Development of cognitive workload models to detect driving impairment

dc.contributor
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.contributor.author
Becerra Sánchez, Enriqueta Patricia
dc.date.accessioned
2022-06-29T07:42:50Z
dc.date.available
2022-06-29T07:42:50Z
dc.date.issued
2021-09-20
dc.identifier.uri
http://hdl.handle.net/10803/674658
dc.description
Tesi redactada en castellà
dc.description.abstract
Driving a vehicle is a complex activity exposed to continuous changes such as speed limits and vehicular traffic. Drivers require a high degree of concentration when performing this activity, increasing the amount of mental demand known as cognitive workload, causing vehicular accidents to the minimum negligence. In fact, human error is the leading contributing factor in over 90% of road accidents. In recent years, the subjects' cognitive workload levels while driving a vehicle have been predicted using subjective and vehicle performance tools. Other research has emphasized the use and analysis of physiological information, where electroencephalographic (EEG) signals are the most used to identify cognitive states due to their high precision. Although significant progress has been made in this area, these investigations have been based on traditional techniques or data analysis from a specific source due to the information's complexity. A new trend has been opened in the study of the internal behavior of subjects by implementing machine learning techniques to analyze information from various sources. However, there are still several challenges to face in this new line of research. This doctoral thesis presents a new model to predict the states of low and high cognitive workload of subjects when facing scenarios of driving a vehicle called GALoRSI-SVMRBF (Genetic Algorithms and Logistic Regression for the Structuring of Information-Support Vector Machine with Radial Basis Function Kernel). GALoRSI-SVMRBF is developed using machine learning algorithms based on information from EEG signals. Also, the information collected from NASA-TLX, instant online self-assessment and the error rate measure are implemented in the model. First, GALoRSI-SVMRBF proposes a new method for pattern recognition based on feature selection that combines statistical tests, genetic algorithms, and logistic regression. This method consists mainly of selecting an EEG dataset and exploring the information to identify the key features that recognize cognitive states. The selected data are defined as an index for pattern recognition and used to structure a new dataset capable of optimizing the model's learning and classification process. Second, the methodology and development of a classifier for the prediction model are presented, implementing machine learning algorithms. The classifier is developed mainly in two phases, defined as training and testing. Once the prediction model has been developed, this thesis presents the validation phase of GALoRSI-SVMRBF. The validation consists of evaluating the model's adaptability to new datasets, maintaining a high prediction rate. Finally, an analysis of the performance of GALoRSI-SVMRBF is presented. The objective is to know the model's scope and limitations, evaluating various performance metrics to find the optimal configuration for GALoRSI-SVMRBF. We found that GALoRSI-SVMRBF successfully predicts low and high cognitive workload of subjects while driving a vehicle. In general, it is observed that the model uses the information extracted from multiple EEG signals, reducing the original dataset by more than 50%, maximizing its predictive capacity, achieving a precision rate of >90% in the classification of the information. During this thesis, the experiments showed that obtaining a high percentage of prediction depends on several factors, from applying a useful collection technique data until the last step of the prediction model.
dc.description.abstract
La conducción de un vehículo es una actividad compleja que está expuesta a demandas que cambian continuamente por diferentes factores, tales como, el límite de velocidad, obstáculos en la vía, tráfico vehicular, entre otros. Al desempeñar esta actividad, los conductores requieren un alto grado de concentración incrementando la cantidad de demanda mental conocida como carga. En los últimos años, se han propuesto mecanismos para monitorear y/o predecir los niveles de carga cognitiva de los sujetos al conducir un vehículo, centrándose en el uso de herramientas subjetivas y de rendimiento vehicular. Otras investigaciones, han enfatizado en el uso y análisis de la información fisiológica, siendo las señales electroencefalográficas (EEG) las más utilizadas para identificar los estados cognitivos por su alta precisión. A pesar del gran avance realizado, estas investigaciones se han basado en técnicas tradicionales o en el análisis de la información proveniente de fuentes específicas para identificar el estado interno del sujeto, obteniendo modelos sobreentrenados o robustos, incrementando el tiempo de análisis afectando el desempeño del modelo. En esta tesis doctoral se presenta un nuevo modelo para predecir los estados de baja y alta carga cognitiva de los sujetos al enfrentarse a escenarios de la conducción de un vehículo denominado GALoRSI-SVMRBF (Genetic Algorithms and Logistic Regression for the Structuring of Information-Support Vector Machine with Radial Basis Function Kernel). GALoRSI-SVMRBF fue desarrollado utilizando los algoritmos de aprendizaje automático y técnicas estadísticas basado en la información proveniente de las señales EEG. Primero, GALoRSI-SVMRBF crea una base de datos extrayendo las características que serán utilizadas en el modelo a través de técnicas estadísticas. Posteriormente, propone un nuevo método para el reconocimiento de patrones basado en la selección de características que combina pruebas estadísticas, algoritmos genéticos y regresión logística. Este método consiste principalmente en seleccionar un conjunto de datos EEG y explorar la combinación de la información para identificar las características claves que contribuyan al reconocimiento de dos estados cognitivos. Después, la información seleccionada es definida como un índice para el reconocimiento de patrones y utilizada para estructurar un nuevo conjunto de datos que soporta información de uno o múltiples canales para optimizar el proceso de aprendizaje y clasificación del modelo. Por último, es desarrollado el clasificador del modelo de predicciones el cual consiste en dos etapas definidas como entrenamiento y prueba. Nosotros encontramos que GALoRSI-SVMRBF predice de manera exitosa la carga cognitiva baja y alta de los sujetos durante la conducción de un vehículo. En general, se observó que el modelo utiliza la información extraída de una o múltiples señales EEG y logrando una tasa de precisión >90% en la clasificación de la información
dc.format.extent
144 p.
dc.format.mimetype
application/pdf
dc.language.iso
spa
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by-nc-sa/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Machine learning
dc.subject
Prediction model
dc.subject
Cognitive workload
dc.subject
EEG signals
dc.subject
Aprendizaje automático
dc.subject
Modelo de predicción
dc.subject
Carga cognitiva
dc.subject
Señales EEG
dc.subject.other
Àrees temàtiques de la UPC::Informàtica
dc.title
Development of cognitive workload models to detect driving impairment
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
004
dc.contributor.director
Reyes Muñoz, María Angélica
dc.embargo.terms
cap
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.description.degree
Arquitectura de computadors


Documents

TEPBS1de1.pdf

10.41Mb PDF

Aquest element apareix en la col·lecció o col·leccions següent(s)