Surface modification of zirconia-based bioceramics for orthopedic and dental applications

dc.contributor
Universitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.contributor.author
Flamant, Quentin
dc.date.accessioned
2017-10-20T11:11:45Z
dc.date.available
2017-10-20T11:11:45Z
dc.date.issued
2016-07-20
dc.identifier.uri
http://hdl.handle.net/10803/436899
dc.description.abstract
Debido a sus excelentes propiedades mecánicas y una excelente biocompatibilidad, el uso de las cerámicas de base de circona en aplicaciones dentales y ortopédicas ha crecido rápidamente durante las últimas décadas. Sin embargo, tanto la alúmina como la circona son bioinertes, lo cual dificulta su implantación en contacto directo con el hueso. Además, las infecciones siguen siendo una de las principales causas de fallo de implantes. Para resolver ambos problemas, se requiere un mejor diseño de la superficie: en particular, una topografía adecuada puede promover la osteointegración y limitar la adhesión bacteriana. Por otro lado, la fiabilidad a largo plazo es un asunto crítico para los implantes estructurales, y las cerámicas que contienen circona requieren una atención especial. Como para otras cerámicas, las alteraciones superficiales pueden comprometer sus propiedades mecánicas. Además, la transformación de fase de tetragonal a monoclínica, que les proporciona una tenacidad excepcional, puede ocurrir espontáneamente en presencia de agua, lo cual puede afectar las propiedades del material. La cinética de este fenómeno, conocido como envejecimiento hidrotérmico, es muy sensible a los cambios de procesamiento. Por lo tanto, cualquier modificación de la superficie debe ir acompañada de una evaluación de su impacto en la fiabilidad de los implantes. Basado en estas observaciones, el objetivo de esta tesis fue desarrollar procesos para modificar la superficie de los implantes a base de circona, en particular la topografía, sin comprometer sus propiedades mecánicas y estabilidad hidrotérmica. El esfuerzo de investigación se centró en dos materiales: la circona estabilizada con itria (3Y-TZP), que se utiliza cada vez más para aplicaciones dentales (por ejemplo: coronas, implantes), y la alúmina reforzada con circona (ZTA), que es el estándar actual en ortopedia para la fabricación de componentes cerámicos estructurales. Por lo tanto, este trabajo se puede dividir en dos partes principales. En la primera parte, se llevó a cabo un amplio estudio del ataque de la circona con ácido fluorhídrico (HF). Se demostró que ajustando el tiempo de decapado es posible controlar la rugosidad y la dimensión fractal de la superficie. Además, los resultados indican condiciones adecuadas para incrementar la rugosidad de forma rápida y uniforme, sin comprometer su resistencia mecánica ni tampoco su resistencia al envejecimiento. Basándose en estos hallazgos, se obtuvieron muestras con gradientes de rugosidad mediante inmersión con una velocidad controlada en una solución de ataque. Gracias a este método, que reduce drásticamente los esfuerzos y recursos necesarios para estudiar las interacciones célula-superficie, se realizó un análisis rápido de la influencia de la micro- y nano-topografía inducida por HF en las células madre mesenquimales. Se determinaron correlaciones entre parámetros de rugosidad y morfología celular, destacando la importancia de la optimización de la topografía a múltiples escalas para inducir la respuesta celular deseada. En la segunda parte, una estrategia integrada fue desarrollada para proporcionar propiedades antibacterianas y osteointegrativas a las superficies de ZTA La micro-topografía se controló mediante moldeo por inyección. Mientras tanto, un nuevo procedimiento que implica la disolución selectiva de la circona por HF (ataque selectivo) se utilizó para producir nano-rugosidad y una nanoporosidad superficial interconectada. La utilización potencial de la porosidad para la liberación de antibióticos fue demostrada, y se evidenció que la encapsulación liposomal puede aumentar la cantidad de fármaco cargada. Además, se demostró que el impacto del ataque selectivo sobre las propiedades mecánicas y la estabilidad hidrotermal era limitado. Por lo tanto, la combinación del moldeo por inyección y del ataque selectivo parece prometedora para la fabricación de componentes de ZTA implantables en contacto directo con el hueso
dc.description.abstract
Due to their outstanding mechanical properties and excellent biocompatibility, the use of zirconia-based ceramics in dental and orthopedic applications has grown rapidly over the last decades. However, both alumina and zirconia are bioinert, which hampers their implantation in direct contact with bone. Furthermore, infections remain one of the leading causes of implant failure. To address both issues, an improved surface design is required: in particular, an adequate topography can promote osseointegration and limit bacterial adhesion. On the other hand, long-term reliability is a major concern for load-bearing implants, and zirconia-containing ceramics require special attention. As for other ceramics, surface alterations can impair their mechanical properties. Besides, the tetragonal to monoclinic phase transformation, which accounts for their exceptional toughness, can occur spontaneously in the presence of water, potentially deteriorating the material properties. The kinetics of this phenomenon, known as hydrothermal ageing, are highly sensitive to processing changes. Any surface modification of zirconia-containing ceramics should thus be accompanied by a careful assessment of its impact on implant reliability. Based on these observations, the objective of this thesis was to develop processes to modify the surface of zirconia-based implants, in particular the topography, without compromising their mechanical properties and hydrothermal stability. The research effort focused on two materials of particular interest: yttria-stabilized zirconia (3Y-TZP), which is increasingly used for prosthodontic applications (e.g., crowns, implants), and zirconia toughened alumina (ZTA), which is the current gold Standard in orthopedics for the fabrication of load-bearing ceramic components. Accordingly, this work can be divided into two main parts. In the first part, an extensive study of the hydrofluoric acid (HF) etching of zirconia was carried out. It was shown that monitoring etching time allows controlling the roughness and fractal dimension of the surface. Furthermore, the results indicated suitable processing conditions for a fast and uniform roughening of zirconia components, without compromising substantially their strength and ageing resistance. Based on these findings, zirconia samples with roughness gradients were obtained by immersing specimens into an etching solution with a controlled speed. Thanks to this method, which drastically reduces the efforts and resources necessary to study cell-surface interactions, a rapid screening of the influence of HF-induced micro- and nano-topography on mesenchymal stem cell morphology was conducted. Correlations between roughness parameters and cell morphology were evidenced, highlighting the importance of multiscale optimization of topography to induce the desired cell response. In the second part, an integrated strategy was developed to provide both osseointegrative and antibacterial properties to ZTA surfaces. The micro-topography was controlled by injection molding. Meanwhile a novel process involving the selective dissolution of zirconia by HF (selective etching) was used to produce nano-roughness and interconnected Surface nanoporosity. Potential utilization of the porosity for delivery of antibiotic molecules was demonstrated, and it was shown that liposomal encapsulation could improve drug loading. Furthermore, the impact of selective etching on mechanical properties and hydrothermal stability was shown to be limited. The combination of injection molding and selective etching thus appears promising for fabricating a new generation of ZTA components implantable in direct contact with bone.
dc.format.extent
177 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Zirconia-toughened alumina
dc.subject
Chemical etching
dc.subject
Dental and orthopedic materials
dc.subject
Drug delivery
dc.title
Surface modification of zirconia-based bioceramics for orthopedic and dental applications
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
617
dc.subject.udc
620
dc.contributor.director
Anglada, Marc
dc.embargo.terms
cap
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.pdf
http://mediaserver.csuc.cat/tdx/documents/53/06/16/53061691296062368199494147725837708071/


Documentos

ThQF1de1.pdf

18.56Mb PDF

Este ítem aparece en la(s) siguiente(s) colección(ones)