Exploiting distributional semantics for content-based and context-aware recommendation

Author

Codina Busquet, Victor

Director

Ceccaroni, Luigi

Date of defense

2014-06-13

Legal Deposit

B 23061-2014

Pages

151 p.



Department/Institute

Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics

Abstract

During the last decade, the use of recommender systems has been increasingly growing to the point that, nowadays, the success of many well-known services depends on these technologies. Recommenders Systems help people to tackle the choice overload problem by effectively presenting new content adapted to the user¿s preferences. However, current recommendation algorithms commonly suffer from data sparsity, which refers to the incapability of producing acceptable recommendations until a minimum amount of users¿ ratings are available for training the prediction models. This thesis investigates how the distributional semantics of concepts describing the entities of the recommendation space can be exploited to mitigate the data-sparsity problem and improve the prediction accuracy with respect to state-of-the-art recommendation techniques. The fundamental idea behind distributional semantics is that concepts repeatedly co-occurring in the same context or usage tend to be related. In this thesis, we propose and evaluate two novel semantically-enhanced prediction models that address the sparsity-related limitations: (1) a content-based approach, which exploits the distributional semantics of item¿s attributes during item and user-profile matching, and (2) a context-aware recommendation approach that exploits the distributional semantics of contextual conditions during context modeling. We demonstrate in an exhaustive experimental evaluation that the proposed algorithms outperform state-of-the-art ones, especially when data are sparse. Finally, this thesis presents a recommendation framework, which extends the widespread machine learning library Apache Mahout, including all the proposed and evaluated recommendation algorithms as well as a tool for offline evaluation and meta-parameter optimization. The framework has been developed to allow other researchers to reproduce the described evaluation experiments and make new progress on the Recommender Systems field easier


Durant l'última dècada, l'ús dels sistemes de recomanació s'ha vist incrementat fins al punt que, actualment, l'èxit de molts dels serveis web més coneguts depèn en aquesta tecnologia. Els Sistemes de Recomanació ajuden als usuaris a trobar els productes o serveis que més s¿adeqüen als seus interessos i preferències. Una gran limitació dels algoritmes de recomanació actuals és el problema de "data-sparsity", que es refereix a la incapacitat d'aquests sistemes de generar recomanacions precises fins que un cert nombre de votacions d'usuari és disponible per entrenar els models de predicció. Per mitigar aquest problema i millorar així la precisió de predicció de les tècniques de recomanació que conformen l'estat de l'art, en aquesta tesi hem investigat diferents maneres d'aprofitar la semàntica distribucional dels conceptes que descriuen les entitats que conformen l'espai del problema de la recomanació, principalment, els objectes a recomanar i la informació contextual. En la semàntica distribucional s'assumeix la següent hipotesi: conceptes que coincideixen repetidament en el mateix context o ús tendeixen a estar semànticament relacionats. Concretament, en aquesta tesi hem proposat i avaluat dos algoritmes de recomanació que fan ús de la semàntica distribucional per mitigar el problem de "data-sparsity": (1) un model basat en contingut que explota les similituds distribucionals dels atributs que representen els objectes a recomanar durant el càlcul de la correspondència entre els perfils d'usuari i dels objectes; (2) un model de recomanació contextual que fa ús de les similituds distribucionals entre condicions contextuals durant la representació del context. Mitjançant una avaluació experimental exhaustiva dels models de recomanació proposats hem demostrat la seva efectivitat en situacions de falta de dades, confirmant que poden millorar la precisió d'algoritmes que conformen l'estat de l'art. Finalment, aquesta tesi presenta una llibreria pel desenvolupament i avaluació d'algoritmes de recomanació com una extensió de la llibreria de "Machine Learning" Apache Mahout, àmpliament utilitzada en el camp del Machine Learning. La nostra extensió inclou tots els algoritmes de recomanació avaluats en aquesta tesi, així com una eina per facilitar l'avaluació experimental dels algoritmes. Hem desenvolupat aquesta llibreria per facilitar a altres investigadors la reproducció dels experiments realitzats i, per tant, el progrés en el camp dels Sistemes de Recomanació.

Subjects

004 - Computer science

Documents

TVCB1de1.pdf

2.466Mb

 

Rights

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)