Multimodal ventricular tachycardia analysis : towards the accurate parametrization of predictive HPC electrophysiological computational models

Author

López-Yunta, Mariña

Director

Vázquez, Mariano

Codirector

Aguado-Sierra, Jazmín

Date of defense

2018-07-30

Pages

159 p.



Department/Institute

Universitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística

Abstract

After a myocardial infarction, the affected areas of the cardiac tissue suffer changes in their electrical and mechanical properties. This post-infarction scar tissue has been related with a particular type of arrhythmia: ventricular tachycardia (VT). A thorough study on the experimental data acquired with clinical tools is presented in this thesis with the objective of defining the limitations of the clinical data towards predictive computational models. Computational models have a large potential as predictive tools for VT, but the verification, validation and uncertain quantification of the numerical results is required before they can be employed as a clinical tool. Swine experimental data from an invasive electrophysiological study and Cardiac Magnetic Resonance imaging is processed to obtain accurate characterizations of the post-infarction scar. Based on the results, the limitation of each technique is described. Furthermore, the volume of the scar is evaluated as marker for post-infarction VT induction mechanisms. A control case from the animal experimental protocol is employed to build a simulation scenario in which biventricular simulations are done using a detailed cell model adapted to the ionic currents present in the swine myocytes. The uncertainty of the model derived from diffusion and fibre orientation is quantified. Finally, the recovery of the model to an extrastimulus is compared to experimental data by computationally reproducing an S1-S2 protocol. Results from the cardiac computational model show that the propagation wave patterns from numerical results match the one described by the experimental activation maps if the DTI fibre orientations are used. The electrophysiological activation is sensitive to fibre orientation. Therefore simulations including the fibre orientations from DTI are able to reproduce a physiological wave propagation pattern. The diffusion coefficients highly determine the conduction velocity. The S1-S2 protocol produced restitution curves that have similar slopes to the experimental curves. This work is a first step forward towards validation of cardiac electrophysiology simulations. Future work will address the limitations about optimal parametrization of the O'Hara-Rudy cell model to fully validate the cardiac computational model for prediction of VT inducibility.


Tras un infarto de miocardio, las zonas de tejido cardiaco afectadas sufren cambios en sus propiedades eléctricas y mecánicas. Este substrato miocárdico se ha relacionado con la taquicardia ventricular (TV), un tipo de arritmia. En esta tesis se presenta un estudio exhaustivo de los datos experimentales adquiridos con protocolos clínicos con el objetivo de definir las limitaciones de los datos clínicos antes de avanzar hacia modelos computacionales. Los modelos computacionales tienen un gran potencial como herramientas para la predicción de TV, pero es necesaria su verificación, validación y la cuantificación de la incertidumbre en los resultados numéricos antes de poderlos emplear como herramientas clínicas. La caracterización precisa del sustrato miocárdico, cicatriz, se realiza mediante el procesado de los datos experimentales porcinos obtenidos del estudio electrofisiológico invasivo y la resonancia magnética cardiaca. Como consecuencia, se describen las limitaciones de cada técnica. Ademas, se estudia si el volumen da la cicatriz puede actuar como indicador de la aparición de VT. El escenario de simulación para los modelos computacionales biventriulares se construye a partir de los datos experimentales de un caso control incluido en el protocolo experimental. En el, se realizan simulaciones electrofisiológicas empleando un modelo celular detallado adaptado a las propiedades de las corrientes iónicas en los miocitos de los cerdos. Se cuantifica la incertidumbre del modelo generada por la difusión y la orientación de las fibras. Por ultimo, se compara la recuperación del modelo a un extraestímulo con datas experimentales mediante la simulación de un protocolo S1-S2. Los resultado numéricos obtenidos muestran que los patrones de propagación de la onda de las simulación cardiaca coinciden con los descritos por los mapas de activación experimentales si la fibras incluidas en el modelo corresponden a los datos de DTI. El modelo de activación es sensible a la orientación de fibras impuesta. Las simulaciones incluyendo la orientación de fibras de DTI es capaz de reproducir los patrones fisiológicos de la onda de propagación eléctrica en ambos ventrículos. El velocidad de conducción obtenida es muy dependiente del coeficiente de difusión impuesto. El protocolo S1-S2 protocolo genera curvas de restitución con pendientes simulares a las curvas experimentales. Esta tesis es un primer paso hacia la validación de las simulaciones electrofisiológicas cardiacas. En el futuro, se mejoraran las limitaciones relacionadas con una optima parametrización del modelo celular de O?Hara-Rudy para validar por completo el modelo computacional cardiaco para avanzar hacia la predicción de la predicción de VT.

Subjects

004 - Computer science; 616.1 - Pathology of the circulatory system, blood vessels. Cardiovascular complaints

Knowledge Area

Àrees temàtiques de la UPC::Informàtica

Documents

TMLY1de1.pdf

3.227Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/

This item appears in the following Collection(s)