Laser-induced forward transfer for printed electronics applications

dc.contributor
Universitat de Barcelona. Facultat de Física
dc.contributor.author
Sopeña i Martínez, Pol
dc.date.accessioned
2021-02-25T07:53:05Z
dc.date.available
2021-02-25T07:53:05Z
dc.date.issued
2020-12-16
dc.identifier.uri
http://hdl.handle.net/10803/670919
dc.description
Programa de Doctorat en Nanociències
en_US
dc.description.abstract
Printed electronics appeared in the 1980s as a cost-effective alternative to silicon-based electronics. Employing the techniques from the graphics industry, such as rotogravure or screen printing, it was possible to print metals, ceramics, and polymers on a wide variety of materials, including flexible and organic substrates. However, these techniques became not adequate when customization or short runs were considered since the production costs of the components and devices substantially increased. To overcome these issues, direct-write techniques, such as inkjet printing, allowed depositing materials on-demand in a digital fashion. Nonetheless, the ink was ejected in the form of droplets from a nozzle, which small diameter limited the range of printable inks; only those with low viscosity (few mPa·s) and small particle size (~100 nm) could be routinely printed without resulting in nozzle clogging. Alternatively, laser-induced forward transfer (LIFT), another digital technique, has barely any of these constraints. LIFT is a printing technique capable of depositing almost every kind of ink in a digital fashion independently of its rheology. In LIFT, a thin layer of ink is extended on a transparent donor substrate, which is placed facing the receiver substrate through a certain gap. Using a laser pulse focused on the ink donor film, a cavitation bubble is induced. The high pressure within results in its expansion, propelling the material forward towards the receiver, where it is finally deposited. Since the ink is not ejected from an output nozzle, the range of printable viscosities extends from a few mPa·s to hundreds of Pa·s, and the particles in suspension can feature sizes of up to tens of micrometers, non-achievable with other direct-write techniques. Furthermore, both the resolution of the printed features and the printing speeds are similar to those of other digital printing techniques. In this thesis, the use of LIFT is investigated with the aim of printing inks for printed electronics applications. Special attention is devoted to the transfer of conductive pads to be used as interconnects. To demonstrate the potential and possibilities of LIFT, different inks used in printed electronics applications are chosen. These inks exhibit diverse rheologies: from low to high viscosity, and with particle sizes ranging from nano- to micrometers, characteristics that make them unprintable with most of the other direct-write methods. Finally, to prove the versatility and compatibility of the technique with the desired applications, several functional components and devices are entirely printed with LIFT. The work is divided in three main sections. The first aims at the production of transparent electrodes by means of the LIFT of two silver nanowire inks on rigid and flexible substrates. The main laser parameters are varied to find the optimum compromise between the optical and electrical properties, to finally print a device consisting of conductive and transparent electrodes. The second focuses on the LIFT of high solid content silver screen printing ink. The study is divided in the fundamental study of the deposits and its correlation with the transfer dynamics, and the ability to obtain conductive interconnects on non-planarized regular paper. As a proof-of-concept, a radio-frequency inductor is printed on paper. The third consists of performing LIFT using continuous-wave laser sources for printing inks, with the aim of reducing the capital investment associated to pulsed LIFT. The laser parameters are varied to determine the optimum printing conditions and the transfer mechanism is investigated. As a final remark, a gas and temperature sensor is printed using this approach.
en_US
dc.format.extent
173 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat de Barcelona
dc.rights.license
ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Electrònica
en_US
dc.subject
Electrónica
en_US
dc.subject
Electronics
en_US
dc.subject
Làsers
en_US
dc.subject
Láseres
en_US
dc.subject
Lasers
en_US
dc.subject
Circuits impresos
en_US
dc.subject
Circuitos impresos
en_US
dc.subject
Printed circuits
en_US
dc.subject
Impressió digital
en_US
dc.subject
Impressió digital
en_US
dc.subject
Digital printing
en_US
dc.subject.other
Ciències Experimentals i Matemàtiques
en_US
dc.title
Laser-induced forward transfer for printed electronics applications
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
62
en_US
dc.contributor.director
Serra Coromina, Pere
dc.contributor.director
Fernández Pradas, Juan Marcos
dc.contributor.tutor
Serra Coromina, Pere
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

PSM_PhD_THESIS.pdf

126.3Mb PDF

This item appears in the following Collection(s)