Position analysis based on multi-affine formulations

dc.contributor
Institut de Robòtica i Informàtica Industrial
dc.contributor.author
Shabani, Arya
dc.date.accessioned
2022-06-01T07:31:39Z
dc.date.available
2022-06-01T07:31:39Z
dc.date.issued
2021-07-05
dc.identifier.uri
http://hdl.handle.net/10803/674371
dc.description
Aplicat embargament des de la data de defensa fins el 31/5/2022
dc.description.abstract
The position analysis problem is a fundamental issue that underlies many problems in Robotics such as the inverse kinematics of serial robots, the forward kinematics of parallel robots, the coordinated manipulation of objects, the generation of valid grasps, the constraint-based object positioning, the simultaneous localization and map building, and the analysis of complex deployable structures. It also arises in other fields, such as in computer aided design, when the location of objects in a design is given in terms of geometric constrains, or in the conformational analysis of biomolecules. The ubiquity of this problem, has motivated an intense quest for methods able of tackling it. Up to now, efficient algorithms for the general problem have remained elusive and they are only available for particular cases. Moreover, the complexity of the problem has typically led to methods difficult to be implemented. Position analysis can be decomposed into two equally important steps: obtaining a set of closure equations, and solving them. This thesis deals with both of them to obtain a general, simple, and yet efficient solution method that we call the trapezoid method. The first step is addressed relying on dual quaternions. Although it has not been properly highlighted in the past, the use of dual quaternions permits expressing the closure condition of a kinematic loop involving only lower pairs as a system of multi-affine equations. In this thesis, this property is leveraged to introduce an interval-based method specially tailored for solving multi-affine systems. The proposed method is objectively simpler (in the sense that it is easier to understand and to implement) than previous methods based on general techniques such as interval Newton methods, conversions to Bernstein basis, or linear relaxations. Moreover, it relies on two simple operations, namely, linear interpolations and projections on coordinate planes, which can be executed with a high performance. The result is a method that accurately and efficiently bounds the valid solutions of the problem at hand. To further improve the accuracy, we propose the use of redundant, multi affine equations that are derived from the minimal set of equations describing the problem. To improve the efficiency, we introduce a variable elimination methodology that preserves the multi-affinity of the system of equations. The generality and the performance of the proposed trapezoid method are extensively evaluated on different kind of mechanisms, including spherical mechanisms, generic 6R and 7R loops, over-constrained systems, and multi-loop mechanisms. The proposed method is, in all cases, significantly faster than state of the art alternatives.
dc.description.abstract
El problema de l'anàlisi de posició és un tema fonamental que subjau a molts problemes de la robòtica, com ara la cinemàtica inversa de robots sèrie, la cinemàtica directa de robots paral·lels, la manipulació coordinada d'objectes, la generació de prensions vàlides amb mans robòtiques, el posicionament d'objectes basat en restriccions, la localització i la creació de mapes de forma simultània, i l'anàlisi d'estructures desplegables complexes. També sorgeix en altres camps, com ara en el disseny assistit per ordinador, quan la ubicació dels objectes en un disseny es dóna en termes de restriccions geomètriques o en l'anàlisi conformacional de biomolècules. La omnipresència d'aquest problema ha motivat una intensa recerca de mètodes capaços d'afrontar-lo. Fins al moment, els algoritmes eficients per al problema general han estat esquius i només estan disponibles per a casos particulars. A més, la complexitat del problema normalment ha conduït a mètodes difícils d'implementar. L'anàlisi de posició es pot descompondre en dos passos igualment importants: l'obtenció d'un sistema d'equacions de tancament i la resolució d'aquest sistema. Aquesta tesi tracta de tots dos passos per tal d'obtenir un mètode de solució general, senzill i alhora eficient que anomenem el mètode del trapezoide. El primer pas s'aborda utilitzant quaternions duals. Tot i que no ha estat suficientment destacat en el passat, l'ús de quaternions duals permet expressar la condició de tancament d'un bucle cinemàtic que impliqui només parells inferiors com a un sistema d'equacions multi-afins. En aquesta tesi s'aprofita aquesta propietat per introduir un mètode especialment dissenyat per resoldre sistemes multi-afins. El mètode proposat és objectivament més senzill (en el sentit que és més fàcil d'entendre i d'implementar) que els mètodes anteriors que utilitzen tècniques generals com ara els mètodes de Newton basats en intervals, les conversions a la base de Bernstein o les relaxacions lineals. A més, el mètode es basa en dues operacions simples, a saber, les interpolacions lineals i les projeccions en plans de coordenades, que es poden executar de forma molt eficient. El resultat és un mètode que acota amb precisió i eficiència les solucions vàlides del problema. Per millorar encara més la precisió, proposem l'ús d'equacions multi-afins redundants derivades del conjunt mínim d'equacions que descriuen el problema. Per altra banda, per millorar l'eficiència, introduïm un metodologia d'eliminació de variables que preserva la multi-afinitat del sistema d'equacions. La generalitat i el rendiment del mètode del trapezoide s'avalua extensivament en diferents tipus de mecanismes, inclosos els mecanismes esfèrics, bucles 6R i 7R genèrics, sistemes sobre-restringits i mecanismes de múltiples bucles. El mètode proposat és, en tots els casos, significativament més ràpid que els mètodes alternatius descrits en la literatura fins al moment.
dc.format.extent
134 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject.other
Àrees temàtiques de la UPC::Informàtica
dc.title
Position analysis based on multi-affine formulations
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
004
dc.subject.udc
68
dc.contributor.director
Thomas, Federico
dc.contributor.codirector
Porta Pleite, Josep Maria
dc.embargo.terms
cap
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.description.degree
Automàtica, robòtica i visió


Documents

TAS1de1.pdf

28.89Mb PDF

Aquest element apareix en la col·lecció o col·leccions següent(s)