Surface Properties of Hard Fluorinated Amorphous Carbon Films Deposited by Pulsed-DC Discharges

Author

Rubio Roy, Miguel

Director

Bertrán Serra, Enric

Codirector

Molina Mansilla, Ricardo

Date of defense

2010-02-26

ISBN

978-84-694-3634-9

Legal Deposit

B.21927-2011

Pages

185 p.



Department/Institute

Universitat de Barcelona. Departament de Física Aplicada i Òptica

Abstract

New Generation Lithographic (NGL) techniques have been recently investigated in order to overcome the limitations of the long-used UV lithography. Several techniques have been proposed during the last decades, but the continued improvement of UV lithography rendered them useful only for a limited number of applications. More recently, nanoimprint lithography (NIL), invented in the nineties, has been considered as the new NGL due to its extreme simplicity and high resolution. Thermal NIL consists in the deformation of a thermoplastic under pressure and temperature by a nanostructured mold, while UV-NIL consists in the polymerization by UV light of a monomer at room temperature and under a lower pressure than Thermal NIL. One of the main problems of this technique is mold-polymer separation after the process. This problem is especially important for UV-NIL, because the working treatments for Thermal NIL degrade with UV light. In order to assess this problem, thin diamond-like amorphous carbon films (DLC) have been proposed as an alternative to existing treatments for their low chemical reactivity and the possibility to incorporate other chemical elements to further reduce their surface energy. Amorphous carbon exists in different forms, depending on how it is grown. Its mechanical properties range from polymer or graphite-like to almost as resistant as diamond. Besides the excellent mechanical properties of DLC (high hardness, elasticity and wear resistance, and low dry friction), amorphous carbon has also been found useful in applications requiring inert and/or biocompatible surfaces. The project DPI2007-61349 of the Science and Innovation Department of Spain, named “Amorphous carbon molds for micro and nanoimprint of polymeric surfaces”, aims to study the effect of the incorporation of different elements in DLC films for the improvement of NIL molds. This thesis has focused on a series of objectives of this project: - Design and construction of a very high vacuum reactor for deposition processes and ionic etch - Incorporation of fluorine to amorphous carbon films and subseqüent characterization by different surface, mechanical and tribological techniques, as well as spectroscopy for the characterization of the plasma used for the process. - Set up and optimization of a deep ion etch technique with ion beam for the production of molds. - The use of different lithographic techniques oriented to the production in large scale of nanometric patterns. - The exploration of mold coating to increase its durability and antisticking properties in nanoimprint processes. The incorporation of fluorine in DLC films has demonstrated to be useful in the improvement of the properties of NIL molds, because it avoids the use of the current surface treatments, which in addition to being less durable, can react with polymers in presence of UV light. In this thesis, the influence of fluorine incorporation in the films has been studied. Fluorinated amorphous carbon films have been deposited by pulsed-DC plasma enhanced chemical vapor deposition, by progressively replacing methane by trifluoromethane. The experimental device used for deposition has been designed and built to allow a number of multiple processes in the same reactor. The results of the study demonstrate the feasibility of this technique, of easy industrial implementation, for the deposition of this type of coatings. The characterization of both the active species in the plasma and the groups incorporated into the deposited films has helped to understand the process of fluorine incorporation, as well as the change in the surface properties that it entails.


La dificultad de extender el uso de la litografía de luz ultravioleta (UV) a los cada vez más estrictos requisitos de resolución, llevaron desde hace ya un par de décadas, a plantearse la necesidad de buscar técnicas litográficas llamadas de “Nueva Generación” (NGL) que las superasen. Son diversas las técnicas se han ido proponiendo durante estos años, pero la mejora de la litografía UV las ha ido relegando fuera del ámbito industrial. Más recientemente, la litografía por nanoestampación (NIL), ha tomado fuerza como la nueva NGL por su extrema sencillez y por su demostrada elevada resolución. La NIL térmica (T-NIL) consiste en la deformación de un termoplástico bajo presión y temperatura por un molde con estructuras nanométricas, mientras que la NIL por UV (UV-NIL) consiste en la polimerización de un monómero a temperatura ambiente con menor presión ejercida por un molde transparente al UV. Uno de los principales problemas de esta técnica es la separación de molde y polímero, una vez finalizado el proceso. Como alternativa a los tratamientos existentes, se han propuesto los recubrimientos de carbono amorfo tipo diamante (DLC) por su baja reactividad química, elevada dureza y posibilidad de incorporación de otros elementos químicos a fin de reducir su energía superficial. El proyecto del Ministerio de Ciencia e Innovación DPI2007-61349, “Moldes de carbono amorfo para micro y nanograbado de superficies poliméricas”, en el cuál se ha enmarcado esta tesis, pretende estudiar los efectos de la incorporación de diferentes elementos en capas de DLC para la mejora de los moldes de NIL. La incorporación de flúor en capas de DLC ha demostrado recientemente ser útil en la mejora de las propiedades de los moldes de NIL, porque evita el uso de los actuales tratamientos superficiales (por ejemplo siloxanos), los cuales, además de ser menos duraderos, pueden reaccionar con los polímeros en presencia de luz UV. Así, en esta tesis se ha estudiado la influencia de la incorporación de flúor a capas de DLC en la composición y en las propiedades de superfície obtenidas.

Keywords

Thin films; PECVD; Amorphous carbon; DLC; FDLC; Nanoimprint; NIL; Lithography; Pulsed-DC

Subjects

53 - Physics

Knowledge Area

Ciències Experimentals i Matemàtiques

Documents

MRR_THESIS.pdf

14.62Mb

 

Rights

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)