Universitat Ramon Llull. La Salle
This thesis is framed within the field of 3D Character Animation. Virtual characters are used in many Human Computer Interaction applications such as video games and serious games. Within these virtual worlds they move and act in similar ways to humans controlled by users through some form of interface or by artificial intelligence. This work addresses the challenges of developing smoother movements and more natural behaviors driving motions in real-time, intuitively, and accurately. The interaction between virtual characters and intelligent objects will also be explored. With these subjects researched the work will contribute to creating more responsive, expressive, and tangible virtual characters. The navigation within virtual worlds uses locomotion such as walking, running, etc. To achieve maximum realism, actors' movements are captured and used to animate virtual characters. This is the philosophy of motion graphs: a structure that embeds movements where the continuous motion stream is generated from concatenating motion pieces. However, locomotion synthesis, using motion graphs, involves a tradeoff between the number of possible transitions between different kinds of locomotion, and the quality of these, meaning smooth transition between poses. To overcome this drawback, we propose the method of progressive transitions using Body Part Motion Graphs (BPMGs). This method deals with partial movements, and generates specific, synchronized transitions for each body part (group of joints) within a window of time. Therefore, the connectivity within the system is not linked to the similarity between global poses allowing us to find more and better quality transition points while increasing the speed of response and execution of these transitions in contrast to standard motion graphs method. Secondly, beyond getting faster transitions and smoother movements, virtual characters also interact with each other and with users by speaking. This interaction requires the creation of appropriate gestures according to the voice that they reproduced. Gestures are the nonverbal language that accompanies voiced language. The credibility of virtual characters when speaking is linked to the naturalness of their movements in sync with the voice in speech and intonation. Consequently, we analyzed the relationship between gestures, speech, and the performed gestures according to that speech. We defined intensity indicators for both gestures (GSI, Gesture Strength Indicator) and speech (PSI, Pitch Strength Indicator). We studied the relationship in time and intensity of these cues in order to establish synchronicity and intensity rules. Later we adapted the mentioned rules to select the appropriate gestures to the speech input (tagged text from speech signal) in the Gesture Motion Graph (GMG). The evaluation of resulting animations shows the importance of relating the intensity of speech and gestures to generate believable animations beyond time synchronization. Subsequently, we present a system that leads automatic generation of gestures and facial animation from a speech signal: BodySpeech. This system also includes animation improvements such as: increased use of data input, more flexible time synchronization, and new features like editing style of output animations. In addition, facial animation also takes into account speech intonation. Finally, we have moved virtual characters from virtual environments to the physical world in order to explore their interaction possibilities with real objects. To this end, we present AvatARs, virtual characters that have tangible representation and are integrated into reality through augmented reality apps on mobile devices. Users choose a physical object to manipulate in order to control the animation. They can select and configure the animation, which serves as a support for the virtual character represented. Then, we explored the interaction of AvatARs with intelligent physical objects like the Pleo social robot. Pleo is used to assist hospitalized children in therapy or simply for playing. Despite its benefits, there is a lack of emotional relationship and interaction between the children and Pleo which makes children lose interest eventually. This is why we have created a mixed reality scenario where Vleo (AvatAR as Pleo, virtual element) and Pleo (real element) interact naturally. This scenario has been tested and the results conclude that AvatARs enhances children's motivation to play with Pleo, opening a new horizon in the interaction between virtual characters and robots.
