Techniques For Estimating the Generative Multifactor Model of Returns in a Statistical Approach to the Arbitrage Pricing Theory. Evidence from the Mexican Stock Exchange

dc.contributor
Universitat de Barcelona. Departament d'Econometria, Estadística i Economia Espanyola
dc.contributor.author
Ladrón de Guevara Cortés, Rogelio
dc.date.accessioned
2016-07-06T08:02:42Z
dc.date.available
2016-07-06T08:02:42Z
dc.date.issued
2016-01-29
dc.identifier.uri
http://hdl.handle.net/10803/386545
dc.description.abstract
This dissertation focuses on the estimation of the generative multifactor model of returns on equities, under a statistical approach of the Arbitrage Pricing Theory (APT), in the context of the Mexican Stock Exchange. Therefore, this research takes as frameworks two main issues: (i) the multifactor asset pricing models, specially the statistical risk factors approach, and (ii) the dimension reduction or feature extraction techniques: Principal Component Analysis, Factor Analysis, Independent Component Analysis and Non-linear Principal Component Analysis, utilized to extract the underlying systematic risk factors. The models estimated are tested using two methodologies: (i) capability of reproduction of the observed returns using the estimated generative multifactor model, and (ii) results of the econometric contrast of the APT using the extracted systematic risk factors. Finally, a comparative study among techniques is carried on based on their theoretical properties and the empirical results. According to the above stated and as far as we concerned, this dissertation contributes to financial research by providing empirical evidence of the estimation of the generative multifactor model of returns on equities, extracting statistical underlying risk factors via classic and alternative dimension reduction or feature extraction techniques in the field of finance, in order to test the APT as an asset pricing model, in the context of an emerging financial market such as the Mexican Stock Exchange. In addition, this work presents an unprecedented theoretical and empirical comparative study among Principal Component Analysis, Factor Analysis, Independent Component Analysis and Neural Networks Principal Component Analysis, as techniques to extract systematic risk factors from a stock exchange, analyzing the level of sensitivity of the results in function of the technique carried on. In addition, this dissertation represents a mainly empirical exhaustive study where objective evidence about the Mexican stock market is provided by way of the application of four different techniques for extraction of systematic risk factors, to four datasets, in a test window that ranged from two to nine factors.
eng
dc.format.extent
646 p.
cat
dc.format.mimetype
application/pdf
dc.language.iso
eng
cat
dc.publisher
Universitat de Barcelona
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Models economètrics
cat
dc.subject
Modelos econométricos
cat
dc.subject
Econometric models
cat
dc.subject
Inversions
cat
dc.subject
Inversiones
cat
dc.subject
Investments
cat
dc.subject
Anàlisi multivariable
cat
dc.subject
Análisis multivariante
cat
dc.subject
Multivariate analysis
cat
dc.subject
Intel·ligència artificial
cat
dc.subject
Inteligencia artificial
cat
dc.subject
Artificial intelligence
cat
dc.subject.other
Ciències Jurídiques, Econòmiques i Socials
cat
dc.title
Techniques For Estimating the Generative Multifactor Model of Returns in a Statistical Approach to the Arbitrage Pricing Theory. Evidence from the Mexican Stock Exchange
cat
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
33
cat
dc.contributor.director
Torra Porras, Salvador
dc.contributor.tutor
Torra Porras, Salvador
dc.embargo.terms
cap
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

RLdGC_THESIS.pdf

9.177Mb PDF

Aquest element apareix en la col·lecció o col·leccions següent(s)