On the Meromorphic Non-Integrability of Some Problems in Celestial Mechanics


Author

Simon i Estrada, Sergi

Director

Simó, Carles

Morales Ruiz, Juan José, 1953-

Date of defense

2007-07-09

ISBN

9788469090381

Legal Deposit

B.53064-2007



Department/Institute

Universitat de Barcelona. Departament de Matemàtica Aplicada i Anàlisi

Abstract

In this thesis, we present a proof of the meromorphic non-integrability for some problems arising from Celestial Mechanics, as well as a new necessary condition for partial integrability in a wider Hamiltonian setting. First of all, a simpler proof is added to those already existing for the Three-Body Problem with arbitrary masses. The N-Body Problem with equal masses is also proven non-integrable. Second of all, a further strengthening of a prior existing result allows us to detect obstructions to the existence of a single additional first integral for classical Hamiltonians with a homogeneous potential. Third of all, using the aforementioned new result, we have proven the non-existence of an additional integral both for the general Three-Body Problem (hence generalizing, in a certain sense, Bruns'Theorem) and for the equal-mass Problem for N=4,5,6. Fourth of all, finally, we have proven the non-integrability of Hill's problem using the most general instance of the Morales-Ramis Theorem.<br/><br/>A varying degree of theoretical complexity was involved in these results. Indeed, the proofs involving the given instances of the N-Body Problem required nothing but the exploration of the eigenvalues of a given matrix, with the advantage of knowing four of them explicitly. Thus, not all variational equations were needed but those not corresponding to these four eigenvalues -- this is exactly what transpires from the system reduction and subsequent introduction of normal variational equations, as done by S. Ziglin, J. J. Morales-Ruiz, J.-P. Ramis, and others. Hill's Problem, however, required the whole variational system since only thanks to the special functions introduced in the process of variation of constants was it possible to assure the presence of obstructions to integrability.<br/><br/>These results appear to qualify differential Galois theory, and especially a new incipient theory stemming from it, as an amenable setting for the detection of obstructions to total and partial Hamiltonian integrability.

Keywords

Teoria dels Tres Cossos; Mecànica celeste; Teorema Morales-Ramis

Subjects

51 - Mathematics

Knowledge Area

Ciències Experimentals i Matemàtiques

Documents

SSM_THESIS.pdf

808.7Kb

 

Rights

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)