Connectivity of Julia sets of transcendental meromorphic functions

dc.contributor
Universitat de Barcelona. Departament de Matemàtica Aplicada i Anàlisi
dc.contributor.author
Taixés i Ventosa, Jordi
dc.date.accessioned
2011-11-07T11:20:34Z
dc.date.available
2011-11-07T11:20:34Z
dc.date.issued
2011-09-22
dc.identifier.uri
http://hdl.handle.net/10803/50391
dc.description.abstract
Newton's method associated to a complex holomorphic function f is defined by the dynamical system Nf(z) = z – f(z) / f'(z). As a root-finding algorithm, a natural question is to understand the dynamics of Nf about its fixed points, as they correspond to the roots of the function f. In other words, we would like to understand the basins of attraction of Nf, i.e., the sets of points that converge to a root of f under the iteration of Nf. Basins of attraction are actually just one type of stable component or component of the Fatou set, defined as the set of points for which the family of iterates is defined and normal locally. The Julia set or set of chaos is its complement (taken on the Riemann sphere). The study of the topology of these two sets is key in Holomorphic Dynamics. In 1990, Mitsuhiro Shishikura proved that, for any non-constant polynomial P, the Julia set of NP is connected. In fact, he obtained this result as a consequence of a much more general theorem for rational functions: If the Julia set of a rational function R is disconnected, then R has at least two weakly repelling fixed points. With the final goal of proving the transcendental version of this theorem, in this Thesis we see that: If a transcendental meromorphic function f has either a multiply-connected attractive basin, or a multiply-connected parabolic basin, or a multiply-connected Fatou component with simply-connected image, then f has at least one weakly repelling fixed point. Our proof for this result is mainly based in two techniques: quasiconformal surgery and the study of the existence of virtually repelling fixed points. We conclude the Thesis with an idea of the strategy for the proof of the case of Herman rings, as well as some ideas for the case of Baker domains, which is left as a subject for a future project.
eng
dc.format.extent
113 p.
cat
dc.format.mimetype
application/pdf
dc.language.iso
eng
cat
dc.publisher
Universitat de Barcelona
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Connectivitat
cat
dc.subject
Meromorfa
cat
dc.subject
Trascendent
cat
dc.subject
Conjunt de Julia
cat
dc.subject
Dinàmica complexa
cat
dc.subject
Sistemes dinàmics
cat
dc.subject
Holomorf
cat
dc.subject
Connectivity
cat
dc.subject
Meromorphic
cat
dc.subject
Transcendental
cat
dc.subject
Julia set
cat
dc.subject
Complex dynamics
cat
dc.subject
Dynamical systems
cat
dc.subject
Holomorphic
cat
dc.subject.other
Ciències Experimentals i Matemàtiques
cat
dc.title
Connectivity of Julia sets of transcendental meromorphic functions
cat
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
51
cat
dc.contributor.director
Fagella Rabionet, Núria
dc.contributor.director
Jarque Ribera, Xavier
dc.embargo.terms
cap
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.dl
B. 39392-2011
cat


Documents

JTV_THESIS.pdf

3.294Mb PDF

This item appears in the following Collection(s)