Guidance, navigation and control of multirotors

dc.contributor
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.contributor.author
Rubí Perelló, Bertomeu
dc.date.accessioned
2022-01-11T13:18:58Z
dc.date.available
2022-01-11T13:18:58Z
dc.date.issued
2020-12-11
dc.identifier.uri
http://hdl.handle.net/10803/673068
dc.description
Aplicat embargament des de la data de defensa fins el dia 31 de desembre de 2021
en_US
dc.description.abstract
This thesis presents contributions to the Guidance, Navigation and Control (GNC) systems for multirotor vehicles by applying and developing diverse control techniques and machine learning theory with innovative results. The aim of the thesis is to obtain a GNC system able to make the vehicle follow predefined paths while avoiding obstacles in the vehicle's route. The system must be adaptable to different paths, situations and missions, reducing the tuning effort and parametrisation of the proposed approaches. The multirotor platform, formed by the Asctec Hummingbird quadrotor vehicle, is studied and described in detail. A complete mathematical model is obtained and a freely available and open simulation platform is built. Furthermore, an autopilot controller is designed and implemented in the real platform. The control part is focused on the path following problem. That is, following a predefined path in space without any time constraint. Diverse control-oriented and geometrical algorithms are studied, implemented and compared. Then, the geometrical algorithms are improved by obtaining adaptive approaches that do not need any parameter tuning. The adaptive geometrical approaches are developed by means of Neural Networks. To end up, a deep reinforcement learning approach is developed to solve the path following problem. This approach implements the Deep Deterministic Policy Gradient algorithm. The resulting approach is trained in a realistic multirotor simulator and tested in real experiments with success. The proposed approach is able to accurately follow a path while adapting the vehicle's velocity depending on the path's shape. In the navigation part, an obstacle detection system based on the use of a LIDAR sensor is implemented. A model of the sensor is derived and included in the simulator. Moreover, an approach for treating the sensor data to eliminate the possible ground detections is developed. The guidance part is focused on the reactive path planning problem. That is, a path planning algorithm that is able to re-plan the trajectory online if an unexpected event, such as detecting an obstacle in the vehicle's route, occurs. A deep reinforcement learning approach for the reactive obstacle avoidance problem is developed. This approach implements the Deep Deterministic Policy Gradient algorithm. The developed deep reinforcement learning agent is trained and tested in the realistic simulation platform. This agent is combined with the path following agent and the rest of the elements developed in the thesis obtaining a GNC system that is able to follow different types of paths while avoiding obstacle in the vehicle's route.
en_US
dc.description.abstract
Aquesta tesi doctoral presenta diverses contribucions relaciones amb els sistemes de Guiat, Navegació i Control (GNC) per a vehicles multirrotor, aplicant i desenvolupant diverses tècniques de control i de machine learning amb resultats innovadors. L'objectiu principal de la tesi és obtenir un sistema de GNC capaç de dirigir el vehicle perquè segueixi una trajectòria predefinida mentre evita els obstacles que puguin aparèixer en el recorregut del vehicle. El sistema ha de ser adaptable a diferents trajectòries, situacions i missions, reduint l'esforç realitzat en l'ajust i la parametrització dels mètodes proposats. La plataforma experimental, formada pel cuadricòpter Asctec Hummingbird, s'estudia i es descriu en detall. S'obté un model matemàtic complet de la plataforma i es desenvolupa una eina de simulació, la qual és de codi lliure. A més, es dissenya un controlador autopilot i s'implementa en la plataforma real. La part de control està enfocada al problema de path following. En aquest problema, el vehicle ha de seguir una trajectòria predefinida en l'espai sense cap tipus de restricció temporal. S'estudien, s'implementen i es comparen diversos algoritmes de control i geomètrics de path following. Després, es milloren els algoritmes geomètrics usant xarxes neuronals per convertirlos en algoritmes adaptatius. Per finalitzar, es desenvolupa un mètode de path following basat en tècniques d'aprenentatge per reforç profund (deep Reinforcement learning). Aquest mètode implementa l'algoritme Deep Deterministic Policy Gradient. L'agent intel. ligent resultant és entrenat en un simulador realista de multirotors i validat en la plataforma experimental real amb èxit. Els resultats mostren