Magnetocaloric Effect In Gd5(SixGe1-x)4 Alloys


Author

Casanova i Fernàndez, Fèlix

Director

Batlle Gelabert, Xavier

Date of defense

2004-03-09

ISBN

8468889024

Legal Deposit

B.46763-2004



Department/Institute

Universitat de Barcelona. Departament de Física Fonamental

Abstract

This Ph.D. Thesis has been devoted to the preparation and characterisation of bulk Gd5(SixGe1-x)4 alloys and to the study of the magnetocaloric effect at the first-order magnetostructural transition appearing in these compounds. We summarise the most relevant results from this research:<br/><br/>- Bulk Gd5(SixGe1-x)4 samples with 0¡Âx ¡Â0.5 have been prepared by using our home-made arc-melting furnace. Characterisation techniques (SEM, microprobe, XRD, DSC, magnetisation, ac susceptibility) show that the 5:4 phase with the desired x is obtained. Some spread around the nominal value and secondary 5:3 and 1:1 phases are detected. Heat treatment favour the segregation of these secondary phases, but also reduce the spread in the x value. A treatment at 920 ¨¬C for 4 hours in a 10-5 mb vacuum furnace enables a trade-off between phase segregation and removal of x spread.<br/><br/>- A new differential scanning calorimeter (DSC), which operates under applied magnetic fields of up to 5 T and within the temperature range 10-300 K, has been developed. This calorimeter enables an accurate determination of the entropy change associated with a magnetostructural phase transition. The transition can be induced by sweeping either T or H. <br/><br/>- It has been shown that the Clausius-Clapeyron equation and DSC measurements yield the entropy change associated with the first-order magnetostructural transition, &#8710;S. If the Maxwell relation is evaluated only within the field range over which the transition takes place, the same value is obtained. When the Maxwell relation is evaluated over the whole field range, the T and H dependences of the magnetisation in each phase outside the transition region yield an additional entropy change to that associated with that of the actual first-order transition. The transition temperature Tt must significantly shift with the applied field, in order to achieve a large MCE taking advantage of &#8710;S.<br/><br/>- DSC under H has been used to measure &#8710;S for Gd5(SixGe1-x)4, x ¡Â0.5. &#8710;S scales with Tt, which is a direct consequence of the fact that Tt is tuned by x and H and it is thus expected to be universal for any material showing a field-induced transition. The specific shape of &#8710;S vs. Tt will depend on the details of the phase diagram, Tt(x). The scaling of &#8710;S shows the equivalence of magnetovolume and substitution-related effects in Gd5(SixGe1-x)4 alloys.<br/><br/>- The variation of the transition field with the transition temperature, dHt/dTt, has been studied in Gd5(SixGe1-x)4 for 0¡Âx ¡Â0.5. It is shown that dHt/dTt governs the scaling of &#8710;S with Tt. Two distinct behaviours for dHt/dTt have been found on the two compositional ranges where the magnetostructural transition occurs, showing the difference in the strength of the magnetoelastic coupling in this system.<br/><br/>- It has been shown that an unreported field-induced magnetic phase transition exists from the AFM phase to a phase which presents short-range correlations (SRAFM). The results suggest that the transition results from the breaking of the long-range AFM correlations when a magnetic field is applied, which leads to competing FM and AFM short-range correlations. FM correlations are also relevant in the whole long-range AFM phase. The expected transition from the SRAFM to the PM phase takes place at ~240 K at zero field, being widened and smoothed under applied field. This finding in the Ge-rich Gd5(SixGe1-x)4 alloys arises from the competition between the intraslab FM interactions and the interslab AFM interactions.<br/><br/>- The dynamics of the first-order transition in Gd5(SixGe1-x)4 alloys has been studied by cycling virgin samples. The field-induced entropy change increases during the first cycles, then reaching a stationary value. This behaviour is related to the avalanche distribution, which also evolves with cycling. The structure of avalanches becomes repetitive after a few cycles tending towards a power-law distribution, unveiling the athermal character of the transition.

Keywords

Aliatges; Magnetisme; Efecte magnetocalòric

Subjects

53 - Physics

Knowledge Area

Ciències Experimentals i Matemàtiques

Documents

0.PREVI.pdf

285.4Kb

1.CHAPTER_1.pdf

1.249Mb

10.CONCLUSIONS.pdf

199.0Kb

11.LIST_OF_PUBLICATIONS.pdf

170.5Kb

12.RESUM_CATALA.pdf

904.9Kb

13.BIBLIOGRAFIA.pdf

148.9Kb

2.CHAPTER_2.pdf

2.521Mb

3.CHAPTER_3.pdf

2.180Mb

4.CHAPTER_4.pdf

503.5Kb

5.CHAPTER_5.pdf

854.2Kb

6.CHAPTER_6.pdf

320.4Kb

7.CHAPTER_7.pdf

291.9Kb

8.CHAPTER_8.pdf

645.1Kb

9.CHAPTER_9.pdf

494.0Kb

 

Rights

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)