Health-aware predictive control schemes based on industrial processes

Author

Karimi Pour, Fatemeh

Director

Puig Cayuela, Vicenç

Codirector

Cembrano Gennari, Gabriela

Date of defense

2020-07-24

Pages

235 p.



Department/Institute

Institut de Robòtica i Informàtica Industrial

Abstract

The research is motivated by real applications, such as pasteurization plant, water networks and autonomous system, which each of them require a specific control system to provide proper management able to take into account their particular features and operating limits in presence of uncertainties related to their operation and failures from component breakdowns. According to that most of the real systems have nonlinear behaviors, it can be approximated them by polytopic linear uncertain models such as Linear Parameter Varying (LPV) and Takagi-Sugeno (TS) models. Therefore, a new economic Model Predictive Control (MPC) approach based on LPV/TS models is proposed and the stability of the proposed approach is certified by using a region constraint on the terminal state. Besides, the MPC-LPV strategy is extended based on the system with varying delays affecting states and inputs. The control approach allows the controller to accommodate the scheduling parameters and delay change. By computing the prediction of the state variables and delay along a prediction time horizon, the system model can be modified according to the evaluation of the estimated state and delay at each time instant. To increase the system reliability, anticipate the appearance of faults and reduce the operational costs, actuator health monitoring should be considered. Regarding several types of system failures, different strategies are studied for obtaining system failures. First, the damage is assessed with the rainflow-counting algorithm that allows estimating the component’s fatigue and control objective is modified by adding an extra criterion that takes into account the accumulated damage. Besides, two different health-aware economic predictive control strategies that aim to minimize the damage of components are presented. Then, economic health-aware MPC controller is developed to compute the components and system reliability in the MPC model using an LPV modeling approach and maximizes the availability of the system by estimating system reliability. Additionally, another improvement considers chance-constraint programming to compute an optimal list replenishment policy based on a desired risk acceptability level, managing to dynamically designate safety stocks in flowbased networks to satisfy non-stationary flow demands. Finally, an innovative health-aware control approach for autonomous racing vehicles to simultaneously control it to the driving limits and to follow the desired path based on maximization of the battery RUL. The proposed approach is formulated as an optimal on-line robust LMI based MPC driven from Lyapunov stability and controller gain synthesis solved by LPV-LQR problem in LMI formulation with integral action for tracking the trajectory.


Esta tesis pretende proporcionar contribuciones teóricas y prácticas sobre seguridad y control de sistemas industriales, especialmente en la forma maten ática de sistemas inciertos. La investigación está motivada por aplicaciones reales, como la planta de pasteurización, las redes de agua y el sistema autónomo, cada uno de los cuales requiere un sistema de control específico para proporcionar una gestión adecuada capaz de tener en cuenta sus características particulares y limites o de operación en presencia de incertidumbres relacionadas con su operación y fallas de averías de componentes. De acuerdo con que la mayoría de los sistemas reales tienen comportamientos no lineales, puede aproximarse a ellos mediante modelos inciertos lineales politopicos como los modelos de Lineal Variación de Parámetros (LPV) y Takagi-Sugeno (TS). Por lo tanto, se propone un nuevo enfoque de Control Predictivo del Modelo (MPC) económico basado en modelos LPV/TS y la estabilidad del enfoque propuesto se certifica mediante el uso de una restricción de región en el estado terminal. Además, la estrategia MPC-LPV se extiende en función del sistema con diferentes demoras que afectan los estados y las entradas. El enfoque de control permite al controlador acomodar los parámetros de programación y retrasar el cambio. Al calcular la predicción de las variables de estado y el retraso a lo largo de un horizonte de tiempo de predicción, el modelo del sistema se puede modificar de acuerdo con la evaluación del estado estimado y el retraso en cada instante de tiempo. Para aumentar la confiabilidad del sistema, anticipar la aparición de fallas y reducir los costos operativos, se debe considerar el monitoreo del estado del actuador. Con respecto a varios tipos de fallas del sistema, se estudian diferentes estrategias para obtener fallas del sistema. Primero, el daño se evalúa con el algoritmo de conteo de flujo de lluvia que permite estimar la fatiga del componente y el objetivo de control se modifica agregando un criterio adicional que tiene en cuenta el daño acumulado. Además, se presentan dos estrategias diferentes de control predictivo económico que tienen en cuenta la salud y tienen como objetivo minimizar el daño de los componentes. Luego, se desarrolla un controlador MPC económico con conciencia de salud para calcular los componentes y la confiabilidad del sistema en el modelo MPC utilizando un enfoque de modelado LPV y maximiza la disponibilidad del sistema mediante la estimación de la confiabilidad del sistema. Además, otra mejora considera la programación de restricción de posibilidades para calcular una política ´optima de reposición de listas basada en un nivel de aceptabilidad de riesgo deseado, logrando designar dinámicamente existencias de seguridad en redes basadas en flujo para satisfacer demandas de flujo no estacionarias. Finalmente, un enfoque innovador de control consciente de la salud para vehículos de carreras autónomos para controlarlo simultáneamente hasta los límites de conducción y seguir el camino deseado basado en la maximización de la bacteria RUL. El diseño del control se divide en dos capas con diferentes escalas de tiempo, planificador de ruta y controlador. El enfoque propuesto está formulado como un MPC robusto en línea optimo basado en LMI impulsado por la estabilidad de Lyapunov y la síntesis de ganancia del controlador resuelta por el problema LPV-LQR en la formulación de LMI con acción integral para el seguimiento de la trayectoria.

Keywords

Model predictive control; Economic optimization; Linear parameter varying; Takagi-Sugeno; Time-varying delay; Health-aware control; Reliability; Remaining useful life; Autonomous system; Industrial process

Subjects

004 - Computer science

Knowledge Area

Àrees temàtiques de la UPC::Enginyeria biomèdica

Note

Aplicat embargament des de la data de defensa fins el dia 30 de desembre de 2021

Documents

TFKP1de1.pdf

3.579Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/4.0/

This item appears in the following Collection(s)