Ultra-low power circuits based on tunnel FETs for energy harvesting applications

Author

Cavalheiro, David

Director

Moll, Francesc

Codirector

Valtchev, Stanimir

Date of defense

2017-05-19

Pages

177 p.



Department/Institute

Universitat Politècnica de Catalunya. Departament d'Enginyeria Elèctrica

Abstract

There has been a tremendous evolution in integrated circuit technology in the past decades. With the scaling of complementary metal-oxide-semiconductor (CMOS) transistors, faster, less power consuming and more complex chips per unit area have made possible electronic gadgets to evolve to what we see today. The increasing demand in electronic portability imposes low power consumption as a key metric to analog and digital circuit design. While dynamic power consumption decreases quadratically with the decrease of power supply voltage, leakage power presents a limitation due to the inverse sub-threshold slope (SS). A power supply reduction implies a consequent threshold voltage reduction that, given the fixed SS, cause an exponential increase in leakage current. This poses a limitation in the reduction of power consumption that is inherent to the conventional thermionicbased transistors (MOSFETS and FinFETs). In thermionic-based transistors the SS at room temperature is limited to 60 mV/dec. To circumvent the SS limitation of conventional transistors, devices with different carrier injection mechanisms independent of the thermal (Boltzmann) distribution of mobile charge carriers are required. The Tunnel Field-Effect Transistor (TFET) is presented as the most promising post CMOS-technology due to its non-thermal carrier injection mechanism based on Band-To-Band Tunneling (BTBT) effect. TFETs are known as steep slope devices (SS < 60 mV/dec at room temperature). Large current gain (ION/IOFF > 105) at low voltage operation (sub-0.25 V) and extremely low leakage current have already been demonstrated, placing TFETs as serious candidates for ultra-low power and energy efficient circuit applications. TFETs have been explored mostly in digital circuits and applications. In this thesis, the use of TFETs is explored as an alternative technology also for ultra-low power and voltage conversion and management circuits, suited for weak energy harvesting (EH) sources. As TFETs are designed as reverse biased p-i-n diodes (different doping types in source/drain regions), the particular electrical characteristics under reverse bias conditions require changes in conventional circuit topologies. Rectifiers, charge pumps and power management circuits (PMC) are designed and analyzed with TFETs, evaluating their performance with the proposal of new topologies that extend the voltage/power range of operation compared to current technologies and circuit topologies. TFET-based PMCs for RF and DC EH sources are proposed and limitations (with solutions) of using TFETs in conventional inductor-based boost converters identified.


Ha habido una tremenda evolución en la tecnología de circuitos integrados en las últimas décadas. Con el escalado de transistores de metal-óxido-semiconductor (CMOS), se han hecho posibles chips más rápidos, con menos consumo de energía y más complejos con menos área y esto ha posibilitado la existencia de los aparatos electrónicos que vemos en la actualidad. La creciente demanda de portabilidad implica que el consumo de energía es un indicador clave en el diseño analógico y digital. Mientras que el consumo de potencia dinámica disminuye cuadráticamente con la disminución de la tensión de fuente de alimentación, la potencia de fugas presenta una limitación debido a la pendiente sub-umbral inverso (sub-threshold slope, SS). Una reducción de la tensión de alimentación implica una consecuente reducción de tensión umbral a fin de mantener las prestaciones que, dado el SS fijo, causa un aumento exponencial de la corriente de fuga. Esto plantea una limitación en la reducción de consumo de energía que es inherente a los transistores convencionales basados en inyección de portadores termoiónicos (MOSFETS y FinFETs). En transistores termoiónicos la SS a temperatura ambiente está limitado a 60 mV / dec. Para eludir la limitación SS de transistores convencionales se requieren dispositivos con mecanismos diferentes de inyección de portadores. El transistor túnel de efecto campo (TFET) se presenta como la tecnología más prometedora debido a su mecanismo de inyección de portadores no térmico basado en el efecto Band-To-Band Tunneling (BTBT). Los TFETs se conocen como dispositivos de alta pendiente sub-umbral (SS <60 mV / dec a temperatura ambiente). Han sido ya demostradas ganancias de corriente elevadas (ION / IOFF> 10 ^ 5) en operación de baja tensión (sub-0,25 V) y una corriente de fugas extremadamente bajo, colocando los TFETs como serios candidatos para aplicaciones de circuitos eficientes de ultra-baja potencia y energía. Los TFETs se han explorado sobre todo en circuitos digitales y aplicaciones. En esta tesis, el uso de TFETs se explora como una tecnología alternativa también para circuitos de potencia y de conversión de tensión ultra-bajas, adecuada para fuentes de energía del ambiente, usualmente muy limitadas en magnitud. Debido a que los TFETs están diseñados como diodos p-i-n en polarización inversa (hay diferente tipo de dopaje en las regiones fuente / drenador), sus características eléctricas particulares en condiciones de polarización inversa requieren cambios en las topologías de circuito convencionales. En la tesis, rectificadores, bombas de carga y circuitos de gestión de la energía (PMC) con TFETs se diseñan y analizan, realizando una evaluación de su rendimiento con la propuesta de nuevas topologías que extienden el rango de tensión y potencia de operación en comparación con tecnologías y topologías de circuitos actuales. Se proponen PMCs basados en TFET para fuentes de RF y DC y se identifican las limitaciones (con soluciones) de la utilización de TFETs en convertidores elevadores convencionales basados en inductores.