Aquesta tesi s'emmarca dins del món de l'animació de personatges virtuals tridimensionals. Els personatges virtuals s'utilitzen en moltes aplicacions d'interacció home màquina, com els videojocs o els serious games, on es mouen i actuen de forma similar als humans dins de mons virtuals, i on són controlats pels usuaris per mitjà d'alguna interfície, o d'altra manera per sistemes intel·ligents. Reptes com aconseguir moviments fluids i comportament natural, controlar en temps real el moviment de manera intuitiva i precisa, i inclús explorar la interacció dels personatges virtuals amb elements físics intel·ligents; són els que es treballen a continuació amb l'objectiu de contribuir en la generació de personatges virtuals responsius, expressius i tangibles. La navegació dins dels mons virtuals fa ús de locomocions com caminar, córrer, etc. Per tal d'aconseguir el màxim de realisme, es capturen i reutilitzen moviments d'actors per animar els personatges virtuals. Així funcionen els motion graphs, una estructura que encapsula moviments i per mitjà de cerques dins d'aquesta, els concatena creant un flux continu. La síntesi de locomocions usant els motion graphs comporta un compromís entre el número de transicions entre les diferents locomocions, i la qualitat d'aquestes (similitud entre les postures a connectar). Per superar aquest inconvenient, proposem el mètode transicions progressives usant Body Part Motion Graphs (BPMGs). Aquest mètode tracta els moviments de manera parcial, i genera transicions específiques i sincronitzades per cada part del cos (grup d'articulacions) dins d'una finestra temporal. Per tant, la conectivitat del sistema no està lligada a la similitud de postures globals, permetent trobar més punts de transició i de més qualitat, i sobretot incrementant la rapidesa en resposta i execució de les transicions respecte als motion graphs estàndards. En segon lloc, més enllà d'aconseguir transicions ràpides i moviments fluids, els personatges virtuals també interaccionen entre ells i amb els usuaris parlant, creant la necessitat de generar moviments apropiats a la veu que reprodueixen. Els gestos formen part del llenguatge no verbal que acostuma a acompanyar a la veu. La credibilitat dels personatges virtuals parlants està lligada a la naturalitat dels seus moviments i a la concordança que aquests tenen amb la veu, sobretot amb l'entonació d'aquesta. Així doncs, hem realitzat l'anàlisi de la relació entre els gestos i la veu, i la conseqüent generació de gestos d'acord a la veu. S'han definit indicadors d'intensitat tant per gestos (GSI, Gesture Strength Indicator) com per la veu (PSI, Pitch Strength Indicator), i s'ha estudiat la relació entre la temporalitat i la intensitat de les dues senyals per establir unes normes de sincronia temporal i d'intensitat. Més endavant es presenta el Gesture Motion Graph (GMG), que selecciona gestos adients a la veu d'entrada (text anotat a partir de la senyal de veu) i les regles esmentades. L'avaluació de les animaciones resultants demostra la importància de relacionar la intensitat per generar animacions cre\"{ibles, més enllà de la sincronització temporal. Posteriorment, presentem un sistema de generació automàtica de gestos i animació facial a partir d'una senyal de veu: BodySpeech. Aquest sistema també inclou millores en l'animació, major reaprofitament de les dades d'entrada i sincronització més flexible, i noves funcionalitats com l'edició de l'estil les animacions de sortida. A més, l'animació facial també té en compte l'entonació de la veu. Finalment, s'han traslladat els personatges virtuals dels entorns virtuals al món físic per tal d'explorar les possibilitats d'interacció amb objectes reals. Per aquest fi, presentem els AvatARs, personatges virtuals que tenen representació tangible i que es visualitzen integrats en la realitat a través d'un dispositiu mòbil gràcies a la realitat augmentada. El control de l'animació es duu a terme per mitjà d'un objecte físic que l'usuari manipula, seleccionant i parametritzant les animacions, i que al mateix temps serveix com a suport per a la representació del personatge virtual. Posteriorment, s'ha explorat la interacció dels AvatARs amb objectes físics intel·ligents com el robot social Pleo. El Pleo s'utilitza per a assistir a nens hospitalitzats en teràpia o simplement per jugar. Tot i els seus beneficis, hi ha una manca de relació emocional i interacció entre els nens i el Pleo que amb el temps fa que els nens perdin l'interès en ell. Així doncs, hem creat un escenari d'interacció mixt on el Vleo (un AvatAR en forma de Pleo; element virtual) i el Pleo (element real) interactuen de manera natural. Aquest escenari s'ha testejat i els resultats conclouen que els AvatARs milloren la motivació per jugar amb el Pleo, obrint un nou horitzó en la interacció dels personatges virtuals amb robots.
