A novel role for glycogenin in the regulation of glycogen metabolism

dc.contributor
Universitat de Barcelona. Departament de Bioquímica i Biologia Molecular (Biologia)
dc.contributor.author
Testoni, Giorgia
dc.date.accessioned
2016-06-27T10:13:49Z
dc.date.available
2018-02-04T01:00:13Z
dc.date.issued
2016-02-05
dc.identifier.uri
http://hdl.handle.net/10803/386407
dc.description
Tesi realitzada a l'Institut de Recerca Biomèdica de Barcelona (IRBB)
dc.description.abstract
Glycogen synthesis is crucial for storing glucose residues that are released in case of energy demand. The mechanism needs to be tightly regulated because a lack or an overload of glycogen can lead to severe systemic problems. Aberrant glycogen storage can lead to certain pathological conditions that are grouped under different types of glycogen storage diseases (GSDs) or glycogenosis. It is generally accepted that glycogenin is an indispensable component of the glycogen synthesis machinery participating as both primer of the glucose chain and enzyme that catalyzes the linkages between the initial residues. Further chain elongation is performed by glycogen synthase (GS) and branches are introduced by glycogen branching enzyme 1 (GBE1). There are two type of interactions between GS and glycogenin: GS interacts directly with the glycosyl-primer chain through an active site during catalysis, and 33 conserved amino acids of glycogenin’s c-terminal domain mediate the protein interaction between GS and glycogenin. Because of these two mechanisms, it is thought that the interaction between GS and glycogenin is crucial for glycogen synthesis. It was generally accepted that the depletion of one of the two proteins was incompatible with glycogen production, except some rare cases of GSD 0 characterized by MGS loss of function. On the other hand glycogenin has been always considered an essential component of the synthesis complex due to its roles as priming molecule for glucose residues and enzymatic activity of self-glucosylation. Rodents, on the other hand, only carry a single Gyg gene. For this characteristic, mus musculus match all the parameters to be a perfect model to study the impact of glycogenin on the entire metabolism. Therefore, we generated a transgenic constitutive Gyg mouse using gene trap technology for the loss of function of the gene. We expected a model completely void of glycogen and possibly incompatible with life. The study of the heterozygous of Gyg would have elucidated the impact to have just one allele of the gene, and it was expected that only half of the glycogen was synthetized. This could have been a very powerful tool for the regulation of glycogen storage especially in those GSDs accumulating high levels of the polysaccharide. To our surprise, Gyg transgenic mouse revealed a completely different picture. Despite the high lethality (90%), surviving Gyg KO embryos and adults show, not only maintain their ability to synthesize glycogen, but also carry the accumulation of high levels of the polysaccharide especially in skeletal and cardiac muscle. Along the study the first clinical case of a patient affected by a mutation in glycogenin1’s catalytic site was reported. Recently, Malfatti et al. reported 7 clinical cases of the newly described GSD XV, in which patients, with GYG1 loss of function, are affected by high glycogen storage in muscle fibers. These results support the hypothesis of a regulatory role of glycogenin in glycogen metabolism.
eng
dc.format.extent
157 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat de Barcelona
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Glicogen
dc.subject
Glucógeno
dc.subject
Glycogen
dc.subject
Metabolisme dels glúcids
dc.subject
Metabolismo de los carbohidratos
dc.subject
Carbohydrate metabolism
dc.subject
Regulació cel·lular
dc.subject
Regulación celular
dc.subject
Cellular control mechanisms
dc.subject.other
Ciències Experimentals i Matemàtiques
dc.title
A novel role for glycogenin in the regulation of glycogen metabolism
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
577
cat
dc.contributor.director
Guinovart, Joan J. (Joan Josep), 1947-
dc.embargo.terms
24 mesos
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

TESTONI_PhD_THESIS.pdf

8.098Mb PDF

This item appears in the following Collection(s)