Characterization of mechanisms underlying neuronal survival and plasticity in Huntington's disease

dc.contributor
Universitat de Barcelona. Departament de Biologia Cel·lular, Immunologia i Neurociències
dc.contributor.author
Anglada Huguet, Marta
dc.date.accessioned
2013-11-21T09:10:30Z
dc.date.available
2014-03-23T06:45:05Z
dc.date.issued
2013-07-22
dc.identifier.uri
http://hdl.handle.net/10803/125774
dc.description.abstract
Huntington’s disease is a progressive neurodegenerative disorder caused by the expansion of a CAG tract in the exon-1 of the huntingtin gene. Mutant huntingtin induces a large amount of toxic effects that trigger cell dysfunction and consequently, behavioral alterations such as motor dysfunction, cognitive decline and psychological disturbances. However, before the onset of symptoms individuals are healthy. Thus, it is plausible that compensatory mechanisms may be activated to regulate a balance between cell death and survival. This compensatory mechanism might modulate the progression of Huntington’s disease. Understanding altered mechanisms due to mutant huntingtin expression in order to find new therapeutic targets to reduce neuronal dysfunction/death in Huntington’s disease must be a priority. It is believed that there is a balance between positive signaling for cell survives or dies. Many of the pathways involved in these processes are controlled at the level of phosphorylation and transcription. In this thesis we have studied mechanisms of transcription and protein activation, which are considered one of the main causes that trigger to mutant huntingtin-induced neuronal dysfunction. We have identified two targets, the protein kinase p90Rsk and the transcription factor Elk-1, that are activated during the progression of Huntington’s disease in order to protect striatal cells against mutant huntingtin-induced cell death. These two proteins are tightly related to neuronal survival and transcription regulation. p90Rsk is a kinase that phosphorylates substrates in the cytoplasm inhibiting their pro-apoptotic activity and phosphorylate transcription factors in the nucleus promoting their pro-survival activity. Likewise, Elk-1 promotes the transcription of many immediate early genes related to synaptic plasticity and neuronal survival. We observed an up-regulation of these to proteins during the progression of Huntington’s disease in different mouse models. This up-regulation was necessary to protect striatal cells from mutant-huntingtin. The prevention of cell death is an important point for neurodegenerative diseases; even so, it is unlikely that cellular machinery works well until the death of the cells. In many neurodegenerative diseases, such as Huntington’s disease, neuronal and synaptic dysfunction precedes cell death and occurs long before, or sometimes in absence of cell death. Recent studies suggest that targeting early pathophysiological disturbances in models of Huntignton’s disease can reverse neuronal dysfunction and delay progression to neurodegeneration. In this thesis, we also point out for the first time the modulation of Prostaglandin E2 (PGE2) EP receptors, namely EP1 and EP2, as a therapeutic targets in Huntington’s disease. The activation of EP1 receptor produces an increase in intracellular levels of calcium, while EP2 receptor activation increases cAMP; therefore, the activation of different EP receptors can have opposite effects. Whereas the blockade of EP2-EP4 receptors can aggravate neurodegeneration, antagonizing EP1 receptor has neuroprotective effects. We observed that pharmacological inhibition of EP1 receptor improves motor coordination and reduces memory decline in R6/1mice model of Huntington’s disease. Moreover, EP1 antagonism increases the expression of specific synaptic markers in the striatum and the hippocampus of these mice and also improves the long-term potentiation in the hippocampus. Finally, EP1 receptor antagonism reduces the presence of striatal and hippocampal mutant huntingtin nuclear aggregates in the striatum and the hippocampus of treated-R6/1 mice. Contrary to EP1 receptor, EP2 receptor plays a neuroprotective role in Huntington’s disease. We observe that EP2 receptor activation improves long-term memory in R6/1 mice. Moreover, EP2 activator increases dendritic branching in a BDNF-dependent manner, increases the protein levels of BDNF and the total number of PSD-95+ spines in the hippocampus of these mice. In conclusion, we propose the modulation of PGE2 receptors as a new therapeutic strategy in Huntington’s disease.
eng
dc.description.abstract
La malaltia de Huntington és un trastorn neurodegeneratiu progressiu caracteritzat per la presencia d’alteracions motores i dèficits cognitius. Aquesta malaltia està causada per l’expansió anòmala del triplet CAG en l’exó 1 del gen que codifica per la proteïna huntingtina. La huntingtina mutada indueix gran quantitat d’efectes tòxics que desencadenen la disfunció cel•lular i, en conseqüència, les alteracions en la conducta característiques d’aquesta malaltia. Tot i així, abans de l’aparició del símptomes, els individus són sans. Per tant, és plausible pensar que es produeix una activació de mecanismes compensatoris per a regular l’equilibri entre la mort i la supervivència cel•lular. En aquesta tesis, ens hem centrat en dos objectius principals: (1) l’estudi dels mecanismes compensatoris activats en la presencia de la huntingtina mutada per tal de millorar la supervivència cel•lular i (2) la identificació de dianes moleculars per a reduir els dèficits motors i cognitius, així com per a millorar la plasticitat sinàptica en models murins de la malaltia de Huntington. Específicament, els nostres resultats han ajudat a entendre el paper de la proteïna cinasa p90Rsk i del factor de transcripció Elk-1 en la susceptibilitat de les neurones estriatals a la mort induïda per la huntingtina mutada. Per altre banda, mostrem per primera vegada el potencial terapèutic dels receptors de la prostaglandina E2, EP1 i Ep2, per al tractament dels símptomes clínics y histopatològics en la malaltia de Huntington.
cat
dc.format.extent
231 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat de Barcelona
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Neurociències
dc.subject
Neurociencias
dc.subject
Neurosciences
dc.subject
Corea de Huntington
dc.subject
Enfermedad de Huntington
dc.subject
Huntington's chorea
dc.subject
Neuroplasticitat
dc.subject
Plasticidad neuronal
dc.subject
Neuroplasticity
dc.subject
Mort neuronal
dc.subject
Muerte neuronal
dc.subject
Death of neurons
dc.subject
Etologia
dc.subject
Etología
dc.subject
Animal behavior
dc.subject.other
Ciències de la Salut
dc.title
Characterization of mechanisms underlying neuronal survival and plasticity in Huntington's disease
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
616.8
cat
dc.contributor.director
Alberch i Vié, Jordi
dc.contributor.director
Xifró i Collsamata, Xavier
dc.embargo.terms
6 mesos
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.dl
B. 27773-2013


Documents

MAH_PhD_TESIS.pdf

16.39Mb PDF

Aquest element apareix en la col·lecció o col·leccions següent(s)