Low-rank regularization for high-dimensional sparse conjunctive feature spaces in information extraction

dc.contributor
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.contributor.author
Primadhanty, Audi
dc.date.accessioned
2018-02-15T14:21:09Z
dc.date.available
2018-02-15T14:21:09Z
dc.date.issued
2017-11-17
dc.identifier.uri
http://hdl.handle.net/10803/461682
dc.description.abstract
One of the challenges in Natural Language Processing (NLP) is the unstructured nature of texts, in which useful information is not easily identifiable. Information Extraction (IE) aims to alleviate it by enabling automatic extraction of structured information from such text sources. The resulting structured information will facilitate easier querying, organizing, and analyzing of data from texts. In this thesis, we are interested in two IE related tasks: (i) named entity classification and (ii) template filling. Specifically, this thesis examines the problem of learning classifiers of text spans and explore its application for extracting named entities and template slot-fillers. In general, our goal is to construct a method to learn classifiers that: (i) require less supervision, (ii) work well with high-dimensional sparse feature spaces and (iii) are able to classify unseen items (i.e. named entities/slot-fillers not observed in training data). The key idea of our contribution is the utilization of unseen conjunctive features. A conjunctive feature is a combination of features from different feature sets. For example, to classify a phrase, one might have one feature set for the context and another set for the phrase itself. When learning a classifier, only a factor of these conjunctive features will be observed in the training set, leaving the rest (i.e. unseen features) unusable for predicting items in test time. We hypothesize that utilizing such unseen conjunctions is useful to address all of the aspects of the goal. We develop a general regularization framework specifically designed for sparse conjunctive feature spaces. Our strategy is based on employing tensors to represent the conjunctive feature space, and forcing the model to induce low-dimensional embeddings of the feature vectors via low-rank regularization on the tensor parameters. Such compressed representation will help prediction by generalizing to novel examples where most of the conjunctions will be unseen in the training set. We conduct experiments on learning named entity classifiers and template filling, focusing on extracting unseen items. We show that when learning classifiers under minimal supervision, our approach is more effective in controlling model capacity than standard techniques for linear classification.
en_US
dc.description.abstract
Uno de los retos en Procesamiento del Lenguaje Natural (NLP, del inglés Natural Language Processing) es la naturaleza no estructurada del texto, que hace que la información útil y relevante no sea fácilmente identificable. Los métodos de Extracción de Información (IE, del inglés Information Extraction) afrontan este problema mediante la extracción automática de información estructurada de dichos textos. La estructura resultante facilita la búsqueda, la organización y el análisis datos textuales. Esta tesis se centra en dos tareas relacionadas dentro de IE: (i) clasificación de entidades nombradas (NEC, del inglés Named Entity Classification), y (ii) rellenado de plantillas (en inglés, template filling). Concretamente, esta tesis estudia el problema de aprender clasificadores de secuencias textuales y explora su aplicación a la extracción de entidades nombradas y de valores para campos de plantillas. El objetivo general es desarrollar un método para aprender clasificadores que: (i) requieran poca supervisión; (ii) funcionen bien en espacios de características de alta dimensión y dispersión; y (iii) sean capaces de clasificar elementos nunca vistos (por ejemplo entidades o valores de campos que no hayan sido vistos en fase de entrenamiento). La idea principal de nuestra contribución es la utilización de características conjuntivas que no aparecen en el conjunto de entrenamiento. Una característica conjuntiva es una conjunción de características elementales. Por ejemplo, para clasificar la mención de una entidad en una oración, se utilizan características de la mención, del contexto de ésta, y a su vez conjunciones de los dos grupos de características. Cuando se aprende un clasificador en un conjunto de entrenamiento concreto, sólo se observará una fracción de estas características conjuntivas, dejando el resto (es decir, características no vistas) sin ser utilizado para predecir elementos en fase de evaluación y explotación del modelo. Nuestra hipótesis es que la utilización de estas conjunciones nunca vistas pueden ser potencialmente muy útiles, especialmente para reconocer entidades nuevas. Desarrollamos un marco de regularización general específicamente diseñado para espacios de características conjuntivas dispersas. Nuestra estrategia se basa en utilizar tensores para representar el espacio de características conjuntivas y obligar al modelo a inducir "embeddings" de baja dimensión de los vectores de características vía regularización de bajo rango en los parámetros de tensor. Dicha representación comprimida ayudará a la predicción, generalizando a nuevos ejemplos donde la mayoría de las conjunciones no han sido vistas durante la fase de entrenamiento. Presentamos experimentos sobre el aprendizaje de clasificadores de entidades nombradas, y clasificadores de valores en campos de plantillas, centrándonos en la extracción de elementos no vistos. Demostramos que al aprender los clasificadores bajo mínima supervisión, nuestro enfoque es más efectivo en el control de la capacidad del modelo que las técnicas estándar para la clasificación lineal
en_US
dc.format.extent
100 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat Politècnica de Catalunya
dc.relation
Nota: Versió amb dues seccions retallades, per drets de l'editor
en_US
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by-nc-sa/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject.other
Àrees temàtiques de la UPC::Informàtica
en_US
dc.title
Low-rank regularization for high-dimensional sparse conjunctive feature spaces in information extraction
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
004
en_US
dc.contributor.director
Carreras Pérez, Xavier
dc.contributor.director
Quattoni, Ariadna Julieta
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

TAP1de1.pdf

1.147Mb PDF

This item appears in the following Collection(s)