Images of Galois representations and p-adic models of Shimura curves

dc.contributor
Universitat de Barcelona. Departament d'Àlgebra i Geometria
dc.contributor.author
Amorós Carafí, Laia
dc.date.accessioned
2018-04-06T08:01:55Z
dc.date.available
2018-04-06T08:01:55Z
dc.date.issued
2016-12-16
dc.identifier.uri
http://hdl.handle.net/10803/471452
dc.description.abstract
The Langlands program is a vast and unifying network of conjectures that connect the world of automorphic representations of reductive algebraic groups and the world of Galois representations. These conjectures associate an automorphic representation of a reductive algebraic group to every n-dimensional representation of a Galois group, and the other way around: they attach a Galois representation to any automorphic representation of a reductive algebraic group. Moreover, these correspondences are done in such a way that the automorphic L-functions attached to the two objects coincide. The theory of modular forms is a field of complex analysis whose main importance lies on its connections and applications to number theory. We will make use, on the one hand, of the arithmetic properties of modular forms to study certain Galois representations and their number theoretic meaning. On the other hand, we will use the geometric meaning of these complex analytic functions to study a natural generalization of modular curves. A modular curve is a geometric object that parametrizes isomorphism classes of elliptic curves together with some additional structure depending on some modular subgroup. The generalization that we will be interested in are the so called Shimura curves. We will be particularly interested in their p-adic models. In this thesis, we treat two different topics, one in each side of the Langlands program. In the Galois representations' side, we are interested in Galois representations that take values in local Hecke algebras attached to modular forms over finite fields. In the automorphic forms' side, we are interested in Shimura curves: we develop some arithmetic results in definite quaternion algebras and give some results about Mumford curves covering p-adic Shimura curves.
dc.format.extent
130 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat de Barcelona
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Geometria algebraica aritmètica
dc.subject
Geometría algebraica aritmética
dc.subject
Arithmetical algebraic geometry
dc.subject
Àlgebres de Hecke
dc.subject
Álgebras de Hecke
dc.subject
Hecke algebras
dc.subject
Formes modulars
dc.subject
Formas modulares
dc.subject
Modular forms
dc.subject
Camps finits (Àlgebra)
dc.subject
Cuerpos modulares (Álgebra)
dc.subject
Finite fields (Algebra)
dc.subject
Varietats de Shimura
dc.subject
Variedades de Shimura
dc.subject
Shimura varieties
dc.subject
Teoria algebraica de nombres
dc.subject
Teoría algebraica de números
dc.subject
Algebraic number theory
dc.subject.other
Ciències Experimentals i Matemàtiques
dc.title
Images of Galois representations and p-adic models of Shimura curves
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
51
dc.contributor.director
Bayer i Isant, Pilar
dc.contributor.director
Wiese, Gabor
dc.contributor.tutor
Bayer i Isant, Pilar
dc.embargo.terms
cap
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documentos

LAC_PhD_THESIS.pdf

2.242Mb PDF

Este ítem aparece en la(s) siguiente(s) colección(ones)