Virtualization techniques for memory resource exploitation

Author

Garrido Platero, Luis Angel

Director

Carpenter, Paul (Paul Matthew)

Codirector

Badia Sala, Rosa M. (Rosa Maria)

Date of defense

2019-11-26

Pages

163 p.



Department/Institute

Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors

Abstract

Cloud infrastructures have become indispensable in our daily lives with the rise of cloud-based services offered by companies like Facebook, Google, Amazon and many others. These cloud infrastructures use a large numbers of servers provisioned with their own computing resources. Each of these servers use a piece of software, called the Hypervisor (``HV''), that allows them to create multiple virtual instances of the server's physical computing resources and abstract them into "Virtual Machines'' (VMs). A VM runs an Operating System, which in turn runs the applications. The VMs within the servers generate varying memory demand behavior. When the demand increases, costly operations such as (virtual) disk accesses and/or VM migrations can occur. As a result, it is necessary to optimize the utilization of the local memory resources within a single computing server. However, pressure on the memory resources can still increase, making it necessary to migrate the VM to a different server with larger memory or add more memory to the same server. At this point, it is important to consider that some of the servers in the cloud infrastructure might have memory resources that they are not using. Considering the possibility to make memory available to the server, new architectures have been introduced that provide hardware support to enable servers to share their memory capacity. This thesis presents multiple contributions to the memory management problem. First, it addresses the problem of optimizing memory resources in a virtualized server through different types of memory abstractions. Two full contributions are presented for managing memory within a single server called SmarTmem and CARLEMM. In this respect, a third contribution is also presented, called CAVMem, that works as the foundation for CARLEMM. Second, this thesis presents two contributions for memory capacity aggregation across multiple servers, offering two mechanisms called GV-Tmem and vMCA, this latter being based on GV-Tmem but with significant enhancements. These mechanisms distribute the server's total memory within a single-server and globally across computing servers using a user-space process with high-level memory management policies.


Las infraestructuras para la nube se han vuelto indispensables en nuestras vidas diarias con la proliferación de los servicios ofrecidos por compañías como Facebook, Google, Amazon entre otras. Estas infraestructuras utilizan una gran cantidad de servidores proveídos con sus propios recursos computacionales. Cada unos de estos servidores utilizan un software, llamado el Hipervisor (“HV”), que les permite crear múltiples instancias virtuales de los recursos físicos de computación del servidor y abstraerlos en “Máquinas Virtuales” (VMs). Una VM ejecuta un Sistema Operativo (OS), el cual a su vez ejecuta aplicaciones. Las VMs dentro de los servidores generan un comportamiento variable de demanda de memoria. Cuando la demanda de memoria aumenta, operaciones costosas como accesos al disco (virtual) y/o migraciones de VMs pueden ocurrir. Como resultado, es necesario optimizar la utilización de los recursos de memoria locales dentro del servidor. Sin embargo, la demanda por memoria puede seguir aumentando, haciendo necesario que la VM migre a otro servidor o que se añada más memoria al servidor. En este punto, es importante considerar que algunos servidores podrían tener recursos de memoria que no están utilizando. Considerando la posibilidad de hacer más memoria disponible a los servidores que lo necesitan, nuevas arquitecturas de servidores han sido introducidos que brindan el soporte de hardware necesario para habilitar que los servidores puedan compartir su capacidad de memoria. Esta tesis presenta múltiples contribuciones para el problema de manejo de memoria. Primero, se enfoca en el problema de optimizar los recursos de memoria en un servidor virtualizado a través de distintos tipos de abstracciones de memoria. Dos contribuciones son presentadas para administrar memoria de manera automática dentro de un servidor virtualizado, llamadas SmarTmem y CARLEMM. En este contexto, una tercera contribución es presentada, llamada CAVMem, que proporciona los fundamentos para el desarrollo de CARLEMM. Segundo, la tesis presenta dos contribuciones enfocadas en la agregación de capacidad de memoria a través de múltiples servidores, ofreciendo dos mecanismos llamados GV-Tmem y vMCA, siendo este último basado en GV-Tmem pero con mejoras significativas. Estos mecanismos administran la memoria total de un servidor a nivel local y de manera global a lo largo de los servidores de la infraestructura de nube utilizando un proceso de usuario que implementa políticas de manejo de ...

Subjects

004 - Computer science

Knowledge Area

Àrees temàtiques de la UPC::Informàtica

Documents

TLAGP1de1.pdf

9.464Mb

 

Rights

ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)