Modelització multiescala del paper de l’entorn en processos de transferència de càrrega i d’energia en biomolècules

Author

Corbella Morató, Marina

Director

Curutchet Barat, Carles E.

Luque Garriga, F. Xavier

Tutor

Luque Garriga, F. Xavier

Date of defense

2018-07-25

Pages

252 p.



Department/Institute

Universitat de Barcelona. Departament de Farmàcia i Tecnologia farmacèutica i Físicoquímica

Abstract

Aquesta tesi doctoral es centra en l’aplicació d’eines de la química teòrica i computacional a fi de comprendre l’impacte de l’entorn en i) processos de transferència d’energia electrònica (EET) en complexes pigment-­‐proteïna fotosintètics i ii) processos de transferència de càrrega (CT) en l’ADN. Comprendre la complexa interrelació entre l’estructura de l’entorn biològic (proteïna, àcid nucleic, solvent) i la dinàmica ultrarràpida d’aquests processos és de gran interès, amb aplicacions en el desenvolupament de materials orgànics fotovoltaics o de sensors per monitoritzar la reparació de l’ADN. La multitud d’escales de temps i d’espai que caracteritzen aquests processos en biomolècules constitueixen però un repte important per les tècniques computacionals actuals. En aquesta tesi es combinen simulacions de dinàmica molecular (MD) amb càlculs multiescala de mecànica quàntica/mecànica molecular (QM/MM) a fi d’entendre diversos aspectes de la interrelació entre estructura i dinàmica d’EET/CT tant en complexes fotosintètics d’algues criptofícies com en l’ADN. En primer lloc, els resultats mostren com l’entorn local modula de forma significativa la densitat espectral d’acoblament vibrònic – i per tant la dinàmica d’EET – en la biliproteïna antena PE545 d’algues criptofícies. També resolen la incertesa relacionada amb l’estat de protonació dels pigments bilina que caracteritzen els complexes fotosintètics en criptòfits. Finalment, es presenta un model de les energies relatives dels pigments en les biliproteïnes PC577, PC612, PC630 i PC645, aspecte de gran importància ja que determina les rutes d’EET i per tant la seva funció biològica. Respecte a processos CT en ADN, la tesi estableix el mecanisme mitjançant el qual interaccions ADN/proteïna poden tant inhibir com accelerar el procés de transferència, depenent de la natura de l’aminoàcid inserit en la doble hèlix. A més, també estableix l’impacte de llocs abàsics, lesions molt comuns caracteritzades per l’absència d’una nucleobase, en la dinàmica de CT, depenent si la base desaparellada adopta una conformació a l’interior o exterior de la doble hèlix.


This thesis is focused on the application of theoretical and computational chemistry tools to understand the impact of the environment on i) electronic energy transfer (EET) processes in photosynthetic pigment-­‐protein complexes and ii) charge transfer (CT) processes in DNA. Understanding the complex interrelation between the structure of the biological environment (protein, nucleic acid, solvent) and the ultrafast dynamics of these processes is of current interest, with applications in the development of photovoltaic organic materials or sensors to monitor DNA repair. The multiple time and space scales that characterize these processes in biomolecules represent however an important challenge for current computational techniques. In this thesis we combine molecular dynamics (MD) simulations with multiscale quantum mechanics/molecular mechanics (QM/MM) calculations in order to understand several aspects of the interrelation between structure and EET/CT dynamics in both photosynthetic complexes of cryptophyte algae and in DNA. First, our results show how the environment significantly modulates the spectral density of vibronic coupling – and thus EET dynamics – in the PE545 biliprotein of cryptophyte algae. We also solve the uncertainty related to the protonation state of bilin pigments that characterize cryptophyte antenna complexes. Finally, we present a model of the relative energies for the pigments in biliproteins PC577, PC612, PC630 and PC645, an important issue that determines EET pathways and therefore biological function. Regarding CT processes in DNA, the thesis establishes the mechanism by which DNA/protein interactions can both inhibit or boost the transfer process, depending on the nature of the amino acid inserted in the double helix. In addition, it establishes the impact of abasic sites, common lesions characterized by the absence of a nucleobase, in the CT dynamics, depending on whether the unpaired base adopts an intra or extrahelical conformation.

Keywords

Química farmacèutica; Química farmacéutica; Pharmaceutical chemistry; Transferència d'energia; Transferencia de energía; Energy transfer; Transferència de càrrega; Transferencia de carga; Charge transfer; ADN; DNA; Fotosíntesi; Fotosíntesis; Photosynthesis

Subjects

615 - Pharmacology. Therapeutics. Toxicology

Knowledge Area

Ciències de la Salut

Documents

MCM_TESI.pdf

61.47Mb

 

Rights

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)