Quantitative equidistribution of Galois orbits of points of small height on the algebraic torus

dc.contributor
Universitat de Barcelona. Departament de Matemàtiques i Informàtica
dc.contributor.author
Narváez Clauss, Marta
dc.date.accessioned
2017-06-19T09:30:09Z
dc.date.available
2017-06-19T09:30:09Z
dc.date.issued
2016-06-21
dc.identifier.uri
http://hdl.handle.net/10803/403982
dc.description.abstract
El teorema de equidistribución de Bilu establece que, dada una sucesión estricta de puntos en el toro algebraico N-dimensional cuya altura de Weil tiende a cero, las órbitas de Galois de los puntos se equidistribuyen con respecto a la medida de Haar de probabilidad del policírculo unidad. Para el caso unidimensional, versiones cuantitativas de este resultado fueron obtenidas independientemente por Petsche y por Favre y Rivera-Letelier. Se presenta en esta tesis una versión cuantitativa del resultado de Bilu para el caso de dimensión cualquiera. Dado un punto en el toro algebraico de dimensión N de altura de Weil menor que 1, se proporciona una cota para la integral de una determinada función test en P1(C)N con respecto a la medida signada definida como la diferencia de la medida discreta de probabilidad asociada a la órbita de Galois del punto y la medida de probabilidad soportada en el policírculo unidad, donde coincide con la medida de Haar normalizada. Esta cota está dada en términos de una constante que depende únicamente de la función test, de la altura de Weil del punto, y de una noción que generaliza a dimensión superior el grado de un número algebraico. Para la demostración de este resultado se utiliza el análisis de Fourier para la descomposición del problema y, a través de proyecciones, se reduce al caso unidimensional donde aplicamos la versión cuantitativa de Favre y Rivera-Letelier.
en_US
dc.description.abstract
El teorema d’equidistribució de Bilu estableix que, donat una successió de punts en el tor algebraic N-dimensional amb altura de Weil que tendeix cap a zero, les òrbites de Galois dels punts es equidistribueixen respecte de la mesura de Haar de probabilitat del policercle unitat. Per al cas unidimensional, versions quantitatives d’aquest resultat van ser obtingudes independentment per Petsche, i per Favre I Rivera-Letelier. Es presenta en aquesta tesi una versió quantitativa del resultat de Bilu per al cas de dimensió qualsevol. Donat un punt en el tor algebraic de dimensió N d’altura de Weil més petita que 1, es proporciona una fita per a l’integral d’una determinada funció test en P1(C)N respecte de la mesura signada definida com la diferència de la mesura discreta de probabilitat associada a l’òrbita de Galois del punt i la mesura de probabilitat suportada en el policercle unitat, on coincideix amb la mesura de Haar normalitzada. Aquesta fita ve donada en termes d’una constant que depèn únicament de la funció test, de l’altura de Weil del punt, i d’una noció que generalitza a dimensió superior el grau d’un nombre algebraic. Per a la demostració d’aquest resultat s’utilitza l’anàlisi de Fourier per la descomposició del problema i, mitjançant projeccions, es redueix al cas unidimensional on apliquem la versió quantitativa de Favre i Rivera-Letelier.
en_US
dc.format.extent
138 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat de Barcelona
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Geometria algebraica aritmètica
en_US
dc.subject
Geometría algebraica aritmética
en_US
dc.subject
Arithmetical algebraic geometry
en_US
dc.subject
Distribució (Teoria de la probabilitat)
en_US
dc.subject
Distribución (Teoría de probabilidades)
en_US
dc.subject
Distribution (Probability theory)
en_US
dc.subject
Transformacions de Fourier
en_US
dc.subject
Transformaciones de Fourier
en_US
dc.subject
Fourier transformations
en_US
dc.subject.other
Ciències Experimentals i Matemàtiques
en_US
dc.title
Quantitative equidistribution of Galois orbits of points of small height on the algebraic torus
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
51
en_US
dc.contributor.director
D'Andrea, Carlos, 1973-
dc.contributor.director
Sombra, Martín
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

MNC_PhD_THESIS.pdf

1.151Mb PDF

This item appears in the following Collection(s)