Cemented carbides are composite materials widely used in different industry fields within applications involving wear, due to their outstanding wear resistance. The most commonly used are WC-Co grades, for Co wettability with the carbide and adhesion characteristics. Emergence of new applications, the existence of advanced characterization techniques, economic and environmental aspects, among others, encourages the development of a new cemented carbides generation containing other binding phases as Ni and Fe or alloys of them. Furthermore, Co powder has been classified as very toxic for the human health and the combination carbide-cobalt hardmetals dust has shown to be even more toxic than both pure cobalt and tungsten. The success of substitution of the main constituents of cemented carbides, have been commonly measured in terms of their final mechanical properties at macroscale such as hardness, toughness and transverse rupture strength; and structural integrity under service-like conditions, such as corrosion resistance, thermal shock and fatigue resistance. In this sense, general framework of microstructural effects – carbide mean grain size, volume fraction and chemical nature of constitutive phases - on the mechanical response of cemented carbides is well established at the macroscale. However, assessment of the individual role of the binder and carbide phases at local scale i.e. microscale, is yet to be studied in depth. Within micromechanical testing, special attention has being paid to the micropillar compression approach because its advantages: the stress-state is nominally uniaxial, allowing a straight conversion of the measured load-displacement data into flow curves; sample preparation by means of Focused Ion Beam (FIB) milling is a relatively easy machining route; it involves the use of a conventional nanoindenter with a flat-end tip; and, it can be performed ex-situ or in-situ by using Scanning Electron Microscopy (SEM) or Transmission Electron Microscopy (TEM) techniques. However, attention have to be paid to sample sizes since it has been well established that intrinsic properties of crystalline materials such as yield stress and strength, can be greatly influenced by extrinsic factors such as volume. For instance, results have evidenced an inverse relation between hardness and the indentation depth at the micro- and nanometric length scales. Regarding cemented carbides, recent studies showed that changes in volume fraction of binder and carbides in samples can lead to wide scatter in results of Young’s modulus measured at the microscale. Following the above ideas, in this PhD thesis uniaxial compression of micropillars and nanoindentation have been selected to evaluate the role of binder and carbides regarding their chemical nature and microstructural dimensions, i.e. carbide mean grain size and binder mean free path, in the mechanical properties and response of cemented carbides at local scales. This thesis is presented by a compendium of scientific publications in which several specific objectives are studied individually. In the first and second publications the sample size and the volume fraction of constitutive phases within the micropillar are studied respectively. Results allowed to overcome the size effect issue – usually found when testing in the micro or nanometer regime – by selecting an appropriate sample size, to accomplish reliability on the mechanical properties evaluated at local length scales. Third and fourth publications are devoted to investigating the mechanical properties of cemented carbides with partial or total substitution of WC or Co as main constitutive phases based on their intrinsic mechanical properties and behavior. Outcomes evidence that small scale testing of complex composite materials such as cemented carbides by means of uniaxial compression of micropillars and nanoindentation, allows to evaluate the role of each constitutive phase on their mechanical behavior.
