctricas sobre metal (WRR, del inglés waveguide ring resonator ). Asimismo, se propone una versión más robusta de resonador plasmónico, basada en la sustitución del anillo del WRR por un disco (WDR, del inglés waveguide disk resonator). Se ha evaluado el funcionamiento de los WDRs en términos de selectividad en longitud de onda y de eficiencia, y los resultados obtenidos presentan un buen acuerdo con las predicciones numéricas. Pasando a las configuraciones activas, se demuestra el control de la señal plasmónica en configuración WRR por medios tanto electro-ópticos como completamente ópticos. En el caso del control electro-óptico, el material dieléctrico que compone el WRR estaba dopado con un componente electro-óptico y a la estructura pasiva se le añadió un conjunto de electrodos planos. Bajo la aplicación de un campo eléctrico externo, se midió un cambio relativo en la transmisión a través de la guía plasmónica del 16%. En cuanto al control puramente óptico, se utilizó la no linealidad de un material polimérico con origen en una isomerización trans-cis. En este caso se detectó un factor 3 entre los estados de alta y baja transmisión del dispositivo con potencias de control del orden de milivatios (intensidad del haz óptico de control de unos 100W/cm2 aproximadamente). Además del control activo de los plasmones de superficie propagantes, la utilización de nanoestructuras plasmónicas que poseen resonancias plasmónicas localizadas puede dar lugar a nuevos fenómenos. En esta tesis también se han estudiado las interacciones entre las excitaciones moleculares en un polímero pi-congujado con las polarizaciones plasmónicas en nanocavidades plasmónicas híbridas. Utilizando espectroscopia de tipo bombeo-sonda con pulsos ultrarrápidos, se han analizado diversos aspectos del aumento en la interacción luz-materia para estructuras híbridas de dimensiones inferiores a la longitud de onda sometidas a concentraciones de luz muy altas. Por último, esta tesis también proporciona una visión general de los desafíos y posibilidades que las funcionalidades plasmónicas híbridas ofrecen en el campo de la nano-óptica basada en plasmones de superfície.

Subjects

535 - Optics; 577 - Material bases of life. Biochemistry. Molecular biology. Biophysics

Documents

TSR1de1.pdf

8.984Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/3.0/es/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/3.0/es/

This item appears in the following Collection(s)