Universitat Politècnica de Catalunya. Departament de Física
Synthetic jets are produced by the oscillatory movement of a membrane inside a cavity, causing fluid to enter and leave through a small orifice. This results in a net jet that is able to transfer kinetic energy and momentum to a fluid medium without the need of an external fluid source. This is why synthetic jets are interesting and will have key roles in a wide range of relevant applications such as active flow control, thermal cooling or fuel mixing. From the phenomenological point of view, synthetic jets are formed by elaborate flow patterns given their non-linear nature and, under certain conditions, unstable complex flows can be observed. The present dissertation is focused on the investigation of the fluid flow and thermal performance of synthetic jets. Two different synthetic jet actuator geometries (i.e., slotted and circular) are studied. The jets in both configurations are confined by two parallel isothermal plates with an imposed temperature difference, and impinge into a heated plate located at a certain distance from the actuator orifice. The unsteady three-dimensional Navier-Stokes equations are solved for a range of Reynolds numbers using time-accurate numerical simulations. Moreover, a detailed model of the actuator that uses Arbitrary Lagrangian-Eulerian (ALE) formulation to account for the movement of the actuator membrane is developed. This model, based on the governing numbers of the flow, is used to conduct the numerical analyses. The flows obtained in both configurations are noticeably different and three-dimensional for almost all the Reynolds numbers considered. The jet in the slotted configuration is formed by a pair of vortices that undergo turbulent transition and eventually coalesce into the jet. The external flow is dominated by two major recirculation structures that find their counterparts inside the actuator cavity. A new vortical structure, observed in confined slotted jets, appears as an interaction of the synthetic jet flow with the bottom wall and results in a change on the jet’s heat transfer mechanisms. On the other hand, the jet in the circular configuration presents three different flow regions that have been identified according to the literature: the main vortex ring, the trailing jet and the potential core. In this case, the external flow is dominated by the main vortex ring and the trailing jet, thus presenting a different morphology and heat transfer behavior than the slotted configuration. A detailed analysis of the vortex trajectories has shown that the advected vortices on the circular configuration reach the impingement before their slotted counterparts. Distributions of turbulent kinetic energy at the expulsion and vortex swirl and shear strength have revealed that the flow on the circular jet is mostly concentrated near the jet centerline, while it is more spread for the slotted configuration. For these reasons, at the same jet ejection velocity and actuator geometry, synthetic jet formation on the circular configuration can occur at higher frequencies than on the slotted configuration. The analysis of the synthetic jet outlet temperature has shown that assuming a uniform profile is reasonable if the Reynolds number is high enough. Moreover, the outlet jet temperature is significantly higher than the cold plate temperature. The two configurations present different impinging behaviors due to the differences on the flow. Heat transfer analysis on the hot wall has revealed that the circular configuration reaches a higher heat transfer peak than the slotted configuration, however, heat transfer decays faster in the circular configuration when moving away from the jet centerline. Eventually, correlations for the heat transfer at the hot wall and the outlet temperature with the Reynolds number are proposed. They can be useful to include the cavity effects when using simplified models that do not account for actuator cavity.
Els jets sintètics (SJ) són produïts pel moviment oscil·latori d'una membrana a l'interior d'una cavitat, cosa que fa que el líquid entri i surti per un petit orifici. Això es tradueix en un jet que és capaç de transferir energia cinètica i impuls a un medi fluid sense la necessitat d'una font externa. És per això que els SJ són interessants i tindran un paper clau en una àmplia gamma d'aplicacions rellevants, com ara el control actiu de flux, el refredament tèrmic o la barreja de combustible. Des del punt de vista fenomenològic, els SJ estan formats per patrons de flux elaborats per la seva naturalesa no lineal i, sota certes condicions, es poden observar fluxos complexos i inestables. Aquesta tesis està centrada en la investigació del flux de fluids i el rendiment tèrmic dels jets sintètics. S'estudien dues geometries diferents d’actuadors de SJ (és a dir, ranurats i circulars). Els jets en ambdues configuracions estan confinats per dues plaques isotèrmiques paral·leles amb una diferència de temperatura imposada i afecten a una placa escalfada situada a una certa distància de l'orifici de l'actuador. Les equacions tridimensionals inestables de Navier-Stokes es resolen per un nombre de Reynolds utilitzant simulacions numèriques precises en el temps. A més, es desenvolupa un model detallat de l'actuador que utilitza la formulació arbitrària lagrangiana-euleriana (ALE) per explicar el moviment de la membrana de l'actuador. Aquest model, basat en els números de govern del flux, s'utilitza per realitzar els anàlisis numèrics. Els fluxos obtinguts en ambdues configuracions són notablement diferents i tridimensionals per a gairebé tots els números de Reynolds considerats. El jet en la configuració ranurada està format per un parell de vòrtexs que experimenten una transició turbulenta que finalment formen el jet. El flux extern està dominat per dues recirculacions principals amb els seus homòlegs dins de la cavitat de l'actuador. Una nova estructura, observada en els jets ranurats confinats, apareix com una interacció del flux amb la paret inferior i provoca un canvi en els mecanismes de transferència de calor del jet. D'altra banda, el jet en la configuració circular presenta tres regions de flux diferents que s'han identificat segons la literatura: l'anell de vòrtex principal, el jet final i el nucli potencial. En aquest cas, el flux extern està dominat per l'anell de vòrtex principal i el jet de sortida, presentant així un comportament diferent de morfologia i transferència de calor que la configuració ranurada. Un anàlisi detallat de les trajectòries de vòrtex ha demostrat que els vòrtexs de la configuració circular arriben a la paret superior abans que els seus homòlegs ranurats. Les distribucions d'energia cinètica turbulenta a l'expulsió, entre altres, han revelat que el flux del jet circular es concentra majoritàriament a prop de la línia central del jet, mentre que és més estès per a la configuració ranurada. Per aquestes raons, a la mateixa velocitat d'ejecció del jet i geometria de l'actuador, la formació de SJ en la configuració circular pot produir-se a freqüències més altes que a la configuració ranurada. L'anàlisi de la temperatura de sortida dels SJ ha demostrat que assumir un perfil uniforme és raonable si el nombre de Reynolds és prou elevat. A més, la temperatura del jet de sortida és significativament superior a la temperatura de la placa freda. Les dues configuracions presenten diferents comportaments a causa de les diferències en el flux. L’anàlisi de la transferència de calor a la paret calenta ha revelat que la configuració circular arriba a un màxim de transferència de calor més gran que la configuració ranurada, però, la transferència de calor es desaccelera més ràpidament en la configuració circular quan s’allunya de la línia central. Finalment, es proposen correlacions per a la transferència de calor a la paret calenta i la temperatura de sortida amb el nombre de Reynolds. Poden ser útils per incloure els efectes de la cavitat quan s’utilitzen models simplificats que no tenen en compte la cavitat de l’actuador.
ALE (Arbitrary Lagrangian Eulerian); DNS (Direct Numerical Simulation); Heat transfer; LES (Large Eddy Simulations); Numerical simulation; Synthetic jet actuator; Vortex
536 - Heat. Thermodynamics; 629 - Transport vehicle engineering
Àrees temàtiques de la UPC::Física
Departament de Física [135]