dc.contributor
Universitat de Barcelona. Departament d'Àlgebra i Geometria
dc.contributor.author
Milione, Piermarco
dc.date.accessioned
2017-04-11T12:03:37Z
dc.date.available
2017-04-11T12:03:37Z
dc.date.issued
2016-01-29
dc.identifier.uri
http://hdl.handle.net/10803/402209
dc.description.abstract
The main purpose of this dissertation is to introduce Shimura curves from the non-Archimedean point of view, paying special attention to those aspects that can make this theory amenable for computations. Despite the fact that the theory of p-adic uniformization of Shimura curves goes back to the 1960s with the results of Cerednik and Drinfeld, only in the last years explicit examples related to these uniformizations have been computed.
The structure of this dissertation is as follows. In Chapter 1 we introduce Shimura curves starting from an indefinite quaternion algebra H over a totally real field F. This is done mostly following the fundamental paper of Shimura [Shi67]. We also give the definitions using the adelic approach of [Shi70b] and [Shi70c]. The point of view we adopt is the arithmetical one, since we try to make clear the link connecting Shimura curves to the arithmetic of quaternion algebras. In this sense, we give evidence of why Shimura curves have to be considered a geometric interpretation of most arithmetical phenomena in quaternion orders. Chapter 2 has the aim of introducing those non-Archimedean objects which appear later in the statements of the theorems of Cerednik and Drinfeld. In Chapter 3 we start the study of fundamental domains in Hp for the action of discrete and cocompact subgroups of PGL2(Qp) arising in the p-adic uniformization of Shimura curves. In Chapter 4 we associate to the p-adic uniformization of the Shimura curve X(DH;N) certain parameters in Hp(Cp) analogous to the complex multiplication parameters in H: we refer to them by p-imaginary multiplication paramters, since they are defined over the unramified quadratic extension of Qp. In the study of these parameters, we follow the p-adic analog of the line adopted in [AB04]. Specifically, we are able to recover these parameters as zeros of certain binary quadratic forms with p-adic coefficients.
en_US
dc.format.extent
191 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat de Barcelona
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Corbes algebraiques
en_US
dc.subject
Curvas algebraicas
en_US
dc.subject
Algebraic curves
en_US
dc.subject
Geometria algebraica
en_US
dc.subject
Geometría algebraica
en_US
dc.subject
Algebraic geometry
en_US
dc.subject.other
Ciències Experimentals i Matemàtiques
en_US
dc.title
Shimura curves and their p-adic uniformization = Corbes de Shimura i les seves uniformitzacions p-àdiques
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.director
Bayer i Isant, Pilar
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess