Estimates and rigidity for stable solutions to some nonlinear elliptic problems

dc.contributor
Universitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística
dc.contributor.author
Miraglio, Pietro
dc.date.accessioned
2020-03-20T14:04:02Z
dc.date.available
2020-03-20T14:04:02Z
dc.date.issued
2020-01-28
dc.identifier.uri
http://hdl.handle.net/10803/668832
dc.description
Tesi en modalitat de cotutela: Universitat Politècnica de Catalunya i Università degli Studi di Milano
en_US
dc.description.abstract
My thesis deals with the study of elliptic PDE. It is divided into two parts, the first one concerning a nonlinear equation involving the p-Laplacian, and the second one focused on a nonlocal problem. In the first part, we study the regularity of stable solutions to a nonlinear equation involving the p-Laplacian in a bounded domain. This is the nonlinear version of the widely studied semilinear equation involving the classical Laplacian. Stable solutions to semilinear equations have been very recently proved to be bounded, and therefore smooth, up to dimension n=9 by Cabré, Figalli, Ros-Oton, and Serra. This result is known to be optimal by counterexamples in higher dimensions. In the case of the p-Laplacian, the boundedness of stable solutions is conjectured to hold up to a critical dimension depending on p. Examples of unbounded stable solutions are known if the dimension exceeds the critical one. Moreover, in the radial case or under strong assumptions on the nonlinearity, stable solutions are proved to be bounded in the optimal dimension range. We prove the boundedness of stable solutions under a new condition on n and p, which is optimal in the radial case, and more restrictive in the general one. It improves the known results in the field, and it is the first example, concerning the p-Laplacian, of a technique providing both a result in the nonradial case and the optimal result in the radial case. In the first part, we also investigate Hardy-Sobolev inequalities on hypersurfaces of Euclidean space, all containing a mean curvature term. Our motivation comes from several applications of these inequalities to the study of a priori estimates for stable solutions. Specifically, we give a simplified proof of the celebrated Michael-Simon and Allard inequality, we obtain two new forms of the Hardy inequality on hypersurfaces, and an improved Hardy inequality in the Poincaré sense. In the second part of this thesis, we deal with a Dirichlet to Neumann problem arising in a model for water waves. The system is described by a diffusion equation in a slab of fixed height, containing a weight that depends on a parameter a belonging to (-1,1). The top of the slab is endowed with a 0-Neumann condition, while on the bottom we have a Dirichlet datum and an equation involving a smooth nonlinearity. The system can also be reformulated as a nonlocal problem on the component endowed with the Dirichlet datum, by defining a suitable Dirichlet to Neumann operator. First, we prove a Liouville theorem that establishes the one dimensional symmetry of stable solutions, provided that a control on the growth of the energy associated with the problem is satisfied. As a consequence, we obtain the 1D symmetry of stable solutions to our problem in dimension 2. For n=3, we establish sharp energy estimates for both the energy minimizers and the monotone solutions, deducing the 1D symmetry of these classes of solutions, by an application of our Liouville theorem. Concerning this problem, we also investigate the nature of the associated Dirichlet to Neumann operator. First, we deduce its expression as a Fourier operator, which was known only in the case a=0. This result highlights the mixed nature of the operator, which is nonlocal, but not purely fractional. To better understand the dual behaviour of the operator, we provide a G-convergence result for an energy functional associated with the operator. Specifically, as a G-limit of our energy functional we find a mere interaction energy when a is greater than 0, and the classical perimeter when a is smaller or equal than 0. We point out that the threshold a=0 that we obtain here, as well as the G-limit behaviour for nonpositive values of a, is common to other nonlocal problems treated in the literature. On the contrary, the limit functional that we obtain in the other case appears to be new and structurally different from other nonlocal energy functionals that have been investigated in the literature.
en_US
dc.description.abstract
Mi tesis se encaja en el estudio de las EDPs elípticas. Está dividida en dos partes: la primera trata una ecuación no-lineal con el p-Laplaciano, la segunda de un problema no-local. En la primera parte, estudiamos la regularidad de las soluciones estables de una ecuación no lineal con el p-Laplaciano en un dominio acotado. Esta ecuacion es la versión no-lineal de la ámpliamente estudiada ecuacion semilineal con el Laplaciano. Cabré, Figalli, Ros-Oton, y Serra han demostrado recientemente que las soluciones estables de las ecuaciones semilineales son acotadas, y por tanto regulares, hasta la dimensión 9. Este resultado es optimal. En el caso del p-Laplaciano, la regularidad de las soluciones estables se conjetura de ser cierta hasta una dimension critica y, de hecho, se conocen ejemplos de soluciones no acotadas cuando la dimension llega al valor critico. Además, se ha demostrado que en el caso radial o assumiendo hipótesis fuertes sobre la no-linealidad las soluciones estables son acotadas hasta la dimension critica. En el primer capítulo, demostramos que las soluciones estables son acotadas, bajo una nueva condición en n y p, que es optimal en el caso radial, y más restrictiva en el caso general. Esta investigación mejora conocidos resultados del tema y es el primer ejemplo, para el p-Laplaciano, de un método que produce un resultado para el caso general y un resultado optimal en el caso radial. En la primera parte, nos ocupamos también de las desigualdades funcionales del tipo Hardy y Sobolev sobre hipersuperfícies del espacio Euclideo, todas conteniendo un término de curvatura media. Nuestra motivación proviene de varias apliaciones que tienen estas desigualdades en el estudio de estimaciones para las soluciones estables. En detalle, damos una demostración simple de la conocida desigualdad de Michael-Simon y Allard, obtenemos dos formas nuevas de la desigualdad de Hardy sobre hipersuperfícies, y otra desigualdad de Hardy-Poincaré. En la segunda parte, nos ocupamos de un problema de Dirichlet-Neumann que emerge de un modelo para las ondas en el agua. El sistema se describe con una ecuación de difusión en una tira de altura fija, que contiene un parámetro a en (-1,1). La parte superior de la tira es dotada de una condicion 0 de Neumann, mientras en la parte inferior tenemos un dato de Dirichlet y una ecuación con una nonlinearidad regular. Este problema puede ser reformulado como una ecuación no-local sobre la componente dotada del dato de Dirichlet, definiendo un operador de Dirichlet-Neumann apropiado. Primero, demostramos un teorema del tipo Liouville, que garantiza la simetría unidimensional de las soluciones monótonas, asumiendo un control sobre el crecimiento de la energía asociada. Como consecuencia, obtenemos la simetría 1D de las soluciones estables en dimension 2. Para n=3, obtenemos estimaciónes optimales de la energía para las soluciones que minimizan la energía y para las soluciones monótonas. Estas estimaciones nos conducen a la simetría 1D de estas clases de soluciones, aplicando nuestro teorema del tipo Liouville. Relativo a este problema, estudiamos también la naturaleza del operador de Dirichlet-Neumann. Primero, deducimos su expresión como operador de Fourier, que anteriormente solo se conocía para a=0. Este resultado evidencia la naturaleza del operador, que es no-local pero no puramente fraccionaria. Estudiamos en profundidad este comportamiento mixto del operador a través del estudio de la G-convergencia de un funcional energía asociado al operador. Demostramos la G-convergencia de nuestro funcional a un límite que corresponde a una energía de interacción pura cuando a en (0,1) y al perímetro clásico cuando a en (-1,0]. El límite a=0, así como el G-límite para el régimen a en (-1,0], es común a otros problemas no-locales tratados en la literatura. Al contrario, el funcional límite en el régimen puramente no-local es nuevo y diferente a otros funciona
en_US