Los carburos cementados son materiales compuestos ampliamente utilizados en diferentes campos de la industria dentro de aplicaciones que implican desgaste, debido a su excelente resistencia al mismo. Los más utilizados son los grados WC-Co, debido a la buena mojabilidad del Co con el carburo. La aparición de nuevas aplicaciones, la existencia de técnicas avanzadas de caracterización, y aspectos económicos y ambientales, fomenta el desarrollo de una nueva generación de carburos cementados que contiene otras fases ligantes como Ni y Fe o sus aleaciones. Además, el polvo de Co ha sido clasificado como muy tóxico para la salud humana y la combinación de polvo de metal duro de carburo y cobalto ha demostrado ser aún más tóxico que el cobalto y el tungsteno puros. El éxito en la sustitución del Co y WC en carburos cementados es medido comúnmente en términos de sus propiedades mecánicas finales a escala macro, como dureza, tenacidad y resistencia; y de su integridad estructural en condiciones de servicio, como resistencia a la corrosión, choque térmico y resistencia a fatiga. En este sentido, los efectos microestructurales (tamaño medio de WC, fracción de volumen y naturaleza química de las fases constitutivas) sobre la respuesta mecánica de estos materiales están bien establecidos a macroescala. Sin embargo, el papel individual cada fase a escala local, es decir, microescala, aún no se ha estudiado en profundidad. Dentro de los ensayos micromecánicos, se ha prestado especial atención a la compresión de micropilares debido a sus ventajas: estado de tensión nominalmente uniaxial, permitiendo la conversión directa de los datos medidos de desplazamiento y carga en curvas de flujo; la preparación de la muestra mediante fresado con haz de iones focalizados (FIB) es una ruta de mecanizado relativamente fácil; implica el uso de un nanoindentador convencional con punta plana; y, puede realizarse ex situ o in situ utilizando técnicas de microscopía electrónica de barrido (SEM) o microscopía electrónica de transmisión (TEM). Sin embargo, se debe prestar atención a los tamaños de muestra, ya que las propiedades intrínsecas de los materiales cristalinos, como el límite elástico y la resistencia, pueden verse muy influidas por factores extrínsecos como el volumen. Por ejemplo, resultados han evidenciado una relación inversa entre la dureza y la profundidad de indentación en las escalas de longitud micro y nanométrica. Con respecto a los carburos cementados, estudios recientes mostraron que cambios en la fracción de volume de ligante y carburos conducen a una amplia dispersión en los resultados del módulo de Young medido a microescala. Siguiendo las ideas anteriores, en esta tesis doctoral se ha seleccionado la compresión uniaxial de micropilares y nanoindentación para evaluar el papel del ligante y los carburos con respecto a su naturaleza química y dimensiones microestructurales, es decir, el tamaño medio del grano de carburo y el camino libre medio del ligante, en las propiedades y respuesta mecánica de carburos cementados a escalas locales. Esta tesis es presentada por un compendio de publicaciones científicas en los que varios objetivos específicos se estudian individualmente. En la primera y segunda publicación se estudia el efecto del diámetro del micropilar y la fracción volumétrica de las fases constitutivas dentro del mismo para superar el problema del efecto del tamaño de la muestra, seleccionando un tamaño apropiado para lograr confiabilidad en las propiedades mecánicas evaluadas localmente. Las publicaciones tercera y cuarta se dedican a investigar las propiedades mecánicas de los carburos cementados con sustitución parcial o total de WC o Co, en función del comportamiento mecánico intrínseco de las fases constitutivas. Los resultados demuestran que las pruebas a pequeña escala de materiales compuestos complejos – como los carburos cementados – mediante compresión uniaxial de micropilares y nanoindentación, permiten evaluar el papel de cada fase constitutiva en su respuesta y propiedades mecánicas. Al hacerlo, se debe seleccionar un tamaño de muestra apropiado para obtener resultados confiables del comportamiento general del material.
