Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Morphological analysis is the starting point for the diagnostic approach of more than 80% of the hematological diseases. However, the morphological differentiation among different types of abnormal lymphoid cells in peripheral blood is a difficult task, which requires high experience and skill. Objective values do not exist to define cytological variables, which sometimes results in doubts on the correct cell classification in the daily hospital routine. Automated systems exist which are able to get an automatic preclassification of the normal blood cells, but fail in the automatic recognition of the abnormal lymphoid cells. The general objective of this thesis is to develop a complete methodology to automatically recognize images of normal and reactive lymphocytes, and several types of neoplastic lymphoid cells circulating in peripheral blood in some mature B-cell neoplasms using digital image processing methods. This objective follows two directions: (1) with engineering and mathematical background, transversal methodologies and software tools are developed; and (2) with a view towards the clinical laboratory diagnosis, a system prototype is built and validated, whose input is a set of pathological cell images from individual patients, and whose output is the automatic classification in one of the groups of the different pathologies included in the system. This thesis is the evolution of various works, starting with a discrimination between normal lymphocytes and two types of neoplastic lymphoid cells, and ending with the design of a system for the automatic recognition of normal lymphocytes and five types of neoplastic lymphoid cells. All this work involves the development of a robust segmentation methodology using color clustering, which is able to separate three regions of interest: cell, nucleus and peripheral zone around the cell. A complete lymphoid cell description is developed by extracting features related to size, shape, texture and color. To reduce the complexity of the process, a feature selection is performed using information theory. Then, several classifiers are implemented to automatically recognize different types of lymphoid cells. The best classification results are achieved using support vector machines with radial basis function kernel. The methodology developed, which combines medical, engineering and mathematical backgrounds, is the first step to design a practical hematological diagnosis support tool in the near future.
Los análisis morfológicos son el punto de partida para la orientación diagnóstica en más del 80% de las enfermedades hematológicas. Sin embargo, la clasificación morfológica entre diferentes tipos de células linfoides anormales en la sangre es una tarea difícil que requiere gran experiencia y habilidad. No existen valores objetivos para definir variables citológicas, lo que en ocasiones genera dudas en la correcta clasificación de las células en la práctica diaria en un laboratorio clínico. Existen sistemas automáticos que realizan una preclasificación automática de las células sanguíneas, pero no son capaces de diferenciar automáticamente las células linfoides anormales. El objetivo general de esta tesis es el desarrollo de una metodología completa para el reconocimiento automático de imágenes de linfocitos normales y reactivos, y de varios tipos de células linfoides neoplásicas circulantes en sangre periférica en algunos tipos de neoplasias linfoides B maduras, usando métodos de procesamiento digital de imágenes. Este objetivo sigue dos direcciones: (1) con una orientación propia de la ingeniería y la matemática de soporte, se desarrollan las metodologías transversales y las herramientas de software para su implementación; y (2) con un enfoque orientado al diagnóstico desde el laboratorio clínico, se construye y se valida un prototipo de un sistema cuya entrada es un conjunto de imágenes de células patológicas de pacientes analizados de forma individual, obtenidas mediante microscopía y cámara digital, y cuya salida es la clasificación automática en uno de los grupos de las distintas patologías incluidas en el sistema. Esta tesis es el resultado de la evolución de varios trabajos, comenzando con una discriminación entre linfocitos normales y dos tipos de células linfoides neoplásicas, y terminando con el diseño de un sistema para el reconocimiento automático de linfocitos normales y reactivos, y cinco tipos de células linfoides neoplásicas. Todo este trabajo involucra el desarrollo de una metodología de segmentación robusta usando agrupamiento por color, la cual es capaz de separar tres regiones de interés: la célula, el núcleo y la zona externa alrededor de la célula. Se desarrolla una descripción completa de la célula linfoide mediante la extracción de descriptores relacionados con el tamaño, la forma, la textura y el color. Para reducir la complejidad del proceso, se realiza una selección de descriptores usando teoría de la información. Posteriormente, se implementan varios clasificadores para reconocer automáticamente diferentes tipos de células linfoides. Los mejores resultados de clasificación se logran utilizando máquinas de soporte vectorial con núcleo de base radial. La metodología desarrollada, que combina conocimientos médicos, matemáticos y de ingeniería, es el primer paso para el diseño de una herramienta práctica de soporte al diagnóstico hematológico en un futuro cercano.
004 - Computer science; 616.4 - Pathology of the lymphatic system, haemopoietic (haematopoietic) organs, endocrines