dc.contributor
Universitat Politècnica de Catalunya. Departament d'Enginyeria Telemàtica
dc.contributor.author
Trinh, Hoang Duy
dc.date.accessioned
2020-06-26T13:03:13Z
dc.date.available
2020-06-26T13:03:13Z
dc.date.issued
2020-06-10
dc.identifier.uri
http://hdl.handle.net/10803/669204
dc.description.abstract
This thesis collects the research works I pursued as Ph.D. candidate at the Universitat Politecnica de Catalunya (UPC). Most of the work has been accomplished at the Mobile Network Department Centre Tecnologic de Telecomunicacions de Catalunya (CTTC). The main topic of my research is the study of mobile network traffic through the analysis of operative networks dataset using machine learning techniques.
Understanding first the actual network deployments is fundamental for next-generation network (5G) for improving the performance and Quality of Service (QoS) of the users. The work starts from the collection of a novel type of dataset, using an over-the-air monitoring tool, that allows to extract the control information from the radio-link channel, without harming the users’ identities. The subsequent analysis comprehends a statistical characterization of the traffic and the derivation of prediction models for the network traffic.
A wide group of algorithms are implemented and compared, in order to identify the highest performances. Moreover, the thesis addresses a set of applications in the context mobile networks that are prerogatives in the future mobile networks. This includes the detection of urban anomalies, the user classification based on the demanded network services, the design of a proactive wake-up scheme for efficient-energy devices.
en_US
dc.description.abstract
Esta tesis recoge los trabajos de investigación que realicé como Ph.D. candidato a la Universitat Politecnica de Catalunya (UPC). La mayor parte del trabajo se ha realizado en el Centro Tecnológico de Telecomunicaciones de Catalunya (CTTC) del Departamento de Redes Móviles. El tema principal de mi investigación es el estudio del tráfico de la red móvil a través del análisis del conjunto de datos de redes operativas utilizando técnicas de aprendizaje automático. Comprender primero las implementaciones de red reales es fundamental para la red de próxima generación (5G) para mejorar el rendimiento y la calidad de servicio (QoS) de los usuarios. El trabajo comienza con la recopilación de un nuevo tipo de conjunto de datos, utilizando una herramienta de monitoreo por aire, que permite extraer la información de control del canal de radioenlace, sin dañar las identidades de los usuarios. El análisis posterior comprende una caracterización estadística del tráfico y la derivación de modelos de predicción para el tráfico de red. Se implementa y compara un amplio grupo de algoritmos para identificar los rendimientos más altos. Además, la tesis aborda un conjunto de aplicaciones en el contexto de redes móviles que son prerrogativas en las redes móviles futuras. Esto incluye la detección de anomalías urbanas, la clasificación de usuarios basada en los servicios de red demandados, el diseño de un esquema de activación proactiva para dispositivos de energía eficiente.
en_US
dc.format.extent
168 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject.other
Àrees temàtiques de la UPC::Enginyeria de la telecomunicació
en_US
dc.title
Data analytics for mobile traffic in 5G networks using machine learning techniques
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
621.3
en_US
dc.contributor.director
Dini, Paolo
dc.contributor.codirector
Giupponi, Lorenza
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.doi
https://dx.doi.org/10.5821/dissertation-2117-191800
dc.description.degree
DOCTORAT EN ENGINYERIA TELEMÀTICA (Pla 2013)