Advanced strategies for Solid Oxide Electrolysis cells

Author

Anelli, Simone

Director

Tarancón Rubio, Albert

Torrell Faro, Marc

Baiutti, Federico

Tutor

Pellicer Vilà, Eva M. (Eva Maria)

Date of defense

2021-02-05

Pages

331 p.



Doctorate programs

Universitat Autònoma de Barcelona. Programa de Doctorat en Ciència de Materials

Abstract

Actualment, la transició energètica cap a un escenari baix en carboni està impulsant la instal·lació global de fonts d’energia renovables, el seu desplegament per sobre de l’40%, implicarà l’ús de sistemes eficients d’emmagatzematge d’energia per cobrir la demanda. Les rutes d’hidrogen verd i power to gas es presenten com la millor alternativa per a aquest emmagatzematge al connectar les xarxes elèctriques i de gas. En aquest marc, les cel·les d’electròlisi d’òxid sòlid (SOEC), que produeixen hidrogen i gas de síntesi (H2 + CO) a partir de l’electròlisi de l’aigua o la co-electròlisi de l’aigua i el diòxid de carboni, són els electrolitzadors més eficients per a l’emmagatzematge d’energia. Les SOEC posseeixen altes taxes de conversió d’energia (≈80%) atorgades pel rang de temperatura d’operació (600-900 °C). No obstant, un dels principals inconvenients de les SOEC està relacionat amb les tècniques de fabricació, que impliquen molts passos per produir dispositius complets. A més, les seves prestacions i durabilitat encara s’estan investigant per augmentar la maduresa de la tecnologia i penetrar en el mercat competint amb altres tecnologies d’electròlisi que mostren menors eficiències. La present tesi està dedicada a l’exploració de nous conceptes de SOEC. Per a això, es consideren tres aspectes, que són: i) utilització de tècniques de fabricació additiva per a la fabricació replicable, automàtica i customitzable de dispositius energètics; ii) síntesi de nanocompostos mesoporosos en l’elèctrode d’oxigen per millorar el rendiment general i la durabilitat del dispositiu SOEC; i finalment iii) la producció de gas de síntesi per co-electròlisi i oxidació parcial de metà (POM) amb els dispositius desenvolupats. Robocasting (RC) i InkJet printing (IJP) s’han utilitzat per a la fabricació de cel·les simètriques impreses per tecnologia híbrides d’impressió 3D, que van ser co-sinteritzades a altes temperatures i provades electroquímicament. S’ha demostrat la viabilitat d’aquestes dues tècniques combinades per a la fabricació de dispositius ceràmics. S’ha sintetitzat ceria dopada mesoporosa (CGO) utilitzada com a suport per a elèctrodes d’oxigen nanocompostos. Per a això es proposa una ruta optimitzada per millorar l’activitat catalítica dels elèctrodes de base mesoporosa i per reduir la temperatura de sinterització mantenint la seva nanoestructura, i l’estudi dels seus efectes sobre el material. La millora del rendiment dels dispositius SOEC aplicant les rutes de síntesi i fabricació desenvolupades es demostra pels excel·lents resultats aconseguits, sense precedents per a aquest tipus de SOEC. El rendiment de dispositius complets amb elèctrodes d’oxigen mesoporosos es va provar a altes temperatures. El suport nanoestructurat optimitzat ha estat provat en una cel·la de botó (diàmetre = 2 cm) mostrant excel·lents rendiments observats en condicions de co-electròlisi i pila de combustible. També es va dipositar CGO mesoporós en cel·les d’àrea gran (25 cm2) per demostrar l’escalabilitat del material, per a dispositius d’interès comercial. Com a resum, el document presentat tracta de l’optimització de dispositius electroquímics innovadors d’alta eficiència com les SOEC, donant un nou pas més enllà de l’estat de l’art en les tecnologies de producció d’hidrogen a causa de la combinació de rutes de fabricació innovadores com la fabricació additiva de materials ceràmics amb funcionalitats avançades com els mesoporosos.


