Investigations into the role of translations in abstract algebraic logic

dc.contributor
Universitat de Barcelona. Departament de Lògica, Història i Filosofia de la Ciència
dc.contributor.author
Moraschini, Tommaso
dc.date.accessioned
2016-09-28T11:50:18Z
dc.date.available
2016-09-28T11:50:18Z
dc.date.issued
2016-06-08
dc.identifier.uri
http://hdl.handle.net/10803/394028
dc.description.abstract
This memoir is divided into two parts, devoted to two topics in (ab-stract) algebraic logic. In the first part we develop a hierarchy in which propositional logics “L” are classified according to the definability conditions enjoyed by the truth sets of the matrix semantics Mod* L. More precisely, we focus on conditions belonging to the conceptual framework of the Leibniz hierarchy, meaning that they can be characterized by means of the order-theoretic behaviour of the Leibniz operator. We study the class of logics such that truth is definable in Mod* L by means of universally quantified equations leaving one variable free. Then we study logics for which truth is implicitly definable in Mod* L and show that the injectivity of the Leibniz operator does not transfer in general from theories to filters over arbitrary algebras. Finally we consider an intermediate condition on the truth sets in Mod* L that corresponds to the order-reflection of the Leibniz operator. We conclude this part of the memoir by taking a computational glimpse to the Leibniz and Frege hierarchies. In the second part of this memoir we present an algebraic description of right adjoint functors between generalized quasi-varieties, inspired by the work of McKenzie. This result is achieved by developing a correspondence between the concept of adjunction and a new notion of translation between relative equational consequences. This correspondence provides a general explanation of the correspondence that appears in some well-known trans-lations between logics, e.g., Godel's translation of intuitionistic logic into the gobal modal logic 84 corresponds to the functor that takes an interior algebra to the Heyting algebra of its open elements and Kolmogorov's translation of classical logic into intuitionistic logic corresponds to the functor that takes a Heyting algebra to the Boolean algebra of its regular elements.
dc.format.extent
176 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat de Barcelona
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Lògica algebraica
dc.subject
Lógica algebraica
dc.subject
Algebraic logic
dc.subject
Abstracció
dc.subject
Abstracción
dc.subject
Abstraction
dc.subject
Deducció
dc.subject
Deducción
dc.subject
Deduction (Logic)
dc.subject.other
Ciències Humanes i Socials
dc.title
Investigations into the role of translations in abstract algebraic logic
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
16
dc.contributor.director
Font Llovet, Josep Maria
dc.contributor.director
Jansana, Ramon
dc.contributor.tutor
Jansana, Ramon
dc.embargo.terms
cap
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

TOMMASO_MORASCHINI_PhD_THESIS.pdf

1.266Mb PDF

This item appears in the following Collection(s)