Bridging the gap between reconstruction and synthesis

Author

Pumarola Peris, Albert

Director

Moreno-Noguer, Francesc

Codirector

Sanfeliu Cortés, Alberto

Date of defense

2021-10-13

Pages

213 p.



Department/Institute

Institut de Robòtica i Informàtica Industrial

Doctorate programs

Automàtica, robòtica i visió

Abstract

3D reconstruction and image synthesis are two of the main pillars in computer vision. Early works focused on simple tasks such as multi-view reconstruction and texture synthesis. With the spur of Deep Learning, the field has rapidly progressed, making it possible to achieve more complex and high level tasks. For example, the 3D reconstruction results of traditional multi-view approaches are currently obtained with single view methods. Similarly, early pattern based texture synthesis works have resulted in techniques that allow generating novel high-resolution images. In this thesis we have developed a hierarchy of tools that cover all these range of problems, lying at the intersection of computer vision, graphics and machine learning. We tackle the problem of 3D reconstruction and synthesis in the wild. Importantly, we advocate for a paradigm in which not everything should be learned. Instead of applying Deep Learning naively we propose novel representations, layers and architectures that directly embed prior 3D geometric knowledge for the task of 3D reconstruction and synthesis. We apply these techniques to problems including scene/person reconstruction and photo-realistic rendering. We first address methods to reconstruct a scene and the clothed people in it while estimating the camera position. Then, we tackle image and video synthesis for clothed people in the wild. Finally, we bridge the gap between reconstruction and synthesis under the umbrella of a unique novel formulation. Extensive experiments conducted along this thesis show that the proposed techniques improve the performance of Deep Learning models in terms of the quality of the reconstructed 3D shapes / synthesised images, while reducing the amount of supervision and training data required to train them. In summary, we provide a variety of low, mid and high level algorithms that can be used to incorporate prior knowledge into different stages of the Deep Learning pipeline and improve performance in tasks of 3D reconstruction and image synthesis.


La reconstrucció 3D i la síntesi d'imatges són dos dels pilars fonamentals en visió per computador. Els estudis previs es centren en tasques senzilles com la reconstrucció amb informació multi-càmera i la síntesi de textures. Amb l'aparició del "Deep Learning", aquest camp ha progressat ràpidament, fent possible assolir tasques molt més complexes. Per exemple, per obtenir una reconstrucció 3D, tradicionalment s'utilitzaven mètodes multi-càmera, en canvi ara, es poden obtenir a partir d'una sola imatge. De la mateixa manera, els primers treballs de síntesi de textures basats en patrons han donat lloc a tècniques que permeten generar noves imatges completes en alta resolució. En aquesta tesi, hem desenvolupat una sèrie d'eines que cobreixen tot aquest ventall de problemes, situats en la intersecció entre la visió per computador, els gràfics i l'aprenentatge automàtic. Abordem el problema de la reconstrucció i la síntesi 3D en el món real. És important destacar que defensem un paradigma on no tot s'ha d'aprendre. Enlloc d'aplicar el "Deep Learning" de forma naïve, proposem representacions novedoses i arquitectures que incorporen directament els coneixements geomètrics ja existents per a aconseguir la reconstrucció 3D i la síntesi d'imatges. Nosaltres apliquem aquestes tècniques a problemes com ara la reconstrucció d'escenes/persones i a la renderització d'imatges fotorealistes. Primer abordem els mètodes per reconstruir una escena, les persones vestides que hi ha i la posició de la càmera. A continuació, abordem la síntesi d'imatges i vídeos de persones vestides en situacions quotidianes. I finalment, aconseguim, a través d'una nova formulació única, connectar la reconstrucció amb la síntesi. Els experiments realitzats al llarg d'aquesta tesi demostren que les tècniques proposades milloren el rendiment dels models de "Deepp Learning" pel que fa a la qualitat de les reconstruccions i les imatges sintetitzades alhora que redueixen la quantitat de dades necessàries per entrenar-los. En resum, proporcionem una varietat d'algoritmes de baix, mitjà i alt nivell que es poden utilitzar per incorporar els coneixements previs a les diferents etapes del "Deep Learning" i millorar el rendiment en tasques de reconstrucció 3D i síntesi d'imatges.

Keywords

3D reconstruction; Image synthesis; Deep learning; Generative models; Humancentric imaging

Subjects

004 - Computer science

Knowledge Area

Àrees temàtiques de la UPC::Informàtica

Note

Aplicat embargament des de la data de defensa fins el 15 de gener de 2022

Documents

TAPP1de1.pdf

64.56Mb

 

Rights

ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)