Els carburs cimentats – també coneguts com a metalls durs – són materials compostos àmpliament usats a diversos camps industrials en aplicacions que comporten desgast, com en eines de tall, mecanitzat o trepat, a causa de la seva excepcional resistència al mateix. Els carburs cimentats més comunament usats són graus de WC-Co, per les característiques d’humectabilitat de cobalt (Co) amb el carbur de tungstè (WC) i la seva adhesió. L’aparició de noves aplicacions, l’existència de tècniques de caracterització avançades, aspectes econòmics i ambientals, entre d’altres, fomenta a el desenvolupament d’una nova generació de carburs cimentats que continguin altres fases d’unió com níquel (Ni) i ferro (Fe) o els seus aliatges. A més, la pols de Co ha estat classificada com a molt tòxica per a la salut humana i la combinació de pols de metall dur carbur-cobalt ha demostrat ser encara més tòxica que el Co o el W purs. L’èxit de la substitució dels constituents principals dels carburs cimentats es mesura habitualment en termes de propietats mecàniques finals, com la duresa, la tenacitat de fractura Palmqvist i la resistència a fractura transversal (TRS) a escala macroscòpica; i en termes d’integritat estructural en condicions similars a servei, com ara la resistència a corrosió, resistència a xocs tèrmics i fatiga, etc. En aquest sentit, el marc general dels efectes de les característiques microestructurals – mida mitjana dels carburs i fracció de volum i naturalesa química de les fases constitutives – en la resposta mecànica dels carburs cimentats està ben establerta en l’escala macroscòpica. No obstant això, encara cal estudiar en profunditat el paper individual de la fase lligant i dels carburs en l’escala local, és a dir, a l’escala micromètrica. Pel que fa als assajos micromecànics, s’ha prestat especial atenció a la compressió de micropilars gràcies als seus avantatges: l’estat de tensions és nominalment uniaxial, permetent una conversió directa de les mesures càrrega-desplaçament a corbes de flux; la preparació de mostres mitjançant un microscopi de feix de ions (FIB) és una tècnica de mecanitzat relativament senzilla; implica l’ús d’un nanoindentador convencional amb una punta plana; i es pot realitzar ex-situ o in-situ mitjançant un microscopi electrònic de rastreig (SEM) o de transmissió (TEM). Tot i això, cal parar atenció a les dimensions de les mostres, ja que està ben establert que les propietats intrínseques dels materials cristal·lins, com ara la tensió i la resistència, poden estar molt influïdes per factors extrínsecs com ara el volum. Per exemple, els resultats han evidenciat una relació inversa entre la duresa i la profunditat d’indentació a les escales micro- i nanomètriques. Respecte als carburs cimentats, estudis recents han demostrat que canvis en la fracció volumètrica de lligant i carburs comporta una àmplia dispersió en els resultats de mòdul de Young mesurat a la microescala. Seguint aquestes idees, en aquesta tesi doctoral s’ha seleccionat la compressió uniaxial de micropilars i nanoindentació per avaluar el paper del lligant i els carburs respecte la seva naturalesa química i dimensions microestructurals, és a dir, grandària mitjana del carbur i camí lliure mig del lligant, en les propietats mecàniques dels carburs cimentats i la seva resposta mecànica a escales locals. Aquesta tesi es presenta com a compendi de publicacions científiques en les quals s’estudien objectius específics individualment. La primera publicació té com a objectiu avaluar l’efecte del diàmetre del micropilar en la resposta micromecànica del WC-Co. A la segona publicació, s’investiguen l’efecte de la mitja mitjana del gra de WC i la fracció de volum de les fases de carbur i lligant. Els resultats han permès superar el problema de l’efecte de mida – habitual quan s’assaja a escales micro- i nanomètrica – seleccionant una mida de mostra adequada per tal d’aconseguir propietats mecàniques fiables avaluades a escales locals. La tercera i quarta publicacions estan dedicades a investigar les propietats mecàniques dels carburs cimentats amb substitució parcial o total de WC o Co com a fase constitutiva principal. En aquest sentit, en la tercera publicació s’usa la tècnica de nanoindentació per avaluar la duresa intrínseca de les fases constitutives i la tensió de flux del lligant constret en un carbur cimentat WC-(W,Ti,Ta,Nb)C-Co. Finalment, en el quart treball s’han estudiat tres materials, un amb Co i dos amb substitució parcial o total de Co com a lligant, respectivament, per tal d’investigar la influència de la naturalesa química del lligant en la resposta mecànica global dels carburs cimentats, segons fenòmens de deformació plàstica i mecanismes de fallada induïts per compressió uniaxial de micropilars. Els resultats derivats de la investigació realitzada durant aquesta tesi doctoral demostren que els assajos a escala petita de materials compostos complexos com ara els carburs cementats mitjançant compressió uniaxial de micropilars i tècniques de nanoindentació permeten avaluar el rol de cada fase constitutiva en les propietats i resposta mecàniques. Per fer-ho, cal seleccionar una mida de mostra adequada per tal d’obtenir resultats fiables del comportament global del material.
66 - Chemical technology. Chemical and related industries. Metallurgy
Àrees temàtiques de la UPC::Enginyeria dels materials
Tesi per compendi de publicacions, amb diferents seccions retallades per drets de l'editor