que l'agent és capaç de seguir de forma precisa la trajectòria de referència adaptant la velocitat del vehicle segons la curvatura del recorregut. A la part de navegació, s'implementa un sistema de detecció d'obstacles basat en l'ús d'un sensor LIDAR. Es deriva un model del sensor i aquest s'inclou en el simulador. A més, es desenvolupa un mètode per tractar les mesures del sensor per eliminar les possibles deteccions del terra. Pel que fa a la part de guiatge, aquesta està focalitzada en el problema de reactive path planning. És a dir, un algoritme de planificació de trajectòria que és capaç de re-planejar el recorregut del vehicle a l'instant si algun esdeveniment inesperat ocorre, com ho és la detecció d'un obstacle en el recorregut del vehicle. Es desenvolupa un mètode basat en aprenentatge per reforç profund per l'evasió d'obstacles. Aquest mètode implementa l'algoritme Deep Deterministic Policy Gradient. L'agent d'aprenentatge per reforç s'entrena i valida en un simulador de multirotors realista. Aquest agent es combina amb l'agent de path following i la resta d'elements desenvolupats en la tesi per obtenir un sistema GNC capaç de seguir diferents tipus de trajectòries, evadint els obstacles que estiguin en el recorregut del vehicle.
en_US
dc.description.abstract
Esta tesis doctoral presenta varias contribuciones relacionas con los sistemas de Guiado, Navegación y Control (GNC) para vehículos multirotor, aplicando y desarrollando diversas técnicas de control y de machine learning con resultados innovadores. El objetivo principal de la tesis es obtener un sistema de GNC capaz de dirigir el vehículo para que siga una trayectoria predefinida mientras evita los obstáculos que puedan aparecer en el recorrido del vehículo. El sistema debe ser adaptable a diferentes trayectorias, situaciones y misiones, reduciendo el esfuerzo realizado en el ajuste y la parametrización de los métodos propuestos. La plataforma experimental, formada por el cuadricoptero Asctec Hummingbird, se estudia y describe en detalle. Se obtiene un modelo matemático completo de la plataforma y se desarrolla una herramienta de simulación, la cual es de código libre. Además, se diseña un controlador autopilot, el cual es implementado en la plataforma real. La parte de control está enfocada en el problema de path following. En este problema, el vehículo debe seguir una trayectoria predefinida en el espacio tridimensional sin ninguna restricción temporal Se estudian, implementan y comparan varios algoritmos de control y geométricos de path following. Luego, se mejoran los algoritmos geométricos usando redes neuronales para convertirlos en algoritmos adaptativos. Para finalizar, se desarrolla un método de path following basado en técnicas de aprendizaje por refuerzo profundo (deep reinforcement learning). Este método implementa el algoritmo Deep Deterministic Policy Gradient. El agente inteligente resultante es entrenado en un simulador realista de multirotores y validado en la plataforma experimental real con éxito. Los resultados muestran que el agente es capaz de seguir de forma precisa la trayectoria de referencia adaptando la velocidad del vehículo según la curvatura del recorrido. En la parte de navegación se implementa un sistema de detección de obstáculos basado en el uso de un sensor LIDAR. Se deriva un modelo del sensor y este se incluye en el simulador. Además, se desarrolla un método para tratar las medidas del sensor para eliminar las posibles detecciones del suelo. En cuanto a la parte de guiado, está focalizada en el problema de reactive path planning. Es decir, un algoritmo de planificación de trayectoria que es capaz de re-planear el recorrido del vehículo al instante si ocurre algún evento inesperado, como lo es la detección de un obstáculo en el recorrido del vehículo. Se desarrolla un método basado en aprendizaje por refuerzo profundo para la evasión de obstáculos. Este implementa el algoritmo Deep Deterministic Policy Gradient. El agente de aprendizaje por refuerzo se entrena y valida en un simulador de multirotors realista. Este agente se combina con el agente de path following y el resto de elementos desarrollados en la tesis para obtener un sistema GNC capaz de seguir diferentes tipos de trayectorias evadiendo los obstáculos que estén en el recorrido del vehículo.
en_US
dc.format.extent
233 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject.other
Àrees temàtiques de la UPC::Informàtica
en_US
dc.title
Guidance, navigation and control of multirotors
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
004
en_US
dc.subject.udc
68
en_US
dc.contributor.director
Morcego Seix, Bernardo
dc.contributor.codirector
Pérez Magrané, Ramon
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documentos

TBRP1de1.pdf

7.180Mb PDF

Este ítem aparece en la(s) siguiente(s) colección(ones)