Esta tesis se enmarca dentro del mundo de la animación de personajes virtuales tridimensionales. Los personajes virtuales se utilizan en muchas aplicaciones de interacción hombre máquina, como los videojuegos y los serious games, donde dentro de mundo virtuales se mueven y actúan de manera similar a los humanos, y son controlados por usuarios por mediante de alguna interfaz, o de otro modo, por sistemas inteligentes. Retos como conseguir movimientos fluidos y comportamiento natural, controlar en tiempo real el movimiento de manera intuitiva y precisa, y incluso explorar la interacción de los personajes virtuales con elementos físicos inteligentes; son los que se trabajan a continuación con el objetivo de contribuir en la generación de personajes virtuales responsivos, expresivos y tangibles. La navegación dentro de los mundos virtuales hace uso de locomociones como andar, correr, etc. Para conseguir el máximo realismo, se capturan y reutilizan movimientos de actores para animar los personajes virtuales. Así funcionan los motion graphs, una estructura que encapsula movimientos y que por mediante búsquedas en ella, los concatena creando un flujo contínuo. La síntesi de locomociones usando los motion graphs comporta un compromiso entre el número de transiciones entre las distintas locomociones, y la calidad de estas (similitud entre las posturas a conectar). Para superar este inconveniente, proponemos el método transiciones progresivas usando Body Part Motion Graphs (BPMGs). Este método trata los movimientos de manera parcial, y genera transiciones específicas y sincronizadas para cada parte del cuerpo (grupo de articulaciones) dentro de una ventana temporal. Por lo tanto, la conectividad del sistema no está vinculada a la similitud de posturas globales, permitiendo encontrar más puntos de transición y de más calidad, incrementando la rapidez en respuesta y ejecución de las transiciones respeto a los motion graphs estándards. En segundo lugar, más allá de conseguir transiciones rápidas y movimientos fluídos, los personajes virtuales también interaccionan entre ellos y con los usuarios hablando, creando la necesidad de generar movimientos apropiados a la voz que reproducen. Los gestos forman parte del lenguaje no verbal que acostumbra a acompañar a la voz. La credibilidad de los personajes virtuales parlantes está vinculada a la naturalidad de sus movimientos y a la concordancia que estos tienen con la voz, sobretodo con la entonación de esta. Así pues, hemos realizado el análisis de la relación entre los gestos y la voz, y la consecuente generación de gestos de acuerdo a la voz. Se han definido indicadores de intensidad tanto para gestos (GSI, Gesture Strength Indicator) como para la voz (PSI, Pitch Strength Indicator), y se ha estudiado la relación temporal y de intensidad para establecer unas reglas de sincronía temporal y de intensidad. Más adelante se presenta el Gesture Motion Graph (GMG), que selecciona gestos adientes a la voz de entrada (texto etiquetado a partir de la señal de voz) y las normas mencionadas. La evaluación de las animaciones resultantes demuestra la importancia de relacionar la intensidad para generar animaciones creíbles, más allá de la sincronización temporal. Posteriormente, presentamos un sistema de generación automática de gestos y animación facial a partir de una señal de voz: BodySpeech. Este sistema también incluye mejoras en la animación, como un mayor aprovechamiento de los datos de entrada y una sincronización más flexible, y nuevas funcionalidades como la edición del estilo de las animaciones de salida. Además, la animación facial también tiene en cuenta la entonación de la voz. Finalmente, se han trasladado los personajes virtuales de los entornos virtuales al mundo físico para explorar las posibilidades de interacción con objetos reales. Para este fin, presentamos los AvatARs, personajes virtuales que tienen representación tangible y que se visualizan integrados en la realidad a través de un dispositivo móvil gracias a la realidad aumentada. El control de la animación se lleva a cabo mediante un objeto físico que el usuario manipula, seleccionando y configurando las animaciones, y que a su vez sirve como soporte para la representación del personaje. Posteriormente, se ha explorado la interacción de los AvatARs con objetos físicos inteligentes como el robot Pleo. Pleo se utiliza para asistir a niños en terapia o simplemente para jugar. Todo y sus beneficios, hay una falta de relación emocional y interacción entre los niños y Pleo que con el tiempo hace que los niños pierdan el interés. Así pues, hemos creado un escenario de interacción mixto donde Vleo (AvatAR en forma de Pleo; virtual) y Pleo (real) interactúan de manera natural. Este escenario se ha testeado y los resultados concluyen que los AvatARs mejoran la motivación para jugar con Pleo, abriendo un nuevo horizonte en la interacción de los personajes virtuales con robots.
Character animation; Motion capture; Motion synthesis; Motion graphs; Body language; Interactive control of motion; Tangible user interfaces; Augmented reality; Human computer interaction; Human robot interaction
004 - Computer science; 62 - Engineering
Enginyeria i Arquitectura