Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Gone are the days when engineers and scientists conducted most of their experiments empirically. During these decades, actual tests were carried out in order to assess the robustness and reliability of forthcoming product designs and prove theoretical models. With the advent of the computational era, scientific computing has definetely become a feasible solution compared with empirical methods, in terms of effort, cost and reliability. Large and massively parallel computational resources have reduced the simulation execution times and have improved their numerical results due to the refinement of the sampled domain. Several numerical methods coexist for solving the Partial Differential Equations (PDEs). Methods such as the Finite Element (FE) and the Finite Volume (FV) are specially well suited for dealing with problems where unstructured meshes are frequent. Unfortunately, this flexibility is not bestowed for free. These schemes entail higher memory latencies due to the handling of irregular data accesses. Conversely, the Finite Difference (FD) scheme has shown to be an efficient solution for problems where the structured meshes suit the domain requirements. Many scientific areas use this scheme due to its higher performance. This thesis focuses on improving FD schemes to leverage the performance of large scientific computing simulations. Different techniques are proposed such as the Semi-stencil, a novel algorithm that increases the FLOP/Byte ratio for medium- and high-order stencils operators by reducing the accesses and endorsing data reuse. The algorithm is orthogonal and can be combined with techniques such as spatial- or time-blocking, adding further improvement. New trends on Symmetric Multi-Processing (SMP) systems -where tens of cores are replicated on the same die- pose new challenges due to the exacerbation of the memory wall problem. In order to alleviate this issue, our research is focused on different strategies to reduce pressure on the cache hierarchy, particularly when different threads are sharing resources due to Simultaneous Multi-Threading (SMT). Several domain decomposition schedulers for work-load balance are introduced ensuring quasi-optimal results without jeopardizing the overall performance. We combine these schedulers with spatial-blocking and auto-tuning techniques, exploring the parametric space and reducing misses in last level cache. As alternative to brute-force methods used in auto-tuning, where a huge parametric space must be traversed to find a suboptimal candidate, performance models are a feasible solution. Performance models can predict the performance on different architectures, selecting suboptimal parameters almost instantly. In this thesis, we devise a flexible and extensible performance model for stencils. The proposed model is capable of supporting multi- and many-core architectures including complex features such as hardware prefetchers, SMT context and algorithmic optimizations. Our model can be used not only to forecast execution time, but also to make decisions about the best algorithmic parameters. Moreover, it can be included in run-time optimizers to decide the best SMT configuration based on the execution environment. Some industries rely heavily on FD-based techniques for their codes. Nevertheless, many cumbersome aspects arising in industry are still scarcely considered in academia research. In this regard, we have collaborated in the implementation of a FD framework which covers the most important features that an HPC industrial application must include. Some of the node-level optimization techniques devised in this thesis have been included into the framework in order to contribute in the overall application performance. We show results for a couple of strategic applications in industry: an atmospheric transport model that simulates the dispersal of volcanic ash and a seismic imaging model used in Oil & Gas industry to identify hydrocarbon-rich reservoirs.
Atrás quedaron los días en los que ingenieros y científicos realizaban sus experimentos empíricamente. Durante esas décadas, se llevaban a cabo ensayos reales para verificar la robustez y fiabilidad de productos venideros y probar modelos teóricos. Con la llegada de la era computacional, la computación científica se ha convertido en una solución factible comparada con métodos empíricos, en términos de esfuerzo, coste y fiabilidad. Los supercomputadores han reducido el tiempo de las simulaciones y han mejorado los resultados numéricos gracias al refinamiento del dominio. Diversos métodos numéricos coexisten para resolver las Ecuaciones Diferenciales Parciales (EDPs). Métodos como Elementos Finitos (EF) y Volúmenes Finitos (VF) están bien adaptados para tratar problemas donde las mallas no estructuradas son frecuentes. Desafortunadamente, esta flexibilidad no se confiere de forma gratuita. Estos esquemas conllevan latencias más altas debido al acceso irregular de datos. En cambio, el esquema de Diferencias Finitas (DF) ha demostrado ser una solución eficiente cuando las mallas estructuradas se adaptan a los requerimientos. Esta tesis se enfoca en mejorar los esquemas DF para impulsar el rendimiento de las simulaciones en la computación científica. Se proponen diferentes técnicas, como el Semi-stencil, un nuevo algoritmo que incrementa el ratio de FLOP/Byte para operadores de stencil de orden medio y alto reduciendo los accesos y promoviendo el reuso de datos. El algoritmo es ortogonal y puede ser combinado con técnicas como spatial- o time-blocking, añadiendo mejoras adicionales. Las nuevas tendencias hacia sistemas con procesadores multi-simétricos (SMP) -donde decenas de cores son replicados en el mismo procesador- plantean nuevos retos debido a la exacerbación del problema del ancho de memoria. Para paliar este problema, nuestra investigación se centra en estrategias para reducir la presión en la jerarquía de cache, particularmente cuando diversos threads comparten recursos debido a Simultaneous Multi-Threading (SMT). Introducimos diversos planificadores de descomposición de dominios para balancear la carga asegurando resultados casi óptimos sin poner en riesgo el rendimiento global. Combinamos estos planificadores con técnicas de spatial-blocking y auto-tuning, explorando el espacio paramétrico y reduciendo los fallos en la cache de último nivel. Como alternativa a los métodos de fuerza bruta usados en auto-tuning donde un espacio paramétrico se debe recorrer para encontrar un candidato, los modelos de rendimiento son una solución factible. Los modelos de rendimiento pueden predecir el rendimiento en diferentes arquitecturas, seleccionando parámetros suboptimos casi de forma instantánea. En esta tesis, ideamos un modelo de rendimiento para stencils flexible y extensible. El modelo es capaz de soportar arquitecturas multi-core incluyendo características complejas como prefetchers, SMT y optimizaciones algorítmicas. Nuestro modelo puede ser usado no solo para predecir los tiempos de ejecución, sino también para tomar decisiones de los mejores parámetros algorítmicos. Además, puede ser incluido en optimizadores run-time para decidir la mejor configuración SMT. Algunas industrias confían en técnicas DF para sus códigos. Sin embargo, no todos los aspectos que aparecen en la industria han sido sometidos a investigación. En este aspecto, hemos diseñado e implementado desde cero una infraestructura DF que cubre las características más importantes que una aplicación industrial debe incluir. Algunas de las técnicas de optimización propuestas en esta tesis han sido incluidas para contribuir en el rendimiento global a nivel industrial. Mostramos resultados de un par de aplicaciones estratégicas para la industria: un modelo de transporte atmosférico que simula la dispersión de ceniza volcánica y un modelo de imagen sísmica usado en la industria del petroleo y gas para identificar reservas ricas en hidrocarburos
004 - Computer science; 519.1 - Combinatorial analysis. Graph theory