Actualmente, la transición energética hacia un escenario bajo en carbono está impulsando la instalación global de fuentes de energía renovables, su despliegue por encima del 40%, implicará el uso de sistemas eficientes de almacenamiento de energía. Las rutas de hidrógeno verde y power to gas se presentan como la mejor alternativa para este almacenamiento. En este marco, las celdas de electrólisis de óxido sólido (SOEC), que producen hidrógeno y gas de síntesis (H2 + CO) a partir de la electrólisis del agua o la co-electrólisis del agua y el dióxido de carbono, son los electrolizadores más eficientes. Las SOEC poseen altas tasas de conversión de energía (≈80%) otorgadas por el rango de temperatura de operación (600-900 ° C). Sin embargo, uno de los principales inconvenientes de las SOEC está relacionado con las técnicas de fabricación, que implican muchos pasos para producir dispositivos completos. Además, sus prestaciones y durabilidad aún se están investigando para aumentar la madurez de la tecnología y penetrar en el mercado compitiendo con otras tecnologías de electrólisis que muestran menores eficiencias. La presente tesis está dedicada a la exploración de nuevos conceptos de SOEC. Para ello, se consideran tres aspectos, que son: i) utilización de técnicas de fabricación aditiva para la fabricación replicable, automática y sintonizable de dispositivos energéticos; ii) síntesis de nanocompuestos mesoporosos en el electrodo de oxígeno para mejorar el rendimiento general y la durabilidad del dispositivo SOEC; y finalmente iii) la producción de gas de síntesis por co-electrólisis y oxidación parcial de metano (POM) con los dispositivos desarrollados. Robocasting e Inkjet Printing se utilizaron para la fabricación de celdas simétricas impresas por tecnología híbridas de impresión 3D, co-sinterizadas a altas temperaturas y probadas electroquímicamente. Se ha demostrado la viabilidad de estas dos técnicas para la fabricación de dispositivos cerámicos. Se ha sintetizado ceria dopada mesoporosa (CGO) utilizada como soporte para electrodos de oxígeno nanocompuestos. Para ello se propone una ruta optimizada para mejorar la actividad catalítica de los electrodos de base mesoporosa y para reducir la temperatura de sinterización manteniendo su nanoestructura. La mejora del rendimiento de los dispositivos SOEC aplicando las rutas de síntesis y fabricación desarrolladas se demuestra por los excelentes resultados conseguidos, sin precedentes para este tipo de SOEC. El rendimiento de dispositivos completos con electrodos de oxígeno mesoporosos se probó a altas temperaturas. El soporte nanoestructurado optimizado ha sido probado en una celda botón (diámetro = 2 cm) mostrando excelentes rendimientos observados en condiciones de COSOEC y SOFC. También se depositó CGO mesoporoso en celdas de área grande (25 cm2) para demostrar la escalabilidad del material. Ambos dispositivos se sometieron a una prueba de durabilidad, que mostró tasas de degradación en línea con la literatura más avanzada. Finalmente, se muestra la prueba de conceptos sobre la oxidación parcial de metano (POM) asistida electroquímicamente. Se produjo y probó un SOEC con CGO infiltrado por catalizadores de Ni y Cu como dispositivo POM. Se usó metano en el electrodo Ni-Cu-CGO como combustible. El oxígeno producido por la reacción de electrólisis del agua en el electrodo Ni-YSZ se utilizó para producir gas de síntesis a partir de CH4 en un proceso catalítico asistido electroquímicamente. Los principios de funcionamiento del experimento se demostraron con éxito. Como resumen, el presente documento trata de la optimización de dispositivos electroquímicos innovadores de alta eficiencia como las SOEC, dando un nuevo paso más allá del estado del arte en las tecnologías de producción de hidrógeno debido a la combinación de rutas de fabricación innovadores, como la fabricación aditiva con materiales cerámicos de funcionalidades avanzadas como los mesoporosos.


Nowadays, the energy transition to a low carbon scenario is promoting the global installation of renewable energy sources, its deployment above 40% will need the use of efficient energy storage systems for covering the demand. Green hydrogen and power to gas routes has arisen as the best alternative for this storage while connecting the electric and gas grids. In this frame, Solid Oxide Electrolysis Cells (SOECs), which produce hydrogen and syngas (H2+CO) from the electrolysis of water or the co-electrolysis of water and carbon dioxide, are the most efficient electrolysers for energy storage. SOECs possess high energy conversion rates (≈80 %) granted by the operation temperature range (600-900 °C). However, one of SOECs’ main drawbacks is related to the manufacturing techniques, which involves many steps to produce complete devices. Furthermore, their performances and durability are still being investigated to increase the maturity of the technology and penetrate to the market competing with other electrolysis technologies that show lower efficiencies. The present thesis is dedicated to the exploration of new concepts of SOECs. For this, three aspects are considered, which are: i) utilization of additive manufacturing (AM) techniques for reliable, automatic and tuneable fabrication of energy devices; ii) synthesis of mesoporous nanocomposites at the oxygen electrode to improve the general performances and durability of SOEC device; an finally iii) the production of syngas by co-electrolysis and partial oxidation of methane (POM) with the developed devices. Robocasting (RC) and Inkjet Printing (IJP) were used for the fabrication of hybrid 3D printed symmetrical cells, which were co-sintered at high temperatures and electrochemically tested. The feasibility of these two combined techniques for the fabrication of ceramic devices was demonstrated. Mesoporous doped ceria (CGO) was synthesized and used as a scaffold for nanocomposite oxygen electrodes. An optimized route to improve the catalytic activity of the mesoporous based electrodes and to reduce the sintering temperature to maintain their nanostructure, is proposed after the study of their effects on the material. The improvement of the SOEC devices performance applying the developed synthesis and fabrication routes is demonstrated by the achievement of unprecedented results for this type of SOEC. The performance of complete devices with mesoporous oxygen electrodes was tested at high temperatures. The optimized scaffold tested on a button test cell (diameter =2 cm) promoted the commented outstanding performances in both co-electrolysis and fuel cell conditions. Mesoporous CGO was also deposited on large area cells (25 cm2) to demonstrate the scalability of the material, for devices of commercial interest. Both devices underwent a durability test, showing degradation rates in line with state-of-the-art literature. Finally, the proof of concepts about electrochemically assisted partial oxidation of methane (POM) is shown. A SOEC with CGO scaffold infiltrated by Ni and Cu catalysers was produced and tested as POM device. Methane was supplied at the Ni-Cu-CGO electrode as fuel. The oxygen produced by the water electrolysis reaction at the Ni-YSZ electrode was used to produce syngas from CH4 on an electrochemical assisted catalytic process. The working principles of the experiment were successfully demonstrated opening a new research line. As a summary the present document deals with the optimization of innovative high efficient electrochemical devices as SOEC, bringing a new step beyond the state of the art on the hydrogen production technologies due to the combination of innovative fabrication routes such as the additive manufacturing with advanced functional ceramic materials like mesoporous.

Keywords

Cèl·lules d'electròlisi d'òxid sòlid; Celdas de electrólisis de óxido sólido; Solid oxide electrolysis cells; Mesoporoso; Mesoporous; Fabricación aditiva; Additive manufacturing

Subjects

00 - Prolegomena. Fundamentals of knowledge and culture. Propaedeutics

Knowledge Area

Ciències Experimentals

Documents

sian1de1.pdf

13.08Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/4.0/

This item appears in the following Collection(s)