An adaptive, fault-tolerant system for road network traffic prediction using machine learning

dc.contributor
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.contributor.author
Mena-Yedra, Rafael
dc.date.accessioned
2020-10-20T09:34:54Z
dc.date.available
2020-10-20T09:34:54Z
dc.date.issued
2020-03-06
dc.identifier.uri
http://hdl.handle.net/10803/669802
dc.description.abstract
This thesis has addressed the design and development of an integrated system for real-time traffic forecasting based on machine learning methods. Although traffic prediction has been the driving motivation for the thesis development, a great part of the proposed ideas and scientific contributions in this thesis are generic enough to be applied in any other problem where, ideally, their definition is that of the flow of information in a graph-like structure. Such application is of special interest in environments susceptible to changes in the underlying data generation process. Moreover, the modular architecture of the proposed solution facilitates the adoption of small changes to the components that allow it to be adapted to a broader range of problems. On the other hand, certain specific parts of this thesis are strongly tied to the traffic flow theory. The focus in this thesis is on a macroscopic perspective of the traffic flow where the individual road traffic flows are correlated to the underlying traffic demand. These short-term forecasts include the road network characterization in terms of the corresponding traffic measurements –traffic flow, density and/or speed–, the traffic state –whether a road is congested or not, and its severity–, and anomalous road conditions –incidents or other non-recurrent events–. The main traffic data used in this thesis is data coming from detectors installed along the road networks. Nevertheless, other kinds of traffic data sources could be equally suitable with the appropriate preprocessing. This thesis has been developed in the context of Aimsun Live –a simulation-based traffic solution for real-time traffic prediction developed by Aimsun–. The methods proposed here is planned to be linked to it in a mutually beneficial relationship where they cooperate and assist each other. An example is when an incident or non-recurrent event is detected with the proposed methods in this thesis, then the simulation-based forecasting module can simulate different strategies to measure their impact. Part of this thesis has been also developed in the context of the EU research project "SETA" (H2020-ICT-2015). The main motivation that has guided the development of this thesis is enhancing those weak points and limitations previously identified in Aimsun Live, and whose research found in literature has not been especially extensive. These include: • Autonomy, both in the preparation and real-time stages. • Adaptation, to gradual or abrupt changes in traffic demand or supply. • Informativeness, about anomalous road conditions. • Forecasting accuracy improved with respect to previous methodology at Aimsun and a typical forecasting baseline. • Robustness, to deal with faulty or missing data in real-time. • Interpretability, adopting modelling choices towards a more transparent reasoning and understanding of the underlying data-driven decisions. • Scalable, using a modular architecture with emphasis on a parallelizable exploitation of large amounts of data. The result of this thesis is an integrated system –Adarules– for real-time forecasting which is able to make the best of the available historical data, while at the same time it also leverages the theoretical unbounded size of data in a continuously streaming scenario. This is achieved through the online learning and change detection features along with the automatic finding and maintenance of patterns in the network graph. In addition to the Adarules system, another result is a probabilistic model that characterizes a set of interpretable latent variables related to the traffic state based on the traffic data provided by the sensors along with optional prior knowledge provided by the traffic expert following a Bayesian approach. On top of this traffic state model, it is built the probabilistic spatiotemporal model that learns the dynamics of the transition of traffic states in the network, and whose objectives include the automatic incident detection.
en_US
dc.description.abstract
Esta tesis ha abordado el diseño y desarrollo de un sistema integrado para la predicción de tráfico en tiempo real basándose en métodos de aprendizaje automático. Aunque la predicción de tráfico ha sido la motivación que ha guiado el desarrollo de la tesis, gran parte de las ideas y aportaciones científicas propuestas en esta tesis son lo suficientemente genéricas como para ser aplicadas en cualquier otro problema en el que, idealmente, su definición sea la del flujo de información en una estructura de grafo. Esta aplicación es de especial interés en entornos susceptibles a cambios en el proceso de generación de datos. Además, la arquitectura modular facilita la adaptación a una gama más amplia de problemas. Por otra parte, ciertas partes específicas de esta tesis están fuertemente ligadas a la teoría del flujo de tráfico. El enfoque de esta tesis se centra en una perspectiva macroscópica del flujo de tráfico en la que los flujos individuales están ligados a la demanda de tráfico subyacente. Las predicciones a corto plazo incluyen la caracterización de las carreteras en base a las medidas de tráfico -flujo, densidad y/o velocidad-, el estado del tráfico -si la carretera está congestionada o no, y su severidad-, y la detección de condiciones anómalas -incidentes u otros eventos no recurrentes-. Los datos utilizados en esta tesis proceden de detectores instalados a lo largo de las redes de carreteras. No obstante, otros tipos de fuentes de datos podrían ser igualmente empleados con el preprocesamiento apropiado. Esta tesis ha sido desarrollada en el contexto de Aimsun Live -software desarrollado por Aimsun, basado en simulación para la predicción en tiempo real de tráfico-. Los métodos aquí propuestos cooperarán con este. Un ejemplo es cuando se detecta un incidente o un evento no recurrente, entonces pueden simularse diferentes estrategias para medir su impacto. Parte de esta tesis también ha sido desarrollada en el marco del proyecto de la UE "SETA" (H2020-ICT-2015). La principal motivación que ha guiado el desarrollo de esta tesis es mejorar aquellas limitaciones previamente identificadas en Aimsun Live, y cuya investigación encontrada en la literatura no ha sido muy extensa. Estos incluyen: -Autonomía, tanto en la etapa de preparación como en la de tiempo real. -Adaptación, a los cambios graduales o abruptos de la demanda u oferta de tráfico. -Sistema informativo, sobre las condiciones anómalas de la carretera. -Mejora en la precisión de las predicciones con respecto a la metodología anterior de Aimsun y a un método típico usado como referencia. -Robustez, para hacer frente a datos defectuosos o faltantes en tiempo real. -Interpretabilidad, adoptando criterios de modelización hacia un razonamiento más transparente para un humano. -Escalable, utilizando una arquitectura modular con énfasis en una explotación paralela de grandes cantidades de datos. El resultado de esta tesis es un sistema integrado –Adarules- para la predicción en tiempo real que sabe maximizar el provecho de los datos históricos disponibles, mientras que al mismo tiempo también sabe aprovechar el tamaño teórico ilimitado de los datos en un escenario de streaming. Esto se logra a través del aprendizaje en línea y la capacidad de detección de cambios junto con la búsqueda automática y el mantenimiento de los patrones en la estructura de grafo de la red. Además del sistema Adarules, otro resultado de la tesis es un modelo probabilístico que caracteriza un conjunto de variables latentes interpretables relacionadas con el estado del tráfico basado en los datos de sensores junto con el conocimiento previo –opcional- proporcionado por el experto en tráfico utilizando un planteamiento Bayesiano. Sobre este modelo de estados de tráfico se construye el modelo espacio-temporal probabilístico que aprende la dinámica de la transición de estados
en_US
dc.format.extent
304 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject.other
Àrees temàtiques de la UPC::Informàtica
en_US
dc.title
An adaptive, fault-tolerant system for road network traffic prediction using machine learning
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
004
en_US
dc.contributor.director
Gavaldà Mestre, Ricard
dc.contributor.codirector
Casas Vilaró, Jordi
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

TRM-Y1de1.pdf

19.42Mb PDF

This item appears in the following Collection(s)