Study and design of classification algorithms for diagnosis and prognosis of failures in wind turbines from SCADA data

dc.contributor
Universitat de Vic - Universitat Central de Catalunya. Departament d'Enginyeries
dc.contributor.author
Blanco Martínez, Alejandro
dc.date.accessioned
2018-06-28T10:05:34Z
dc.date.available
2018-06-28T10:05:34Z
dc.date.issued
2018-06-18
dc.identifier.uri
http://hdl.handle.net/10803/586097
dc.description.abstract
Actualmente las operaciones de mantenimiento preventivo de los parques eólicos se soportan sobre técnicas de Machine Learning para reducir los costes de las paradas no planificadas. Por eso se necesita una predicción de fallos con cierta anticipación que funcione sobre los datos de SCADA. Estos datos necesitan ser procesados en distintas etapas descritas en esta tesis, con resultados publicados en cada una de ellas. En una primera fase se limpian los valores extremos (Outliers), indicando cómo deben ser tratados para no eliminar la información sobre los fallos. En una segunda, las distintas variables son seleccionadas por diversos métodos de selección de características (Feature Selection). En la misma fase, se compara el uso de variables transformadas mediante Autoencoders. En una tercera se construye el modelo, mediante métodos supervisados y no supervisados, obteniendo resultados destacables con Self Organizing Maps (SOM) y con técnicas de Deep Learning incluyendo redes ANN y LSTM multicapa.
dc.description.abstract
Nowadays, the preventive maintenance operations of wind farms are supported by Machine Learning techniques to reduce the costs of unplanned downtime. That is why an early fault prediction that works with SCADA data is required. These data need to be processed at different stages described in this thesis, with results published in each of them. In a first phase, the extreme values (Outliers) are cleaned, indicating how they should address in order not to eliminate the information about the faults. In a second step, the different variables are selected by different Feature Selection methods. At the same step, the use of variables transformed by Autoencoders is also compared. In a third, the model is constructed using Supervised and Unsupervised methods, obtaining outstanding results with Self Organizing Maps (SOM) and Deep Learning techniques including ANN and LSTM multi-layer networks.
dc.description.abstract
Actualment les operacions de manteniment preventiu dels parcs eòlics se suporten sobre tècniques de Machine Learning per a reduir els costos de les parades no planificades. Per això es necessita una predicció de fallades amb certa anticipació que funcioni sobre les dades de SCADA. Aquestes dades necessiten ser processades en diferents etapes descrites a aquesta tesi, amb resultats publicats en cadascuna d'elles. En una primera fase es netegen els valors extrems (Outliers), indicant com han de ser tractats per no eliminar la informació sobre les fallades. En una segona, les diferents variables són seleccionades per diversos mètodes de selecció de característiques (Feature Selection). En la mateixa fase, es compara l'ús de variables transformades mitjançant Autoencoders. En una tercera es construeix el model, mitjançant mètodes supervisats i no supervisats, obtenint resultats destacables amb Self Organizing Maps (SOM) i amb tècniques de Deep Learning incloent xarxes ANN i LSTM multicapa.
dc.format.extent
138 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat de Vic - Universitat Central de Catalunya
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
SOM
dc.subject
Deep Learning
dc.subject
LSTM
dc.subject
Autoencoder
dc.subject
Turbina eòlica
dc.subject
Selecció de variables
dc.subject
Valors extrems
dc.subject
Clusterització
dc.subject.other
Enginyeria
dc.title
Study and design of classification algorithms for diagnosis and prognosis of failures in wind turbines from SCADA data
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
62
dc.contributor.director
Solé-Casals, Jordi
dc.contributor.director
Puig, Pere
dc.contributor.director
Cusidó Roura, Jordi
dc.embargo.terms
cap
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

tesdoc_a2018_blanco_alejandro_study.pdf

23.30Mb PDF

Aquest element apareix en la col·lecció o col·leccions següent(s)