dc.contributor
Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
dc.contributor.author
Luna Mota, Carlos
dc.date.accessioned
2016-07-15T05:50:53Z
dc.date.available
2016-07-15T05:50:53Z
dc.date.issued
2016-02-01
dc.identifier.uri
http://hdl.handle.net/10803/387546
dc.description.abstract
For a given cost matrix and a given communication requirement matrix, the OCSTP is defined as finding a spanning tree that minimizes the operational cost of the network. OCST can be used to design of more efficient communication and transportation networks, but appear also, as a subproblem, in hub location and sequence alignment problems.
This thesis studies several mixed integer linear optimization formulations of the OCSTP and proposes a new one. Then, an efficient Branch & Cut algorithm derived from the Benders decomposition of one of such formulations is used to successfully solve medium-sized instances of the OCSTP.
Additionally, two new combinatorial lower bounds, two new heuristic algorithms and a new family of spanning tree neighborhoods based on the Dandelion Code are presented and tested.
eng
dc.format.extent
113 p.
cat
dc.format.mimetype
application/pdf
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/3.0/es/
dc.rights.uri
http://creativecommons.org/licenses/by-nc/3.0/es/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Network design
cat
dc.subject
Spanning trees
cat
dc.subject
Combinatorial optimization
cat
dc.subject.other
Àrees temàtiques de la UPC::Matemàtiques i estadística
cat
dc.title
The Optimum Communication Spanning Tree Problem : properties, models and algorithms
cat
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.director
Fernández, Elena (Fernández Aréizaga)
dc.rights.accessLevel
info:eu-repo/semantics/openAccess