dc.contributor
Universitat Rovira i Virgili. Departament de Filologies Romàniques
dc.contributor.author
Krassovitskiy, Alexander
dc.date.accessioned
2011-10-31T09:40:35Z
dc.date.available
2011-10-31T09:40:35Z
dc.date.issued
2011-09-02
dc.identifier.uri
http://hdl.handle.net/10803/48631
dc.description.abstract
SISTEMAS DE INSERCIÓN Y BORRADO: COMPLEJIDAD Y
CAPACIDAD DE MODELADO
El objetivo central de la tesis es el estudio de los sistemas de inserción y borrado y su
capacidad computacional. Más concretamente, estudiamos algunos modelos de
generación de lenguaje que usan operaciones de reescritura de dos cadenas. También
consideramos una variante distribuida de los sistemas de inserción y borrado en el
sentido de que las reglas se separan entre un número finito de nodos de un grafo.
Estos sistemas se denominan sistemas controlados mediante grafo, y aparecen en
muchas áreas de la Informática, jugando un papel muy importante en los lenguajes
formales, la lingüística y la bio-informática. Estudiamos la decidibilidad/
universalidad de nuestros modelos mediante la variación de los parámetros de tamaño
del vector. Concretamente, damos respuesta a la cuestión más importante
concerniente a la expresividad de la capacidad computacional: si nuestro modelo es
equivalente a una máquina de Turing o no. Abordamos sistemáticamente las
cuestiones sobre los tamaños mínimos de los sistemas con y sin control de grafo.
spa
dc.description.abstract
COMPLEXITY AND MODELING POWER OF
INSERTION-DELETION SYSTEMS
The central object of the thesis are insertion-deletion systems and their computational
power. More specifically, we study language generating models that use two string
rewriting operations: contextual insertion and contextual deletion, and their
extensions. We also consider a distributed variant of insertion-deletion systems in the
sense that rules are separated among a finite number of nodes of a graph. Such
systems are refereed as graph-controlled systems. These systems appear in many
areas of Computer Science and they play an important role in formal languages,
linguistics, and bio-informatics. We vary the parameters of the vector of size of
insertion-deletion systems and we study decidability/universality of obtained models.
More precisely, we answer the most important questions regarding the expressiveness
of the computational model: whether our model is Turing equivalent or not. We
systematically approach the questions about the minimal sizes of the insertiondeletion
systems with and without the graph-control.
eng
dc.format.mimetype
application/pdf
dc.publisher
Universitat Rovira i Virgili
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Complexity and modeling power
dc.title
Complexity and modeling power of insertion-deletion systems
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.authoremail
alexander.Krassovitskiy@urv.net
dc.contributor.director
Yurii Rogozhim
dc.contributor.codirector
Verlan, Sergey
dc.contributor.tutor
Bel Enguix, Gemma
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.dl
T.1370-2011