dc.description.abstract
Questa tesi si occupa di equazioni differenziali alle derivate parziali di tipo ellittico. È divisa in due parti: la prima riguarda un’equazione nonlineare per il p-Laplaciano, mentre la seconda è incentrata su un problema nonlocale, che può essere formulato per mezzo di un operatore di Dirichlet-Neumann collegato con il Laplaciano frazionario. Nella prima parte, studiamo la regolarità delle soluzioni stabili dell’equazione nonlineare per il p-Laplaciano dove W è un dominio limitato, p 2 (1,+¥) e f è una nonlinearità C1. Questa equazione è la versione nonlineare dell’equazione semilineare 􀀀������������Du = f (u) in un dominio limitato W Rn, che è stata ampiamente studiata in letteratura. Molto recentemente, Cabré, Figalli, Ros-Oton, e Serra [38] hanno dimostrato che le soluzioni stabili delle equazioni semilineari sono limitate, e quindi regolari, in dimensione n 9. Questo risultato è ottimale, dato che esempi di soluzioni illimitate e stabili sono noti in dimensione n 10. Inoltre, i risultati in [38] forniscono una risposta completa ad un annoso problema aperto, proposto da Brezis e Vázquez [25], sulla regolarità delle soluzioni estremali dell’equazione 􀀀������������Du = l f (u). Queste ultime sono infatti esempi non banali di soluzioni stabili di equazioni semilineari, che possono essere limitate o illimitate in dipendenza della dimensione n, del dominio W, e della nonlinearità f . In questa tesi studiamo la limitatezza delle soluzioni stabili di (0.4), che si congettura essere vera fino alla dimensione n < p + 4p/(p 􀀀������������ 1). Sono infatti noti esempi di soluzioni stabili e illimitate quando n p + 4p/(p 􀀀������������ 1), anche quando il dominio è la palla unitaria. Inoltre, nel caso radiale o assumendo ipotesi forti sulla nonlinearità, è stato dimostrato che le soluzioni stabili di (0.4) sono limitate quando n < p + 4p/(p 􀀀������������ 1). Nel Capitolo 1 della tesi dimostriamo una nuova stima L¥ a priori per le soluzioni stabili di (0.4), assumendo una nuova condizione su n e p, che è ottimale nel caso radiale e più restrittiva nel caso generale. Il nostro risultato migliora ciò che è noto in letteratura e ed è il primo esempio di tecnica che produce sia un risultato nel caso non radiale sia il risultato ottimale nel caso radiale. Per ottenere questo risultato estendiamo al caso del p-Laplaciano una tecnica sviluppata da Cabré [30] per il caso classico del problema, con p = 2. La strategia si basa su una disuguaglianza di Hardy sugli insiemi di livello della soluzione, combinata con una disuguaglianza di tipo geometrico per le soluzioni stabili di (0.4). Nella prima parte della tesi ci occupiamo anche di disuguaglianze funzionali di tipo Hardy e Sobolev, su ipersuperfici dello spazio euclideo. Nel fare ciò siamo motivati dalle varie applicazioni di questo tipo di risultati allo studio di stime a priori per le soluzioni stabili, sia nel caso semilineare che nel caso nonlineare ...
en_US
dc.format.extent
151 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat Politècnica de Catalunya
dc.relation.uri
https://air.unimi.it/handle/2434/704717#.XnTLyohKiCo
en_US
dc.rights.license
ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Partial differential equations
en_US
dc.subject
Fourier multipliers
en_US
dc.subject
Gamma-convergence
en_US
dc.subject
One-dimensional symmetry
en_US
dc.subject
Hardy inequality
en_US
dc.subject
Sobolev inequality
en_US
dc.subject
Boundedness
en_US
dc.subject
Stable solutions
en_US
dc.subject
Stability
en_US
dc.subject
Mean curvature
en_US
dc.subject.other
Àrees temàtiques de la UPC::Matemàtiques i estadística
en_US
dc.title
Estimates and rigidity for stable solutions to some nonlinear elliptic problems
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
517
en_US
dc.contributor.director
Cabré, Xavier
dc.contributor.codirector
Valdinoci, Enrico
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

TPM1de1.pdf

1.564Mb PDF

This item appears in the following Collection(s)