Adapting by copying. Towards a sustainable machine learning

dc.contributor
Universitat de Barcelona. Departament de Matemàtiques i Informàtica
dc.contributor.author
Unceta, Irene
dc.date.accessioned
2021-05-18T11:03:10Z
dc.date.available
2021-05-18T11:03:10Z
dc.date.issued
2021-03-01
dc.identifier.uri
http://hdl.handle.net/10803/671692
dc.description.abstract
Despite the rapid growth of machine learning in the past decades, deploying automated decision making systems in practice remains a challenge for most companies. On an average day, data scientists face substantial barriers to serving models into production. Production environments are complex ecosystems, still largely based on on-premise technology, where modifications are timely and costly. Given the rapid pace with which the machine learning environment changes these days, companies struggle to stay up-to-date with the latest software releases, the changes in regulation and the newest market trends. As a result, machine learning often fails to deliver according to expectations. And more worryingly, this can result in unwanted risks for users, for the company itself and even for the society as a whole, insofar the negative impact of these risks is perpetuated in time. In this context, adaptation is an instrument that is both necessary and crucial for ensuring a sustainable deployment of industrial machine learning. This dissertation is devoted to developing theoretical and practical tools to enable adaptation of machine learning models in company production environments. More precisely, we focus on devising mechanisms to exploit the knowledge acquired by models to train future generations that are better fit to meet the stringent demands of a changing ecosystem. We introduce copying as a mechanism to replicate the decision behaviour of a model using another that presents differential characteristics, in cases where access to both the models and their training data are restricted. We discuss the theoretical implications of this methodology and show how it can be performed and evaluated in practice. Under the conceptual framework of actionable accountability we also explore how copying can be used to ensure risk mitigation in circumstances where deployment of a machine learning solution results in a negative impact to individuals or organizations.
en_US
dc.description.abstract
A pesar del rápido crecimiento del aprendizaje automático en últimas décadas, la implementación de sistemas automatizados para la toma de decisiones sigue siendo un reto para muchas empresas. Los científicos de datos se enfrentan a diario a numerosas barreras a la hora de desplegar los modelos en producción. Los entornos de producción son ecosistemas complejos, mayoritariamente basados en tecnologías on- premise, donde los cambios son costosos. Es por eso que las empresas tienen serias dificultades para mantenerse al día con las últimas versiones de software, los cambios en la regulación vigente o las nuevas tendencias del mercado. Como consecuencia, el rendimiento del aprendizaje automático está a menudo muy por debajo de las expectativas. Y lo que es más preocupante, esto puede derivar en riesgos para los usuarios, para las propias empresas e incluso para la sociedad en su conjunto, en la medida en que el impacto negativo de dichos riesgos se perpetúe en el tiempo. En este contexto, la adaptación se revela como un elemento necesario e imprescindible para asegurar la sostenibilidad del desarrollo industrial del aprendizaje automático. Este trabajo está dedicado a desarrollar las herramientas teóricas y prácticas necesarias para posibilitar la adaptación de los modelos de aprendizaje automático en entornos de producción. En concreto, nos centramos en concebir mecanismos que permitan reutilizar el conocimiento adquirido por los modelos para entrenar futuras generaciones que estén mejor preparadas para satisfacer las demandas de un entorno altamente cambiante. Introducimos la idea de copiar, como un mecanismo que permite replicar el comportamiento decisorio de un modelo utilizando un segundo que presenta características diferenciales, en escenarios donde el acceso tanto a los datos como al propio modelo está restringido. Es en este contexto donde discutimos las implicaciones teóricas de esta metodología y demostramos como las copias pueden ser entrenadas y evaluadas en la práctica. Bajo el marco de la responsabilidad accionable, exploramos también cómo las copias pueden explotarse como herramienta para la mitigación de riesgos en circunstancias en que el despliegue de una solución basada en el aprendizaje automático pueda tener un impacto negativo sobre las personas o las organizaciones.
en_US
dc.format.extent
190 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat de Barcelona
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Aprenentatge electrònic
en_US
dc.subject
Aprendizaje electrónico
en_US
dc.subject
Web-based instruction
en_US
dc.subject
Algorismes
en_US
dc.subject
Algoritmos
en_US
dc.subject
Algorithms
en_US
dc.subject
Presa de decisions
en_US
dc.subject
Toma de decisiones
en_US
dc.subject
Decision making
en_US
dc.subject
Sistemes autoorganitzatius
en_US
dc.subject
Sistemas autoorganizativos
en_US
dc.subject
Self-organizing systems
en_US
dc.subject.other
Ciències Experimentals i Matemàtiques
en_US
dc.title
Adapting by copying. Towards a sustainable machine learning
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
004
en_US
dc.contributor.director
Pujol Vila, Oriol
dc.contributor.director
Nin Guerrero, Jordi
dc.contributor.tutor
Pujol Vila, Oriol
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

IUM_PhD_THESIS.pdf

7.531Mb PDF

Aquest element apareix en la col·lecció o col·leccions següent(s)