Dolphin and whale: development, evaluation and application of novel bioinformatics tools for metabolite profiling in high throughput 1H-NMR analysis

Author

Gómez Álvarez, Josep

Director

Cañellas Alberich, Nicolau

Date of defense

2016-11-11

Pages

154 p.



Department/Institute

Universitat Rovira i Virgili. Departament d'Enginyeria Electrònica, Elèctrica i Automàtica

Abstract

El perfilat de metabòlits es la tasca més difícil dins l'anàlisi espectral de RMN. El seu objectiu es comprendre els processos biològics que tenen lloc en un moment concret mitjançant la identificació i quantificació dels metabòlits presents en mescles d' RMN complexes. Un espectre de RMN està compost per ressonàncies d'un gran nombre de metabòlits, i aquestes se solen solapar entre elles, canviar de posició depenent del pH de la mostra i poden quedar emmascarades per senyals de macromolècules. Tots aquests problemes compliquen la identificació i quantificació de metabòlits, pel que obtenir un perfil de metabòlits curat en una mostra pot ser un gran repte inclús per usuaris experts. En aquest context, la motivació d'aquesta tesi va néixer amb l'objectiu de donar automatismes i funcions fàcils de fer servir per al perfilat de metabòlits en RMN, millorant la qualitat dels resultats i reduint el temps d'anàlisi. Per fer-ho, es van implementar un conjunt d'algoritmes que van acabar empaquetats en dos programes, Dolphin i Whale.


El perfilado de metabolitos es la tarea más difícil dentro del análisis espectral de RMN. Su objetivo es comprender los procesos biológicos que tienen lugar en un momento concreto a través de la identificación y cuantificación de los metabolitos presentes en mezclas de RMN complejas. Un espectro de RMN está compuesto por resonancias de un gran numero de metabolitos, y éstas a menudo se solapan entre ellas, cambian de posición dependiendo del pH de la muestra y pueden quedar enmascaradas por señales de macromoléculas. Todos estos problemas complican la identificación y cuantificación de metabolitos, por lo que obtener un perfilado de metabolitos curado en una muestra puede ser un gran reto incluso para usuarios expertos. En este contexto, la motivación de esta tesis nació con el objetivo de dar automatismos y funciones fáciles de usar para el perfilado de metabolitos en RMN, mejorando la calidad de los resultados y reduciendo el tiempo de análisis. Para hacerlo, se implementaron un conjunto de algoritmos que acabaron empaquetados en dos programas, Dolphin y Whale.


Metabolite profiling is the most challenging approach in NMR spectral analysis. It aims to comprehend biological processes occurring in a certain moment through identifying and quantifying metabolites present in complex NMR mixtures. An NMR spectrum is composed by resonances of a huge number of metabolites, and these resonances often overlap between them, shift position depending on the sample pH and can be masked by macromolecules signals. All these drawbacks hinder metabolite identification and quantification, so obtaining a cured metabolite profile of a sample can be a very big issue even for expert users. In this context, the motivation of this thesis was born with the aim to provide automatisms and user-friendly interactive functions for NMR metabolite profiling, improving the quality of the results and reducing the time span of the analysis. To do so, several algorisms were implemented and embedded into two software packages, Dolphin and Whale.

Keywords

metabolòmica basada en NM; perfilat de metabòlits automat; eines bioinformàtiques; perfilado de metabolitos auto; herramientas bioinformáticas; NMR-based metabolomics; automated metabolite profil; bioinformatics tools

Subjects

004 - Computer science; 543 - Analytical chemistry; 577 - Biochemistry. Molecular biology. Biophysics; 62 - Engineering

Knowledge Area

Enginyeria i arquitectura

Documents

TESI.pdf

8.062Mb

 

Rights

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)