dc.contributor
Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
dc.contributor.author
Rebillas Loredo, Victoria
dc.date.accessioned
2019-01-08T14:33:22Z
dc.date.available
2019-01-08T14:33:22Z
dc.date.issued
2018-12-19
dc.identifier.uri
http://hdl.handle.net/10803/664634
dc.description.abstract
In real-world logistic operations there are a lot of situations that can be exploited to get better operational strategies. It is important to study these new alternatives, because they can represent significant cost reductions to the companies working with physical distribution. This thesis defines the Multi-Depot Vehicle Routing Problem with Vehicle Interchanges (MDVRPVI). In this problem, both vehicle capacities and duration limits on the routes of the drivers are imposed. To favor a better utilization of the available capacities and working times, it is allowed to combine pairs of routes at predefined interchange locations. The objective of this thesis is to analyze and solve the Multi-Depot Vehicle Routing Problem adding the possibility to interchange vehicles at predefined points. With this strategy, it is possible to reduce the total costs and the number of used routes with respect to the classical approach: The Multi-Depot Vehicle Routing Problem (MDVRP). It should be noted that the MDVRP is more challenging and sophisticated than the single-depot Vehicle Routing Problem (VRP). Besides, most exact algorithms for solving the classical VRP are difficult to adapt in order to solve the MDVRP (Montoya-Torres et al., 2015). From the complexity point of view, the MDVRPVI is NP-Hard, since it is an extension of the classical problem, which is already NP-Hard. We present a tight bound on the costs savings that can be attained allowing interchanges. Three integer programming formulations are proposed based on the classical vehicle-flow formulations of the MDVRP. One of these formulations was solved with a branch-and-bound algorithm, and the other two formulations, with branch-and-cut algorithms. Due to its great symmetry, the first formulation is only able to solve small instances. To increase the dimension of the instances used, we proposed two additional formulations that require one or more families of constraints of exponential size. In order to solve these formulations, we had to design and implement specific branch-and-cut algorithms. For these algorithms we implemented specific separation methods for constraints that had not previously been used in other routing problems. The computational experience performed evidences the routing savings compared with the solutions obtained with the classical approach and allows to compare the efficacy of the three solution methods proposed.
dc.description.abstract
En les operacions logístiques del món real es donen situacions que poden ser explotades per obtenir millors estratègies operacionals. És molt important estudiar aquestes noves alternatives, perquè poden representar una reducció significativa de costos per a les companyies que treballen en distribució de mercaderies. En aquesta tesi es defineix el Problema d'Enrutament de Vehicles amb Múltiples Dipòsits i Intercanvi de Vehicles (MDVRPVI). En aquest problema, es consideren tant la capacitat dels vehicles com els límits de duració de les rutes dels conductors. Per tal de millorar la utilització de les capacitats i temps de treball disponibles, es permet combinar parelles de rutes en punts d'intercanvi predefinits. L'objectiu d'aquesta tesi és analitzar i resoldre el problema d'Enrutament de Vehicles amb Múltiples Dipòsits, on es permet l'intercanvi de vehicles. Amb aquesta estratègia, és possible reduir els costos totals i el nombre de les rutes utilitzades respecte l'enfocament clàssic: el problema d'Enrutament de Vehicles amb Múltiples Dipòsits (MDVRP). Cal assenyalar que el MDRVP és més desafiant i sofisticat que el problema d'Enrutament de Vehicles d'un únic dipòsit (VRP). A més, molts algoritmes exactes per resoldre el VRP clàssic son complicats d'adaptar per resoldre el MDVRP (Montoya-Torres et al., 2015). Des del punt de vista de la complexitat, el MDRVPVI és NP-Dur, perquè és una extensió del problema clàssic, que també ho és. Presentem una cota ajustada de l'estalvi en els costos de distribució que es pot obtenir permetent els intercanvis. Es proposen tres formulacions de programació sencera basades en la formulació clàssica “vehicle-flow” del MDVRP. La primera formulació, degut a la seva grandària i la seva simetria, només permet resoldre instàncies molt petites. Per augmentar la dimensió de les instàncies abordables, es proposen dues formulacions addicionals que requereixen una o vàries famílies de restriccions de mida exponencial. Per això, per tal de resoldre el problema amb aquestes formulacions, ha calgut dissenyar i implementar sengles algorismes de tipus branch-and-cut. En aquests algorismes s'han implementat mètodes de separació específics per a les restriccions que no s'havien utilitzat prèviament en altres problemes de rutes. L’experiència computacional realitzada evidencia els estalvis obtinguts comparació amb les solucions corresponents l'enfocament clàssic. També es compara l’eficàcia dels tres mètodes propostes a l'hora de resoldre el problema.
dc.format.mimetype
application/pdf
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Combinatorial optimization
dc.subject
Multi-Depot Vehicle Routing Problem
dc.subject
Vehicle interchanges
dc.subject
Branch-andcut algorithm
dc.subject
Problema d'enrutament de vehicles amb múltiples dipòsits
dc.subject
Problema ric d'enrutament de vehicles
dc.subject
Optimizació combinatoria
dc.subject
Algorisme de branch-and-cut
dc.subject.other
Àrees temàtiques de la UPC::Matemàtiques i estadística
dc.title
The multi-depot VRP with vehicle interchanges
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.director
Albareda Sambola, Maria
dc.rights.accessLevel
info:eu-repo/semantics/openAccess