Hi ha hagut una tremenda evolució en la tecnologia de circuits integrats en les últimes dècades. Amb l'escalat de transistors de metall-òxid-semiconductor (CMOS), s'han fet possibles xips més ràpids, amb menys consum d'energia i més complexos amb menys àrea i això ha possibilitat l'existència dels aparells electrònics que veiem en l'actualitat. La creixent demanda de portabilitat implica que el consum d'energia és un indicador clau en el disseny analògic i digital. Mentre que el consum de potència dinàmica disminueix quadràticament amb la disminució de la tensió de font d'alimentació, la potència de fuites presenta una limitació a causa del pendent sub-llindar invers (sub-threshold slope, SS). Una reducció de la tensió d'alimentació implica una conseqüent reducció de tensió llindar a fi de mantenir les prestacions que, donat el SS fix, causa un augment exponencial del corrent de fuita. Això planteja una limitació en la reducció de consum d'energia que és inherent als transistors convencionals basats en injecció de portadors termoiònics (MOSFETS i FinFETs). En transistors termoiònics la SS a temperatura ambient està limitat a 60 mV / dec. Per eludir la limitació SS de transistors convencionals es requereixen dispositius amb mecanismes diferents d'injecció de portadors. El transistor túnel d'efecte camp (TFET) es presenta com la tecnologia més prometedora a causa del seu mecanisme d'injecció de portadors no tèrmic basat en l'efecte Band-To-Band Tunneling (BTBT). Els TFETs es coneixen com a dispositius d'alt pendent sots-llindar (SS <60 mV / dec a temperatura ambient). Han estat ja demostrats guanys de corrent gran (ION / IOFF> 10 ^ 5) en operació de baixa tensió (sub-0,25 V) i un corrent de fuites extremadament baix, col·locant els TFETs com a seriosos candidats per a aplicacions de circuits eficients d'ultra-baixa potència i energia. Els TFETs s'han explorat sobretot en circuits digitals i aplicacions. En aquesta tesi, l'ús de TFETs s'explora com una tecnologia alternativa també per a circuits de potència i de conversió de tensió ultra-baixes, adequada per a fonts d'energia de l'ambient, usualment molt limitades en magnitud. Degut a que els TFETs estan dissenyats com díodes p-i-n en polarització inversa (hi ha diferent tipus de dopatge en les regions font / drenador), les seves característiques elèctriques particulars en condicions de polarització inversa requereixen canvis en les topologies de circuit convencionals. En la tesi, rectificadors, bombes de càrrega i circuits de gestió de l'energia (PMC) amb TFETs es dissenyen i analitzen, realitzant una avaluació del seu rendiment amb la proposta de noves topologies que estenen el rang de tensió i potència d'operació en comparació amb tecnologies i topologies de circuits actuals. Es proposen PMCs basats en TFET per fonts de RF i DC i s'identifiquen les limitacions (amb solucions) de la utilització de TFETs en convertidors elevadors convencionals basats en inductors.

Subjects

621.3 Electrical engineering

Knowledge Area

Àrees temàtiques de la UPC::Enginyeria elèctrica

Documents

TDMNC1de1.pdf

4.872Mb

 

Rights

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)