Development and optimization of high-performance computational tools for protein-protein docking

dc.contributor
Universitat de Barcelona. Facultat de Farmàcia
dc.contributor.author
Jiménez García, Brian
dc.date.accessioned
2016-12-21T12:51:20Z
dc.date.available
2017-07-21T05:45:15Z
dc.date.issued
2016-07-21
dc.identifier.uri
http://hdl.handle.net/10803/398790
dc.description.abstract
Computing has pushed a paradigm shift in many disciplines, including structural biology and chemistry. This change has been mainly driven by the increase in performance of computers, the capacity of dealing with huge amounts of experimental and analysis data and the development of new algorithms. Thanks to these advances, our understanding on the chemistry that supports life has increased and it is even more sophisticated that we had never imagined before. Proteins play a major role in nature and are often described as the factories of the cell as they are involved in virtually all important function in living organisms. Unfortunately, our understanding of the function of many proteins is still very poor due to the actual limitations in experimental techniques which, at the moment, they can not provide crystal structure for many protein complexes. The development of computational tools as protein-protein docking methods could help to fill this gap. In this thesis, we have presented a new protein-protein docking method, LightDock, which supports the use of different custom scoring functions and it includes anisotropic normal analysis to model backbone flexibility upon binding process. Second, several interesting web-based tools for the scientific community have been developed, including a web server for protein-protein docking, a web tool for the characterization of protein-protein interfaces and a web server for including SAXS experimental data for a better prediction of protein complexes. Moreover, the optimizations made in the pyDock protocol and the increase in th performance helped our group to score in the 5th position among more than 60 participants in the past two CAPRI editions. Finally, we have designed and compiled the Protein-Protein (version 5.0) and Protein-RNA (version 1.0) docking benchmarks, which are important resources for the community to test and to develop new methods against a reference set of curated cases.
en_US
dc.description.abstract
Gràcies als recents avenços en computació, el nostre coneixement de la química que suporta la vida ha incrementat enormement i ens ha conduït a comprendre que la química de la vida és més sofisticada del que mai haguéssim pensat. Les proteïnes juguen un paper fonamental en aquesta química i són descrites habitualment com a les fàbriques de les cèl·lules. A més a més, les proteïnes estan involucrades en gairebé tots els processos fonamentals en els éssers vius. Malauradament, el nostre coneixement de la funció de moltes proteïnes és encara escaig degut a les limitacions actuals de molts mètodes experimentals, que encara no són capaços de proporcionar-nos estructures de cristall per a molts complexes proteïna-proteïna. El desenvolupament de tècniques i eines informàtiques d’acoblament proteïna-proteïna pot ésser crucial per a ajudar-nos a reduir aquest forat. En aquesta tesis, hem presentat un nou mètode computacional de predicció d’acoblament proteïna-proteïna, LightDock, que és capaç de fer servir diverses funcions energètiques definides per l’usuari i incloure un model de flexibilitat de la cadena principal mitjançant la anàlisis de modes normals. Segon, diverses eines d’interès per a la comunitat científica i basades en tecnologia web han sigut desenvolupades: un servidor web de predicció d’acoblament proteïna-proteïna, una eina online per a caracteritzar les interfícies d’acoblament proteïna-proteïna i una eina web per a incloure dades experimentals de tipus SAXS. A més a més, les optimitzacions fetes al protocol pyDock i la conseqüent millora en rendiment han propiciat que el nostre grup de recerca obtingués la cinquena posició entre més de 60 grups en les dues darreres avaluacions de l’experiment internacional CAPRI. Finalment, hem dissenyat i compilat els banc de proves d’acoblament proteïna-proteïna (versió 5) i proteïna-ARN (versió 1), molt importants per a la comunitat ja que permeten provar i desenvolupar nous mètodes i analitzar-ne el rendiment en aquest marc de referència comú.
en_US
dc.format.extent
260 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat de Barcelona
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by-nd/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Proteïnes
en_US
dc.subject
Proteínas
en_US
dc.subject
Proteins
en_US
dc.subject
Intel·ligència artificial
en_US
dc.subject
Inteligencia artificial
en_US
dc.subject
Artificial intelligence
en_US
dc.subject
Algorismes computacionals
en_US
dc.subject
Algoritmos computacionales
en_US
dc.subject
Computer algorithms
en_US
dc.subject.other
Ciències de la Salut
en_US
dc.title
Development and optimization of high-performance computational tools for protein-protein docking
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
577
en_US
dc.contributor.director
Fernández-Recio, Juan
dc.embargo.terms
12 mesos
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

BJG_THESIS.pdf

37.86Mb PDF

Aquest element apareix en la col·lecció o col·leccions següent(s)