dc.contributor
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.contributor.author
Comino Trinidad, Marc
dc.date.accessioned
2021-01-15T13:01:43Z
dc.date.available
2021-01-15T13:01:43Z
dc.date.issued
2020-12-22
dc.identifier.uri
http://hdl.handle.net/10803/670373
dc.description.abstract
Over the last few years, there has been a notorious growth in the field of digitization of 3D buildings and urban environments. The substantial improvement of both scanning hardware and reconstruction algorithms has led to the development of representations of buildings and cities that can be remotely transmitted and inspected in real-time. Among the applications that implement these technologies are several GPS navigators and virtual globes such as Google Earth or the tools provided by the Institut Cartogràfic i Geològic de Catalunya.
In particular, in this thesis, we conceptualize cities as a collection of individual buildings. Hence, we focus on the individual processing of one structure at a time, rather than on the larger-scale processing of urban environments.
Nowadays, there is a wide diversity of digitization technologies, and the choice of the appropriate one is key for each particular application. Roughly, these techniques can be grouped around three main families:
- Time-of-flight (terrestrial and aerial LiDAR).
- Photogrammetry (street-level, satellite, and aerial imagery).
- Human-edited vector data (cadastre and other map sources).
Each of these has its advantages in terms of covered area, data quality, economic cost, and processing effort.
Plane and car-mounted LiDAR devices are optimal for sweeping huge areas, but acquiring and calibrating such devices is not a trivial task. Moreover, the capturing process is done by scan lines, which need to be registered using GPS and inertial data. As an alternative, terrestrial LiDAR devices are more accessible but cover smaller areas, and their sampling strategy usually produces massive point clouds with over-represented plain regions. A more inexpensive option is street-level imagery. A dense set of images captured with a commodity camera can be fed to state-of-the-art multi-view stereo algorithms to produce realistic-enough reconstructions. One other advantage of this approach is capturing high-quality color data, whereas the geometric information is usually lacking.
In this thesis, we analyze in-depth some of the shortcomings of these data-acquisition methods and propose new ways to overcome them. Mainly, we focus on the technologies that allow high-quality digitization of individual buildings. These are terrestrial LiDAR for geometric information and street-level imagery for color information.
Our main goal is the processing and completion of detailed 3D urban representations. For this, we will work with multiple data sources and combine them when possible to produce models that can be inspected in real-time. Our research has focused on the following contributions:
- Effective and feature-preserving simplification of massive point clouds.
- Developing normal estimation algorithms explicitly designed for LiDAR data.
- Low-stretch panoramic representation for point clouds.
- Semantic analysis of street-level imagery for improved multi-view stereo reconstruction.
- Color improvement through heuristic techniques and the registration of LiDAR and imagery data.
- Efficient and faithful visualization of massive point clouds using image-based techniques.
en_US
dc.description.abstract
Durant els darrers anys, hi ha hagut un creixement notori en el camp de la digitalització d'edificis en 3D i entorns urbans. La millora substancial tant del maquinari d'escaneig com dels algorismes de reconstrucció ha portat al desenvolupament de representacions d'edificis i ciutats que es poden transmetre i inspeccionar remotament en temps real. Entre les aplicacions que implementen aquestes tecnologies hi ha diversos navegadors GPS i globus virtuals com Google Earth o les eines proporcionades per l'Institut Cartogràfic i Geològic de Catalunya. En particular, en aquesta tesi, conceptualitzem les ciutats com una col·lecció d'edificis individuals. Per tant, ens centrem en el processament individual d'una estructura a la vegada, en lloc del processament a gran escala d'entorns urbans. Avui en dia, hi ha una àmplia diversitat de tecnologies de digitalització i la selecció de l'adequada és clau per a cada aplicació particular. Aproximadament, aquestes tècniques es poden agrupar en tres famílies principals: - Temps de vol (LiDAR terrestre i aeri). - Fotogrametria (imatges a escala de carrer, de satèl·lit i aèries). - Dades vectorials editades per humans (cadastre i altres fonts de mapes). Cadascun d'ells presenta els seus avantatges en termes d'àrea coberta, qualitat de les dades, cost econòmic i esforç de processament. Els dispositius LiDAR muntats en avió i en cotxe són òptims per escombrar àrees enormes, però adquirir i calibrar aquests dispositius no és una tasca trivial. A més, el procés de captura es realitza mitjançant línies d'escaneig, que cal registrar mitjançant GPS i dades inercials. Com a alternativa, els dispositius terrestres de LiDAR són més accessibles, però cobreixen àrees més petites, i la seva estratègia de mostreig sol produir núvols de punts massius amb regions planes sobrerepresentades. Una opció més barata són les imatges a escala de carrer. Es pot fer servir un conjunt dens d'imatges capturades amb una càmera de qualitat mitjana per obtenir reconstruccions prou realistes mitjançant algorismes estèreo d'última generació per produir. Un altre avantatge d'aquest mètode és la captura de dades de color d'alta qualitat. Tanmateix, la informació geomètrica resultant sol ser de baixa qualitat. En aquesta tesi, analitzem en profunditat algunes de les mancances d'aquests mètodes d'adquisició de dades i proposem noves maneres de superar-les. Principalment, ens centrem en les tecnologies que permeten una digitalització d'alta qualitat d'edificis individuals. Es tracta de LiDAR terrestre per obtenir informació geomètrica i imatges a escala de carrer per obtenir informació sobre colors. El nostre objectiu principal és el processament i la millora de representacions urbanes 3D amb molt detall. Per a això, treballarem amb diverses fonts de dades i les combinarem quan sigui possible per produir models que es puguin inspeccionar en temps real. La nostra investigació s'ha centrat en les següents contribucions: - Simplificació eficaç de núvols de punts massius, preservant detalls d'alta resolució. - Desenvolupament d'algoritmes d'estimació normal dissenyats explícitament per a dades LiDAR. - Representació panoràmica de baixa distorsió per a núvols de punts. - Anàlisi semàntica d'imatges a escala de carrer per millorar la reconstrucció estèreo de façanes. - Millora del color mitjançant tècniques heurístiques i el registre de dades LiDAR i imatge. - Visualització eficient i fidel de núvols de punts massius mitjançant tècniques basades en imatges.
en_US
dc.format.extent
222 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by-nc-sa/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject.other
Àrees temàtiques de la UPC::Informàtica
en_US
dc.title
Algorithms for the reconstruction, analysis, repairing and enhancement of 3D urban models from multiple data sources
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.director
Andújar, Carlos
dc.contributor.codirector
Chica Calaf, Antonio
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess